

The	Cathedral	and	the	Bazaar

Eric	Steven	Raymond

Thyrsus	Enterprises

<esr@thyrsus.com>

This	is	version	3.0

Copyright	©	2000	Eric	S.	Raymond

Copyright

Permission	is	granted	to	copy,	distribute	and/or	modify	this	document	under	the
terms	of	the	Open	Publication	License,	version	2.0.

$Date:	2002/08/02	09:02:14	$

Revision	History

Revision	1.57

11	September	2000

esr

New	major	section	“How	Many	Eyeballs	Tame	Complexity”.

Revision	1.52

28	August	2000

esr

MATLAB	is	a	reinforcing	parallel	to	Emacs.	Corbato—	&	Vyssotsky	got	it	in
1965.

Revision	1.51

24	August	2000

esr

First	DocBook	version.	Minor	updates	to	Fall	2000	on	the	time-sensitive
material.

Revision	1.49

5	May	2000

esr

Added	the	HBS	note	on	deadlines	and	scheduling.

Revision	1.51

31	August	1999

esr

This	the	version	that	O’Reilly	printed	in	the	first	edition	of	the	book.

Revision	1.45

8	August	1999

esr

Added	the	endnotes	on	the	Snafu	Principle,	(pre)historical	examples	of	bazaar
development,	and	originality	in	the	bazaar.

Revision	1.44

29	July	1999

esr

Added	the	“On	Management	and	the	Maginot	Line”	section,	some	insights	about
the	usefulness	of	bazaars	for	exploring	design	space,	and	substantially	improved
the	Epilog.

Revision	1.40

20	Nov	1998

esr

Added	a	correction	of	Brooks	based	on	the	Halloween	Documents.

Revision	1.39

28	July	1998

esr

I	removed	Paul	Eggert’s	‘graph	on	GPL	vs.	bazaar	in	response	to	cogent
aguments	from	RMS	on

Revision	1.31

February	10	1998

esr

Added	“Epilog:	Netscape	Embraces	the	Bazaar!”

Revision	1.29

February	9	1998

esr

Changed	“free	software”	to	“open	source”.

Revision	1.27

18	November	1997

esr

Added	the	Perl	Conference	anecdote.

Revision	1.20

7	July	1997

esr

Added	the	bibliography.

Revision	1.16

21	May	1997

esr

First	official	presentation	at	the	Linux	Kongress.

Abstract

I	anatomize	a	successful	open-source	project,	fetchmail,	that	was	run	as	a
deliberate	test	of	the	surprising	theories	about	software	engineering	suggested	by
the	history	of	Linux.	I	discuss	these	theories	in	terms	of	two	fundamentally
different	development	styles,	the	“cathedral”	model	of	most	of	the	commercial
world	versus	the	“bazaar”	model	of	the	Linux	world.	I	show	that	these	models
derive	from	opposing	assumptions	about	the	nature	of	the	software-debugging
task.	I	then	make	a	sustained	argument	from	the	Linux	experience	for	the
proposition	that	“Given	enough	eyeballs,	all	bugs	are	shallow”,	suggest
productive	analogies	with	other	self-correcting	systems	of	selfish	agents,	and
conclude	with	some	exploration	of	the	implications	of	this	insight	for	the	future
of	software.

Table	of	Contents

*	The	Cathedral	and	the	Bazaar

*	The	Mail	Must	Get	Through

*	The	Importance	of	Having	Users

*	Release	Early,	Release	Often

*	How	Many	Eyeballs	Tame	Complexity

*	When	Is	a	Rose	Not	a	Rose?

*	Popclient	becomes	Fetchmail

*	Fetchmail	Grows	Up

*	A	Few	More	Lessons	from	Fetchmail

*	Necessary	Preconditions	for	the	Bazaar	Style

*	The	Social	Context	of	Open-Source	Software

*	On	Management	and	the	Maginot	Line

*	Epilog:	Netscape	Embraces	the	Bazaar

*	Notes

*	Bibliography

*	Acknowledgements

The	Cathedral	and	the	Bazaar

Linux	is	subversive.	Who	would	have	thought	even	five	years	ago	(1991)	that	a
world-class	operating	system	could	coalesce	as	if	by	magic	out	of	part-time
hacking	by	several	thousand	developers	scattered	all	over	the	planet,	connected
only	by	the	tenuous	strands	of	the	Internet?

Certainly	not	I.	By	the	time	Linux	swam	onto	my	radar	screen	in	early	1993,	I
had	already	been	involved	in	Unix	and	open-source	development	for	ten	years.	I
was	one	of	the	first	GNU	contributors	in	the	mid-1980s.	I	had	released	a	good
deal	of	open-source	software	onto	the	net,	developing	or	co-developing	several
programs	(nethack,	Emacs’s	VC	and	GUD	modes,	xlife,	and	others)	that	are	still
in	wide	use	today.	I	thought	I	knew	how	it	was	done.

Linux	overturned	much	of	what	I	thought	I	knew.	I	had	been	preaching	the	Unix
gospel	of	small	tools,	rapid	prototyping	and	evolutionary	programming	for	years.
But	I	also	believed	there	was	a	certain	critical	complexity	above	which	a	more
centralized,	a	priori	approach	was	required.	I	believed	that	the	most	important
software	(operating	systems	and	really	large	tools	like	the	Emacs	programming
editor)	needed	to	be	built	like	cathedrals,	carefully	crafted	by	individual	wizards
or	small	bands	of	mages	working	in	splendid	isolation,	with	no	beta	to	be
released	before	its	time.

Linus	Torvalds’s	style	of	development-release	early	and	often,	delegate
everything	you	can,	be	open	to	the	point	of	promiscuity-came	as	a	surprise.	No
quiet,	reverent	cathedral-building	here-rather,	the	Linux	community	seemed	to

resemble	a	great	babbling	bazaar	of	differing	agendas	and	approaches	(aptly
symbolized	by	the	Linux	archive	sites,	who’d	take	submissions	from	anyone)	out
of	which	a	coherent	and	stable	system	could	seemingly	emerge	only	by	a
succession	of	miracles.

The	fact	that	this	bazaar	style	seemed	to	work,	and	work	well,	came	as	a	distinct
shock.	As	I	learned	my	way	around,	I	worked	hard	not	just	at	individual	projects,
but	also	at	trying	to	understand	why	the	Linux	world	not	only	didn’t	fly	apart	in
confusion	but	seemed	to	go	from	strength	to	strength	at	a	speed	barely
imaginable	to	cathedral-builders.

By	mid-1996	I	thought	I	was	beginning	to	understand.	Chance	handed	me	a
perfect	way	to	test	my	theory,	in	the	form	of	an	open-source	project	that	I	could
consciously	try	to	run	in	the	bazaar	style.	So	I	did-and	it	was	a	significant
success.

This	is	the	story	of	that	project.	I’ll	use	it	to	propose	some	aphorisms	about
effective	open-source	development.	Not	all	of	these	are	things	I	first	learned	in
the	Linux	world,	but	we’ll	see	how	the	Linux	world	gives	them	particular	point.
If	I’m	correct,	they’ll	help	you	understand	exactly	what	it	is	that	makes	the
Linux	community	such	a	fountain	of	good	software-and,	perhaps,	they	will	help
you	become	more	productive	yourself.

The	Mail	Must	Get	Through

Since	1993	I’d	been	running	the	technical	side	of	a	small	free-access	Internet
service	provider	called	Chester	County	InterLink	(CCIL)	in	West	Chester,
Pennsylvania.	I	co-founded	CCIL	and	wrote	our	unique	multiuser	bulletin-board
software-you	can	check	it	out	by	telnetting	to	locke.ccil.org.	Today	it	supports
almost	three	thousand	users	on	thirty	lines.	The	job	allowed	me	24-hour-a-day
access	to	the	net	through	CCIL’s	56K	line-in	fact,	the	job	practically	demanded
it!

I	had	gotten	quite	used	to	instant	Internet	email.	I	found	having	to	periodically
telnet	over	to	locke	to	check	my	mail	annoying.	What	I	wanted	was	for	my	mail
to	be	delivered	on	snark	(my	home	system)	so	that	I	would	be	notified	when	it
arrived	and	could	handle	it	using	all	my	local	tools.

The	Internet’s	native	mail	forwarding	protocol,	SMTP	(Simple	Mail	Transfer
Protocol),	wouldn’t	suit,	because	it	works	best	when	machines	are	connected

full-time,	while	my	personal	machine	isn’t	always	on	the	Internet,	and	doesn’t
have	a	static	IP	address.	What	I	needed	was	a	program	that	would	reach	out	over
my	intermittent	dialup	connection	and	pull	across	my	mail	to	be	delivered
locally.	I	knew	such	things	existed,	and	that	most	of	them	used	a	simple
application	protocol	called	POP	(Post	Office	Protocol).	POP	is	now	widely
supported	by	most	common	mail	clients,	but	at	the	time,	it	wasn’t	built	in	to	the
mail	reader	I	was	using.

I	needed	a	POP3	client.	So	I	went	out	on	the	Internet	and	found	one.	Actually,	I
found	three	or	four.	I	used	one	of	them	for	a	while,	but	it	was	missing	what
seemed	an	obvious	feature,	the	ability	to	hack	the	addresses	on	fetched	mail	so
replies	would	work	properly.

The	problem	was	this:	suppose	someone	named	`joe’	on	locke	sent	me	mail.	If	I
fetched	the	mail	to	snark	and	then	tried	to	reply	to	it,	my	mailer	would	cheerfully
try	to	ship	it	to	a	nonexistent	`joe’	on	snark.	Hand-editing	reply	addresses	to	tack
on	<@ccil.org>	quickly	got	to	be	a	serious	pain.

This	was	clearly	something	the	computer	ought	to	be	doing	for	me.	But	none	of
the	existing	POP	clients	knew	how!	And	this	brings	us	to	the	first	lesson:

1.	Every	good	work	of	software	starts	by	scratching	a	developer’s	personal
itch.

Perhaps	this	should	have	been	obvious	(it’s	long	been	proverbial	that	“Necessity
is	the	mother	of	invention”)	but	too	often	software	developers	spend	their	days
grinding	away	for	pay	at	programs	they	neither	need	nor	love.	But	not	in	the
Linux	world-which	may	explain	why	the	average	quality	of	software	originated
in	the	Linux	community	is	so	high.

So,	did	I	immediately	launch	into	a	furious	whirl	of	coding	up	a	brand-new
POP3	client	to	compete	with	the	existing	ones?	Not	on	your	life!	I	looked
carefully	at	the	POP	utilities	I	had	in	hand,	asking	myself	“Which	one	is	closest
to	what	I	want?”	Because:

2.	Good	programmers	know	what	to	write.	Great	ones	know	what	to	rewrite
(and	reuse).

While	I	don’t	claim	to	be	a	great	programmer,	I	try	to	imitate	one.	An	important
trait	of	the	great	ones	is	constructive	laziness.	They	know	that	you	get	an	A	not

for	effort	but	for	results,	and	that	it’s	almost	always	easier	to	start	from	a	good
partial	solution	than	from	nothing	at	all.

Linus	Torvalds,	for	example,	didn’t	actually	try	to	write	Linux	from	scratch.
Instead,	he	started	by	reusing	code	and	ideas	from	Minix,	a	tiny	Unix-like
operating	system	for	PC	clones.	Eventually	all	the	Minix	code	went	away	or	was
completely	rewritten-but	while	it	was	there,	it	provided	scaffolding	for	the	infant
that	would	eventually	become	Linux.

In	the	same	spirit,	I	went	looking	for	an	existing	POP	utility	that	was	reasonably
well	coded,	to	use	as	a	development	base.

The	source-sharing	tradition	of	the	Unix	world	has	always	been	friendly	to	code
reuse	(this	is	why	the	GNU	project	chose	Unix	as	a	base	OS,	in	spite	of	serious
reservations	about	the	OS	itself).	The	Linux	world	has	taken	this	tradition	nearly
to	its	technological	limit;	it	has	terabytes	of	open	sources	generally	available.	So
spending	time	looking	for	some	else’s	almost-good-enough	is	more	likely	to	give
you	good	results	in	the	Linux	world	than	anywhere	else.

And	it	did	for	me.	With	those	I’d	found	earlier,	my	second	search	made	up	a
total	of	nine	candidates-fetchpop,	PopTart,	get-mail,	gwpop,	pimp,	pop-perl,
popc,	popmail	and	upop.	The	one	I	first	settled	on	was	`fetchpop’	by	Seung-
Hong	Oh.	I	put	my	header-rewrite	feature	in	it,	and	made	various	other
improvements	which	the	author	accepted	into	his	1.9	release.

A	few	weeks	later,	though,	I	stumbled	across	the	code	for	popclient	by	Carl
Harris,	and	found	I	had	a	problem.	Though	fetchpop	had	some	good	original
ideas	in	it	(such	as	its	background-daemon	mode),	it	could	only	handle	POP3
and	was	rather	amateurishly	coded	(Seung-Hong	was	at	that	time	a	bright	but
inexperienced	programmer,	and	both	traits	showed).	Carl’s	code	was	better,	quite
professional	and	solid,	but	his	program	lacked	several	important	and	rather
tricky-to-implement	fetchpop	features	(including	those	I’d	coded	myself).

Stay	or	switch?	If	I	switched,	I’d	be	throwing	away	the	coding	I’d	already	done
in	exchange	for	a	better	development	base.

A	practical	motive	to	switch	was	the	presence	of	multiple-protocol	support.
POP3	is	the	most	commonly	used	of	the	post-office	server	protocols,	but	not	the
only	one.	Fetchpop	and	the	other	competition	didn’t	do	POP2,	RPOP,	or	APOP,
and	I	was	already	having	vague	thoughts	of	perhaps	adding	IMAP	(Internet

Message	Access	Protocol,	the	most	recently	designed	and	most	powerful	post-
office	protocol)	just	for	fun.

But	I	had	a	more	theoretical	reason	to	think	switching	might	be	as	good	an	idea
as	well,	something	I	learned	long	before	Linux.

3.	“Plan	to	throw	one	away;	you	will,	anyhow.”	(Fred	Brooks,	The	Mythical
Man-Month,	Chapter	11)

Or,	to	put	it	another	way,	you	often	don’t	really	understand	the	problem	until
after	the	first	time	you	implement	a	solution.	The	second	time,	maybe	you	know
enough	to	do	it	right.	So	if	you	want	to	get	it	right,	be	ready	to	start	over	at	least
once	[JB].

Well	(I	told	myself)	the	changes	to	fetchpop	had	been	my	first	try.	So	I	switched.

After	I	sent	my	first	set	of	popclient	patches	to	Carl	Harris	on	25	June	1996,	I
found	out	that	he	had	basically	lost	interest	in	popclient	some	time	before.	The
code	was	a	bit	dusty,	with	minor	bugs	hanging	out.	I	had	many	changes	to	make,
and	we	quickly	agreed	that	the	logical	thing	for	me	to	do	was	take	over	the
program.

Without	my	actually	noticing,	the	project	had	escalated.	No	longer	was	I	just
contemplating	minor	patches	to	an	existing	POP	client.	I	took	on	maintaining	an
entire	one,	and	there	were	ideas	bubbling	in	my	head	that	I	knew	would	probably
lead	to	major	changes.

In	a	software	culture	that	encourages	code-sharing,	this	is	a	natural	way	for	a
project	to	evolve.	I	was	acting	out	this	principle:

4.	If	you	have	the	right	attitude,	interesting	problems	will	find	you.

But	Carl	Harris’s	attitude	was	even	more	important.	He	understood	that

5.	When	you	lose	interest	in	a	program,	your	last	duty	to	it	is	to	hand	it	off	to	a
competent	successor.

Without	ever	having	to	discuss	it,	Carl	and	I	knew	we	had	a	common	goal	of
having	the	best	solution	out	there.	The	only	question	for	either	of	us	was	whether
I	could	establish	that	I	was	a	safe	pair	of	hands.	Once	I	did	that,	he	acted	with

grace	and	dispatch.	I	hope	I	will	do	as	well	when	it	comes	my	turn.

The	Importance	of	Having	Users

And	so	I	inherited	popclient.	Just	as	importantly,	I	inherited	popclient’s	user
base.	Users	are	wonderful	things	to	have,	and	not	just	because	they	demonstrate
that	you’re	serving	a	need,	that	you’ve	done	something	right.	Properly
cultivated,	they	can	become	co-developers.

Another	strength	of	the	Unix	tradition,	one	that	Linux	pushes	to	a	happy
extreme,	is	that	a	lot	of	users	are	hackers	too.	Because	source	code	is	available,
they	can	be	effective	hackers.	This	can	be	tremendously	useful	for	shortening
debugging	time.	Given	a	bit	of	encouragement,	your	users	will	diagnose
problems,	suggest	fixes,	and	help	improve	the	code	far	more	quickly	than	you
could	unaided.

6.	Treating	your	users	as	co-developers	is	your	least-hassle	route	to	rapid	code
improvement	and	effective	debugging.

The	power	of	this	effect	is	easy	to	underestimate.	In	fact,	pretty	well	all	of	us	in
the	open-source	world	drastically	underestimated	how	well	it	would	scale	up
with	number	of	users	and	against	system	complexity,	until	Linus	Torvalds
showed	us	differently.

In	fact,	I	think	Linus’s	cleverest	and	most	consequential	hack	was	not	the
construction	of	the	Linux	kernel	itself,	but	rather	his	invention	of	the	Linux
development	model.	When	I	expressed	this	opinion	in	his	presence	once,	he
smiled	and	quietly	repeated	something	he	has	often	said:	“I’m	basically	a	very
lazy	person	who	likes	to	get	credit	for	things	other	people	actually	do.”	Lazy	like
a	fox.	Or,	as	Robert	Heinlein	famously	wrote	of	one	of	his	characters,	too	lazy	to
fail.

In	retrospect,	one	precedent	for	the	methods	and	success	of	Linux	can	be	seen	in
the	development	of	the	GNU	Emacs	Lisp	library	and	Lisp	code	archives.	In
contrast	to	the	cathedral-building	style	of	the	Emacs	C	core	and	most	other	GNU
tools,	the	evolution	of	the	Lisp	code	pool	was	fluid	and	very	user-driven.	Ideas
and	prototype	modes	were	often	rewritten	three	or	four	times	before	reaching	a
stable	final	form.	And	loosely-coupled	collaborations	enabled	by	the	Internet,	a
la	Linux,	were	frequent.

Indeed,	my	own	most	successful	single	hack	previous	to	fetchmail	was	probably
Emacs	VC	(version	control)	mode,	a	Linux-like	collaboration	by	email	with
three	other	people,	only	one	of	whom	(Richard	Stallman,	the	author	of	Emacs
and	founder	of	the	Free	Software	Foundation)	I	have	met	to	this	day.	It	was	a
front-end	for	SCCS,	RCS	and	later	CVS	from	within	Emacs	that	offered	“one-
touch”	version	control	operations.	It	evolved	from	a	tiny,	crude	sccs.el	mode
somebody	else	had	written.	And	the	development	of	VC	succeeded	because,
unlike	Emacs	itself,	Emacs	Lisp	code	could	go	through	release/test/improve
generations	very	quickly.

The	Emacs	story	is	not	unique.	There	have	been	other	software	products	with	a
two-level	architecture	and	a	two-tier	user	community	that	combined	a	cathedral-
mode	core	and	a	bazaar-mode	toolbox.	One	such	is	MATLAB,	a	commercial
data-analysis	and	visualization	tool.	Users	of	MATLAB	and	other	products	with
a	similar	structure	invariably	report	that	the	action,	the	ferment,	the	innovation
mostly	takes	place	in	the	open	part	of	the	tool	where	a	large	and	varied
community	can	tinker	with	it.

Release	Early,	Release	Often

Early	and	frequent	releases	are	a	critical	part	of	the	Linux	development	model.
Most	developers	(including	me)	used	to	believe	this	was	bad	policy	for	larger
than	trivial	projects,	because	early	versions	are	almost	by	definition	buggy
versions	and	you	don’t	want	to	wear	out	the	patience	of	your	users.

This	belief	reinforced	the	general	commitment	to	a	cathedral-building	style	of
development.	If	the	overriding	objective	was	for	users	to	see	as	few	bugs	as
possible,	why	then	you’d	only	release	a	version	every	six	months	(or	less	often),
and	work	like	a	dog	on	debugging	between	releases.	The	Emacs	C	core	was
developed	this	way.	The	Lisp	library,	in	effect,	was	not-because	there	were
active	Lisp	archives	outside	the	FSF’s	control,	where	you	could	go	to	find	new
and	development	code	versions	independently	of	Emacs’s	release	cycle	[QR].

The	most	important	of	these,	the	Ohio	State	Emacs	Lisp	archive,	anticipated	the
spirit	and	many	of	the	features	of	today’s	big	Linux	archives.	But	few	of	us
really	thought	very	hard	about	what	we	were	doing,	or	about	what	the	very
existence	of	that	archive	suggested	about	problems	in	the	FSF’s	cathedral-
building	development	model.	I	made	one	serious	attempt	around	1992	to	get	a
lot	of	the	Ohio	code	formally	merged	into	the	official	Emacs	Lisp	library.	I	ran

into	political	trouble	and	was	largely	unsuccessful.

But	by	a	year	later,	as	Linux	became	widely	visible,	it	was	clear	that	something
different	and	much	healthier	was	going	on	there.	Linus’s	open	development
policy	was	the	very	opposite	of	cathedral-building.	Linux’s	Internet	archives
were	burgeoning,	multiple	distributions	were	being	floated.	And	all	of	this	was
driven	by	an	unheard-of	frequency	of	core	system	releases.

Linus	was	treating	his	users	as	co-developers	in	the	most	effective	possible	way:

7.	Release	early.	Release	often.	And	listen	to	your	customers.

Linus’s	innovation	wasn’t	so	much	in	doing	quick-turnaround	releases
incorporating	lots	of	user	feedback	(something	like	this	had	been	Unix-world
tradition	for	a	long	time),	but	in	scaling	it	up	to	a	level	of	intensity	that	matched
the	complexity	of	what	he	was	developing.	In	those	early	times	(around	1991)	it
wasn’t	unknown	for	him	to	release	a	new	kernel	more	than	once	a	day!	Because
he	cultivated	his	base	of	co-developers	and	leveraged	the	Internet	for
collaboration	harder	than	anyone	else,	this	worked.

But	how	did	it	work?	And	was	it	something	I	could	duplicate,	or	did	it	rely	on
some	unique	genius	of	Linus	Torvalds?

I	didn’t	think	so.	Granted,	Linus	is	a	damn	fine	hacker.	How	many	of	us	could
engineer	an	entire	production-quality	operating	system	kernel	from	scratch?	But
Linux	didn’t	represent	any	awesome	conceptual	leap	forward.	Linus	is	not	(or	at
least,	not	yet)	an	innovative	genius	of	design	in	the	way	that,	say,	Richard
Stallman	or	James	Gosling	(of	NeWS	and	Java)	are.	Rather,	Linus	seems	to	me
to	be	a	genius	of	engineering	and	implementation,	with	a	sixth	sense	for
avoiding	bugs	and	development	dead-ends	and	a	true	knack	for	finding	the
minimum-effort	path	from	point	A	to	point	B.	Indeed,	the	whole	design	of	Linux
breathes	this	quality	and	mirrors	Linus’s	essentially	conservative	and	simplifying
design	approach.

So,	if	rapid	releases	and	leveraging	the	Internet	medium	to	the	hilt	were	not
accidents	but	integral	parts	of	Linus’s	engineering-genius	insight	into	the
minimum-effort	path,	what	was	he	maximizing?	What	was	he	cranking	out	of
the	machinery?

Put	that	way,	the	question	answers	itself.	Linus	was	keeping	his	hacker/users

constantly	stimulated	and	rewarded-stimulated	by	the	prospect	of	having	an	ego-
satisfying	piece	of	the	action,	rewarded	by	the	sight	of	constant	(even	daily)
improvement	in	their	work.

Linus	was	directly	aiming	to	maximize	the	number	of	person-hours	thrown	at
debugging	and	development,	even	at	the	possible	cost	of	instability	in	the	code
and	user-base	burnout	if	any	serious	bug	proved	intractable.	Linus	was	behaving
as	though	he	believed	something	like	this:

8.	Given	a	large	enough	beta-tester	and	co-developer	base,	almost	every
problem	will	be	characterized	quickly	and	the	fix	obvious	to	someone.

Or,	less	formally,	“Given	enough	eyeballs,	all	bugs	are	shallow.”	I	dub	this:
“Linus’s	Law”.

My	original	formulation	was	that	every	problem	“will	be	transparent	to
somebody”.	Linus	demurred	that	the	person	who	understands	and	fixes	the
problem	is	not	necessarily	or	even	usually	the	person	who	first	characterizes	it.
“Somebody	finds	the	problem,”	he	says,	“and	somebody	else	understands	it.	And
I’ll	go	on	record	as	saying	that	finding	it	is	the	bigger	challenge.”	That
correction	is	important;	we’ll	see	how	in	the	next	section,	when	we	examine	the
practice	of	debugging	in	more	detail.	But	the	key	point	is	that	both	parts	of	the
process	(finding	and	fixing)	tend	to	happen	rapidly.

In	Linus’s	Law,	I	think,	lies	the	core	difference	underlying	the	cathedral-builder
and	bazaar	styles.	In	the	cathedral-builder	view	of	programming,	bugs	and
development	problems	are	tricky,	insidious,	deep	phenomena.	It	takes	months	of
scrutiny	by	a	dedicated	few	to	develop	confidence	that	you’ve	winkled	them	all
out.	Thus	the	long	release	intervals,	and	the	inevitable	disappointment	when
long-awaited	releases	are	not	perfect.

In	the	bazaar	view,	on	the	other	hand,	you	assume	that	bugs	are	generally
shallow	phenomena-or,	at	least,	that	they	turn	shallow	pretty	quickly	when
exposed	to	a	thousand	eager	co-developers	pounding	on	every	single	new
release.	Accordingly	you	release	often	in	order	to	get	more	corrections,	and	as	a
beneficial	side	effect	you	have	less	to	lose	if	an	occasional	botch	gets	out	the
door.

And	that’s	it.	That’s	enough.	If	“Linus’s	Law”	is	false,	then	any	system	as
complex	as	the	Linux	kernel,	being	hacked	over	by	as	many	hands	as	the	that

kernel	was,	should	at	some	point	have	collapsed	under	the	weight	of	unforseen
bad	interactions	and	undiscovered	“deep”	bugs.	If	it’s	true,	on	the	other	hand,	it
is	sufficient	to	explain	Linux’s	relative	lack	of	bugginess	and	its	continuous
uptimes	spanning	months	or	even	years.

Maybe	it	shouldn’t	have	been	such	a	surprise,	at	that.	Sociologists	years	ago
discovered	that	the	averaged	opinion	of	a	mass	of	equally	expert	(or	equally
ignorant)	observers	is	quite	a	bit	more	reliable	a	predictor	than	the	opinion	of	a
single	randomly-chosen	one	of	the	observers.	They	called	this	the	Delphi	effect.
It	appears	that	what	Linus	has	shown	is	that	this	applies	even	to	debugging	an
operating	system-that	the	Delphi	effect	can	tame	development	complexity	even
at	the	complexity	level	of	an	OS	kernel.	[CV]

One	special	feature	of	the	Linux	situation	that	clearly	helps	along	the	Delphi
effect	is	the	fact	that	the	contributors	for	any	given	project	are	self-selected.	An
early	respondent	pointed	out	that	contributions	are	received	not	from	a	random
sample,	but	from	people	who	are	interested	enough	to	use	the	software,	learn
about	how	it	works,	attempt	to	find	solutions	to	problems	they	encounter,	and
actually	produce	an	apparently	reasonable	fix.	Anyone	who	passes	all	these
filters	is	highly	likely	to	have	something	useful	to	contribute.

Linus’s	Law	can	be	rephrased	as	“Debugging	is	parallelizable”.	Although
debugging	requires	debuggers	to	communicate	with	some	coordinating
developer,	it	doesn’t	require	significant	coordination	between	debuggers.	Thus	it
doesn’t	fall	prey	to	the	same	quadratic	complexity	and	management	costs	that
make	adding	developers	problematic.

In	practice,	the	theoretical	loss	of	efficiency	due	to	duplication	of	work	by
debuggers	almost	never	seems	to	be	an	issue	in	the	Linux	world.	One	effect	of	a
“release	early	and	often”	policy	is	to	minimize	such	duplication	by	propagating
fed-back	fixes	quickly	[JH].

Brooks	(the	author	of	The	Mythical	Man-Month)	even	made	an	off-hand
observation	related	to	this:	“The	total	cost	of	maintaining	a	widely	used	program
is	typically	40	percent	or	more	of	the	cost	of	developing	it.	Surprisingly	this	cost
is	strongly	affected	by	the	number	of	users.	More	users	find	more	bugs.”
[emphasis	added].

More	users	find	more	bugs	because	adding	more	users	adds	more	different	ways

of	stressing	the	program.	This	effect	is	amplified	when	the	users	are	co-
developers.	Each	one	approaches	the	task	of	bug	characterization	with	a	slightly
different	perceptual	set	and	analytical	toolkit,	a	different	angle	on	the	problem.
The	“Delphi	effect”	seems	to	work	precisely	because	of	this	variation.	In	the
specific	context	of	debugging,	the	variation	also	tends	to	reduce	duplication	of
effort.

So	adding	more	beta-testers	may	not	reduce	the	complexity	of	the	current
“deepest”	bug	from	the	developer’s	point	of	view,	but	it	increases	the	probability
that	someone’s	toolkit	will	be	matched	to	the	problem	in	such	a	way	that	the	bug
is	shallow	to	that	person.

Linus	coppers	his	bets,	too.	In	case	there	are	serious	bugs,	Linux	kernel	version
are	numbered	in	such	a	way	that	potential	users	can	make	a	choice	either	to	run
the	last	version	designated	“stable”	or	to	ride	the	cutting	edge	and	risk	bugs	in
order	to	get	new	features.	This	tactic	is	not	yet	systematically	imitated	by	most
Linux	hackers,	but	perhaps	it	should	be;	the	fact	that	either	choice	is	available
makes	both	more	attractive.	[HBS]

How	Many	Eyeballs	Tame	Complexity

It’s	one	thing	to	observe	in	the	large	that	the	bazaar	style	greatly	accelerates
debugging	and	code	evolution.	It’s	another	to	understand	exactly	how	and	why	it
does	so	at	the	micro-level	of	day-to-day	developer	and	tester	behavior.	In	this
section	(written	three	years	after	the	original	paper,	using	insights	by	developers
who	read	it	and	re-examined	their	own	behavior)	we’ll	take	a	hard	look	at	the
actual	mechanisms.	Nontechnically	inclined	readers	can	safely	skip	to	the	next
section.

One	key	to	understanding	is	to	realize	exactly	why	it	is	that	the	kind	of	bug
report	non-source-aware	users	normally	turn	in	tends	not	to	be	very	useful.	Non-
source-aware	users	tend	to	report	only	surface	symptoms;	they	take	their
environment	for	granted,	so	they	(a)	omit	critical	background	data,	and	(b)
seldom	include	a	reliable	recipe	for	reproducing	the	bug.

The	underlying	problem	here	is	a	mismatch	between	the	tester’s	and	the
developer’s	mental	models	of	the	program;	the	tester,	on	the	outside	looking	in,
and	the	developer	on	the	inside	looking	out.	In	closed-source	development
they’re	both	stuck	in	these	roles,	and	tend	to	talk	past	each	other	and	find	each

other	deeply	frustrating.

Open-source	development	breaks	this	bind,	making	it	far	easier	for	tester	and
developer	to	develop	a	shared	representation	grounded	in	the	actual	source	code
and	to	communicate	effectively	about	it.	Practically,	there	is	a	huge	difference	in
leverage	for	the	developer	between	the	kind	of	bug	report	that	just	reports
externally-visible	symptoms	and	the	kind	that	hooks	directly	to	the	developer’s
source-code-based	mental	representation	of	the	program.

Most	bugs,	most	of	the	time,	are	easily	nailed	given	even	an	incomplete	but
suggestive	characterization	of	their	error	conditions	at	source-code	level.	When
someone	among	your	beta-testers	can	point	out,	“there’s	a	boundary	problem	in
line	nnn”,	or	even	just	“under	conditions	X,	Y,	and	Z,	this	variable	rolls	over”,	a
quick	look	at	the	offending	code	often	suffices	to	pin	down	the	exact	mode	of
failure	and	generate	a	fix.

Thus,	source-code	awareness	by	both	parties	greatly	enhances	both	good
communication	and	the	synergy	between	what	a	beta-tester	reports	and	what	the
core	developer(s)	know.	In	turn,	this	means	that	the	core	developers’	time	tends
to	be	well	conserved,	even	with	many	collaborators.

Another	characteristic	of	the	open-source	method	that	conserves	developer	time
is	the	communication	structure	of	typical	open-source	projects.	Above	I	used	the
term	“core	developer”;	this	reflects	a	distinction	between	the	project	core
(typically	quite	small;	a	single	core	developer	is	common,	and	one	to	three	is
typical)	and	the	project	halo	of	beta-testers	and	available	contributors	(which
often	numbers	in	the	hundreds).

The	fundamental	problem	that	traditional	software-development	organization
addresses	is	Brook’s	Law:	“Adding	more	programmers	to	a	late	project	makes	it
later.”	More	generally,	Brooks’s	Law	predicts	that	the	complexity	and
communication	costs	of	a	project	rise	with	the	square	of	the	number	of
developers,	while	work	done	only	rises	linearly.

Brooks’s	Law	is	founded	on	experience	that	bugs	tend	strongly	to	cluster	at	the
interfaces	between	code	written	by	different	people,	and	that
communications/coordination	overhead	on	a	project	tends	to	rise	with	the
number	of	interfaces	between	human	beings.	Thus,	problems	scale	with	the
number	of	communications	paths	between	developers,	which	scales	as	the

square	of	the	humber	of	developers	(more	precisely,	according	to	the	formula	N*
(N	-	1)/2	where	N	is	the	number	of	developers).

The	Brooks’s	Law	analysis	(and	the	resulting	fear	of	large	numbers	in
development	groups)	rests	on	a	hidden	assummption:	that	the	communications
structure	of	the	project	is	necessarily	a	complete	graph,	that	everybody	talks	to
everybody	else.	But	on	open-source	projects,	the	halo	developers	work	on	what
are	in	effect	separable	parallel	subtasks	and	interact	with	each	other	very	little;
code	changes	and	bug	reports	stream	through	the	core	group,	and	only	within
that	small	core	group	do	we	pay	the	full	Brooksian	overhead.	[SU]

There	are	are	still	more	reasons	that	source-code-level	bug	reporting	tends	to	be
very	efficient.	They	center	around	the	fact	that	a	single	error	can	often	have
multiple	possible	symptoms,	manifesting	differently	depending	on	details	of	the
user’s	usage	pattern	and	environment.	Such	errors	tend	to	be	exactly	the	sort	of
complex	and	subtle	bugs	(such	as	dynamic-memory-management	errors	or
nondeterministic	interrupt-window	artifacts)	that	are	hardest	to	reproduce	at	will
or	to	pin	down	by	static	analysis,	and	which	do	the	most	to	create	long-term
problems	in	software.

A	tester	who	sends	in	a	tentative	source-code-level	characterization	of	such	a
multi-symptom	bug	(e.g.	“It	looks	to	me	like	there’s	a	window	in	the	signal
handling	near	line	1250”	or	“Where	are	you	zeroing	that	buffer?”)	may	give	a
developer,	otherwise	too	close	to	the	code	to	see	it,	the	critical	clue	to	a	half-
dozen	disparate	symptoms.	In	cases	like	this,	it	may	be	hard	or	even	impossible
to	know	which	externally-visible	misbehaviour	was	caused	by	precisely	which
bug-but	with	frequent	releases,	it’s	unnecessary	to	know.	Other	collaborators	will
be	likely	to	find	out	quickly	whether	their	bug	has	been	fixed	or	not.	In	many
cases,	source-level	bug	reports	will	cause	misbehaviours	to	drop	out	without
ever	having	been	attributed	to	any	specific	fix.

Complex	multi-symptom	errors	also	tend	to	have	multiple	trace	paths	from
surface	symptoms	back	to	the	actual	bug.	Which	of	the	trace	paths	a	given
developer	or	tester	can	chase	may	depend	on	subtleties	of	that	person’s
environment,	and	may	well	change	in	a	not	obviously	deterministic	way	over
time.	In	effect,	each	developer	and	tester	samples	a	semi-random	set	of	the
program’s	state	space	when	looking	for	the	etiology	of	a	symptom.	The	more
subtle	and	complex	the	bug,	the	less	likely	that	skill	will	be	able	to	guarantee	the
relevance	of	that	sample.

For	simple	and	easily	reproducible	bugs,	then,	the	accent	will	be	on	the	“semi”
rather	than	the	“random”;	debugging	skill	and	intimacy	with	the	code	and	its
architecture	will	matter	a	lot.	But	for	complex	bugs,	the	accent	will	be	on	the
“random”.	Under	these	circumstances	many	people	running	traces	will	be	much
more	effective	than	a	few	people	running	traces	sequentially-even	if	the	few
have	a	much	higher	average	skill	level.

This	effect	will	be	greatly	amplified	if	the	difficulty	of	following	trace	paths
from	different	surface	symptoms	back	to	a	bug	varies	significantly	in	a	way	that
can’t	be	predicted	by	looking	at	the	symptoms.	A	single	developer	sampling
those	paths	sequentially	will	be	as	likely	to	pick	a	difficult	trace	path	on	the	first
try	as	an	easy	one.	On	the	other	hand,	suppose	many	people	are	trying	trace
paths	in	parallel	while	doing	rapid	releases.	Then	it	is	likely	one	of	them	will
find	the	easiest	path	immediately,	and	nail	the	bug	in	a	much	shorter	time.	The
project	maintainer	will	see	that,	ship	a	new	release,	and	the	other	people	running
traces	on	the	same	bug	will	be	able	to	stop	before	having	spent	too	much	time	on
their	more	difficult	traces	[RJ].

When	Is	a	Rose	Not	a	Rose?

Having	studied	Linus’s	behavior	and	formed	a	theory	about	why	it	was
successful,	I	made	a	conscious	decision	to	test	this	theory	on	my	new
(admittedly	much	less	complex	and	ambitious)	project.

But	the	first	thing	I	did	was	reorganize	and	simplify	popclient	a	lot.	Carl	Harris’s
implementation	was	very	sound,	but	exhibited	a	kind	of	unnecessary	complexity
common	to	many	C	programmers.	He	treated	the	code	as	central	and	the	data
structures	as	support	for	the	code.	As	a	result,	the	code	was	beautiful	but	the	data
structure	design	ad-hoc	and	rather	ugly	(at	least	by	the	high	standards	of	this
veteran	LISP	hacker).

I	had	another	purpose	for	rewriting	besides	improving	the	code	and	the	data
structure	design,	however.	That	was	to	evolve	it	into	something	I	understood
completely.	It’s	no	fun	to	be	responsible	for	fixing	bugs	in	a	program	you	don’t
understand.

For	the	first	month	or	so,	then,	I	was	simply	following	out	the	implications	of
Carl’s	basic	design.	The	first	serious	change	I	made	was	to	add	IMAP	support.	I
did	this	by	reorganizing	the	protocol	machines	into	a	generic	driver	and	three

method	tables	(for	POP2,	POP3,	and	IMAP).	This	and	the	previous	changes
illustrate	a	general	principle	that’s	good	for	programmers	to	keep	in	mind,
especially	in	languages	like	C	that	don’t	naturally	do	dynamic	typing:

9.	Smart	data	structures	and	dumb	code	works	a	lot	better	than	the	other	way
around.

Brooks,	Chapter	9:	“Show	me	your	flowchart	and	conceal	your	tables,	and	I
shall	continue	to	be	mystified.	Show	me	your	tables,	and	I	won’t	usually	need
your	flowchart;	it’ll	be	obvious.”	Allowing	for	thirty	years	of
terminological/cultural	shift,	it’s	the	same	point.

At	this	point	(early	September	1996,	about	six	weeks	from	zero)	I	started
thinking	that	a	name	change	might	be	in	order-after	all,	it	wasn’t	just	a	POP
client	any	more.	But	I	hesitated,	because	there	was	as	yet	nothing	genuinely	new
in	the	design.	My	version	of	popclient	had	yet	to	develop	an	identity	of	its	own.

That	changed,	radically,	when	popclient	learned	how	to	forward	fetched	mail	to
the	SMTP	port.	I’ll	get	to	that	in	a	moment.	But	first:	I	said	earlier	that	I’d
decided	to	use	this	project	to	test	my	theory	about	what	Linus	Torvalds	had	done
right.	How	(you	may	well	ask)	did	I	do	that?	In	these	ways:

I	released	early	and	often	(almost	never	less	often	than	every	ten	days;	during
periods	of	intense	development,	once	a	day).

I	grew	my	beta	list	by	adding	to	it	everyone	who	contacted	me	about
fetchmail.

I	sent	chatty	announcements	to	the	beta	list	whenever	I	released,	encouraging
people	to	participate.

And	I	listened	to	my	beta-testers,	polling	them	about	design	decisions	and
stroking	them	whenever	they	sent	in	patches	and	feedback.

The	payoff	from	these	simple	measures	was	immediate.	From	the	beginning	of
the	project,	I	got	bug	reports	of	a	quality	most	developers	would	kill	for,	often
with	good	fixes	attached.	I	got	thoughtful	criticism,	I	got	fan	mail,	I	got
intelligent	feature	suggestions.	Which	leads	to:

10.	If	you	treat	your	beta-testers	as	if	they’re	your	most	valuable	resource,

they	will	respond	by	becoming	your	most	valuable	resource.

One	interesting	measure	of	fetchmail’s	success	is	the	sheer	size	of	the	project
beta	list,	fetchmail-friends.	At	the	time	of	latest	revision	of	this	paper	(November
2000)	it	has	287	members	and	is	adding	two	or	three	a	week.

Actually,	when	I	revised	in	late	May	1997	I	found	the	list	was	beginning	to	lose
members	from	its	high	of	close	to	300	for	an	interesting	reason.	Several	people
have	asked	me	to	unsubscribe	them	because	fetchmail	is	working	so	well	for
them	that	they	no	longer	need	to	see	the	list	traffic!	Perhaps	this	is	part	of	the
normal	life-cycle	of	a	mature	bazaar-style	project.

Popclient	becomes	Fetchmail

The	real	turning	point	in	the	project	was	when	Harry	Hochheiser	sent	me	his
scratch	code	for	forwarding	mail	to	the	client	machine’s	SMTP	port.	I	realized
almost	immediately	that	a	reliable	implementation	of	this	feature	would	make	all
the	other	mail	delivery	modes	next	to	obsolete.

For	many	weeks	I	had	been	tweaking	fetchmail	rather	incrementally	while
feeling	like	the	interface	design	was	serviceable	but	grubby-inelegant	and	with
too	many	exiguous	options	hanging	out	all	over.	The	options	to	dump	fetched
mail	to	a	mailbox	file	or	standard	output	particularly	bothered	me,	but	I	couldn’t
figure	out	why.

(If	you	don’t	care	about	the	technicalia	of	Internet	mail,	the	next	two	paragraphs
can	be	safely	skipped.)

What	I	saw	when	I	thought	about	SMTP	forwarding	was	that	popclient	had	been
trying	to	do	too	many	things.	It	had	been	designed	to	be	both	a	mail	transport
agent	(MTA)	and	a	local	delivery	agent	(MDA).	With	SMTP	forwarding,	it	could
get	out	of	the	MDA	business	and	be	a	pure	MTA,	handing	off	mail	to	other
programs	for	local	delivery	just	as	sendmail	does.

Why	mess	with	all	the	complexity	of	configuring	a	mail	delivery	agent	or	setting
up	lock-and-append	on	a	mailbox	when	port	25	is	almost	guaranteed	to	be	there
on	any	platform	with	TCP/IP	support	in	the	first	place?	Especially	when	this
means	retrieved	mail	is	guaranteed	to	look	like	normal	sender-initiated	SMTP
mail,	which	is	really	what	we	want	anyway.

(Back	to	a	higher	level….)

Even	if	you	didn’t	follow	the	preceding	technical	jargon,	there	are	several
important	lessons	here.	First,	this	SMTP-forwarding	concept	was	the	biggest
single	payoff	I	got	from	consciously	trying	to	emulate	Linus’s	methods.	A	user
gave	me	this	terrific	idea-all	I	had	to	do	was	understand	the	implications.

11.	The	next	best	thing	to	having	good	ideas	is	recognizing	good	ideas	from
your	users.	Sometimes	the	latter	is	better.

Interestingly	enough,	you	will	quickly	find	that	if	you	are	completely	and	self-
deprecatingly	truthful	about	how	much	you	owe	other	people,	the	world	at	large
will	treat	you	as	though	you	did	every	bit	of	the	invention	yourself	and	are	just
being	becomingly	modest	about	your	innate	genius.	We	can	all	see	how	well	this
worked	for	Linus!

(When	I	gave	my	talk	at	the	first	Perl	Conference	in	August	1997,	hacker
extraordinaire	Larry	Wall	was	in	the	front	row.	As	I	got	to	the	last	line	above	he
called	out,	religious-revival	style,	“Tell	it,	tell	it,	brother!”.	The	whole	audience
laughed,	because	they	knew	this	had	worked	for	the	inventor	of	Perl,	too.)

After	a	very	few	weeks	of	running	the	project	in	the	same	spirit,	I	began	to	get
similar	praise	not	just	from	my	users	but	from	other	people	to	whom	the	word
leaked	out.	I	stashed	away	some	of	that	email;	I’ll	look	at	it	again	sometime	if	I
ever	start	wondering	whether	my	life	has	been	worthwhile	:-).

But	there	are	two	more	fundamental,	non-political	lessons	here	that	are	general
to	all	kinds	of	design.

12.	Often,	the	most	striking	and	innovative	solutions	come	from	realizing	that
your	concept	of	the	problem	was	wrong.

I	had	been	trying	to	solve	the	wrong	problem	by	continuing	to	develop	popclient
as	a	combined	MTA/MDA	with	all	kinds	of	funky	local	delivery	modes.
Fetchmail’s	design	needed	to	be	rethought	from	the	ground	up	as	a	pure	MTA,	a
part	of	the	normal	SMTP-speaking	Internet	mail	path.

When	you	hit	a	wall	in	development-when	you	find	yourself	hard	put	to	think
past	the	next	patch-it’s	often	time	to	ask	not	whether	you’ve	got	the	right	answer,
but	whether	you’re	asking	the	right	question.	Perhaps	the	problem	needs	to	be

reframed.

Well,	I	had	reframed	my	problem.	Clearly,	the	right	thing	to	do	was	(1)	hack
SMTP	forwarding	support	into	the	generic	driver,	(2)	make	it	the	default	mode,
and	(3)	eventually	throw	out	all	the	other	delivery	modes,	especially	the	deliver-
to-file	and	deliver-to-standard-output	options.

I	hesitated	over	step	3	for	some	time,	fearing	to	upset	long-time	popclient	users
dependent	on	the	alternate	delivery	mechanisms.	In	theory,	they	could
immediately	switch	to	.forward	files	or	their	non-sendmail	equivalents	to	get	the
same	effects.	In	practice	the	transition	might	have	been	messy.

But	when	I	did	it,	the	benefits	proved	huge.	The	cruftiest	parts	of	the	driver	code
vanished.	Configuration	got	radically	simpler-no	more	grovelling	around	for	the
system	MDA	and	user’s	mailbox,	no	more	worries	about	whether	the	underlying
OS	supports	file	locking.

Also,	the	only	way	to	lose	mail	vanished.	If	you	specified	delivery	to	a	file	and
the	disk	got	full,	your	mail	got	lost.	This	can’t	happen	with	SMTP	forwarding
because	your	SMTP	listener	won’t	return	OK	unless	the	message	can	be
delivered	or	at	least	spooled	for	later	delivery.

Also,	performance	improved	(though	not	so	you’d	notice	it	in	a	single	run).
Another	not	insignificant	benefit	of	this	change	was	that	the	manual	page	got	a
lot	simpler.

Later,	I	had	to	bring	delivery	via	a	user-specified	local	MDA	back	in	order	to
allow	handling	of	some	obscure	situations	involving	dynamic	SLIP.	But	I	found
a	much	simpler	way	to	do	it.

The	moral?	Don’t	hesitate	to	throw	away	superannuated	features	when	you	can
do	it	without	loss	of	effectiveness.	Antoine	de	Saint-ExupŽry	(who	was	an
aviator	and	aircraft	designer	when	he	wasn’t	authoring	classic	children’s	books)
said:

13.	“Perfection	(in	design)	is	achieved	not	when	there	is	nothing	more	to	add,
but	rather	when	there	is	nothing	more	to	take	away.”

When	your	code	is	getting	both	better	and	simpler,	that	is	when	you	know	it’s
right.	And	in	the	process,	the	fetchmail	design	acquired	an	identity	of	its	own,

different	from	the	ancestral	popclient.

It	was	time	for	the	name	change.	The	new	design	looked	much	more	like	a	dual
of	sendmail	than	the	old	popclient	had;	both	are	MTAs,	but	where	sendmail
pushes	then	delivers,	the	new	popclient	pulls	then	delivers.	So,	two	months	off
the	blocks,	I	renamed	it	fetchmail.

There	is	a	more	general	lesson	in	this	story	about	how	SMTP	delivery	came	to
fetchmail.	It	is	not	only	debugging	that	is	parallelizable;	development	and	(to	a
perhaps	surprising	extent)	exploration	of	design	space	is,	too.	When	your
development	mode	is	rapidly	iterative,	development	and	enhancement	may
become	special	cases	of	debugging-fixing	`bugs	of	omission’	in	the	original
capabilities	or	concept	of	the	software.

Even	at	a	higher	level	of	design,	it	can	be	very	valuable	to	have	lots	of	co-
developers	random-walking	through	the	design	space	near	your	product.
Consider	the	way	a	puddle	of	water	finds	a	drain,	or	better	yet	how	ants	find
food:	exploration	essentially	by	diffusion,	followed	by	exploitation	mediated	by
a	scalable	communication	mechanism.	This	works	very	well;	as	with	Harry
Hochheiser	and	me,	one	of	your	outriders	may	well	find	a	huge	win	nearby	that
you	were	just	a	little	too	close-focused	to	see.

Fetchmail	Grows	Up

There	I	was	with	a	neat	and	innovative	design,	code	that	I	knew	worked	well
because	I	used	it	every	day,	and	a	burgeoning	beta	list.	It	gradually	dawned	on
me	that	I	was	no	longer	engaged	in	a	trivial	personal	hack	that	might	happen	to
be	useful	to	few	other	people.	I	had	my	hands	on	a	program	that	every	hacker
with	a	Unix	box	and	a	SLIP/PPP	mail	connection	really	needs.

With	the	SMTP	forwarding	feature,	it	pulled	far	enough	in	front	of	the
competition	to	potentially	become	a	“category	killer”,	one	of	those	classic
programs	that	fills	its	niche	so	competently	that	the	alternatives	are	not	just
discarded	but	almost	forgotten.

I	think	you	can’t	really	aim	or	plan	for	a	result	like	this.	You	have	to	get	pulled
into	it	by	design	ideas	so	powerful	that	afterward	the	results	just	seem	inevitable,
natural,	even	foreordained.	The	only	way	to	try	for	ideas	like	that	is	by	having
lots	of	ideas-or	by	having	the	engineering	judgment	to	take	other	peoples’	good
ideas	beyond	where	the	originators	thought	they	could	go.

Andy	Tanenbaum	had	the	original	idea	to	build	a	simple	native	Unix	for	IBM
PCs,	for	use	as	a	teaching	tool	(he	called	it	Minix).	Linus	Torvalds	pushed	the
Minix	concept	further	than	Andrew	probably	thought	it	could	go-and	it	grew	into
something	wonderful.	In	the	same	way	(though	on	a	smaller	scale),	I	took	some
ideas	by	Carl	Harris	and	Harry	Hochheiser	and	pushed	them	hard.	Neither	of	us
was	`original’	in	the	romantic	way	people	think	is	genius.	But	then,	most	science
and	engineering	and	software	development	isn’t	done	by	original	genius,	hacker
mythology	to	the	contrary.

The	results	were	pretty	heady	stuff	all	the	same-in	fact,	just	the	kind	of	success
every	hacker	lives	for!	And	they	meant	I	would	have	to	set	my	standards	even
higher.	To	make	fetchmail	as	good	as	I	now	saw	it	could	be,	I’d	have	to	write	not
just	for	my	own	needs,	but	also	include	and	support	features	necessary	to	others
but	outside	my	orbit.	And	do	that	while	keeping	the	program	simple	and	robust.

The	first	and	overwhelmingly	most	important	feature	I	wrote	after	realizing	this
was	multidrop	support-the	ability	to	fetch	mail	from	mailboxes	that	had
accumulated	all	mail	for	a	group	of	users,	and	then	route	each	piece	of	mail	to	its
individual	recipients.

I	decided	to	add	the	multidrop	support	partly	because	some	users	were	clamoring
for	it,	but	mostly	because	I	thought	it	would	shake	bugs	out	of	the	single-drop
code	by	forcing	me	to	deal	with	addressing	in	full	generality.	And	so	it	proved.
Getting	RFC	822	address	parsing	right	took	me	a	remarkably	long	time,	not
because	any	individual	piece	of	it	is	hard	but	because	it	involved	a	pile	of
interdependent	and	fussy	details.

But	multidrop	addressing	turned	out	to	be	an	excellent	design	decision	as	well.
Here’s	how	I	knew:

14.	Any	tool	should	be	useful	in	the	expected	way,	but	a	truly	great	tool	lends
itself	to	uses	you	never	expected.

The	unexpected	use	for	multidrop	fetchmail	is	to	run	mailing	lists	with	the	list
kept,	and	alias	expansion	done,	on	the	client	side	of	the	Internet	connection.	This
means	someone	running	a	personal	machine	through	an	ISP	account	can	manage
a	mailing	list	without	continuing	access	to	the	ISP’s	alias	files.

Another	important	change	demanded	by	my	beta-testers	was	support	for	8-bit
MIME	(Multipurpose	Internet	Mail	Extensions)	operation.	This	was	pretty	easy

to	do,	because	I	had	been	careful	to	keep	the	code	8-bit	clean	(that	is,	to	not
press	the	8th	bit,	unused	in	the	ASCII	character	set,	into	service	to	carry
information	within	the	program).	Not	because	I	anticipated	the	demand	for	this
feature,	but	rather	in	obedience	to	another	rule:

15.	When	writing	gateway	software	of	any	kind,	take	pains	to	disturb	the	data
stream	as	little	as	possible-and	never	throw	away	information	unless	the
recipient	forces	you	to!

Had	I	not	obeyed	this	rule,	8-bit	MIME	support	would	have	been	difficult	and
buggy.	As	it	was,	all	I	had	to	do	is	read	the	MIME	standard	(RFC	1652)	and	add
a	trivial	bit	of	header-generation	logic.

Some	European	users	bugged	me	into	adding	an	option	to	limit	the	number	of
messages	retrieved	per	session	(so	they	can	control	costs	from	their	expensive
phone	networks).	I	resisted	this	for	a	long	time,	and	I’m	still	not	entirely	happy
about	it.	But	if	you’re	writing	for	the	world,	you	have	to	listen	to	your
customers-this	doesn’t	change	just	because	they’re	not	paying	you	in	money.

A	Few	More	Lessons	from	Fetchmail

Before	we	go	back	to	general	software-engineering	issues,	there	are	a	couple
more	specific	lessons	from	the	fetchmail	experience	to	ponder.	Nontechnical
readers	can	safely	skip	this	section.

The	rc	(control)	file	syntax	includes	optional	`noise’	keywords	that	are	entirely
ignored	by	the	parser.	The	English-like	syntax	they	allow	is	considerably	more
readable	than	the	traditional	terse	keyword-value	pairs	you	get	when	you	strip
them	all	out.

These	started	out	as	a	late-night	experiment	when	I	noticed	how	much	the	rc	file
declarations	were	beginning	to	resemble	an	imperative	minilanguage.	(This	is
also	why	I	changed	the	original	popclient	“server”	keyword	to	“poll”).

It	seemed	to	me	that	trying	to	make	that	imperative	minilanguage	more	like
English	might	make	it	easier	to	use.	Now,	although	I’m	a	convinced	partisan	of
the	“make	it	a	language”	school	of	design	as	exemplified	by	Emacs	and	HTML
and	many	database	engines,	I	am	not	normally	a	big	fan	of	“English-like”
syntaxes.

Traditionally	programmers	have	tended	to	favor	control	syntaxes	that	are	very
precise	and	compact	and	have	no	redundancy	at	all.	This	is	a	cultural	legacy
from	when	computing	resources	were	expensive,	so	parsing	stages	had	to	be	as
cheap	and	simple	as	possible.	English,	with	about	50%	redundancy,	looked	like	a
very	inappropriate	model	then.

This	is	not	my	reason	for	normally	avoiding	English-like	syntaxes;	I	mention	it
here	only	to	demolish	it.	With	cheap	cycles	and	core,	terseness	should	not	be	an
end	in	itself.	Nowadays	it’s	more	important	for	a	language	to	be	convenient	for
humans	than	to	be	cheap	for	the	computer.

There	remain,	however,	good	reasons	to	be	wary.	One	is	the	complexity	cost	of
the	parsing	stage-you	don’t	want	to	raise	that	to	the	point	where	it’s	a	significant
source	of	bugs	and	user	confusion	in	itself.	Another	is	that	trying	to	make	a
language	syntax	English-like	often	demands	that	the	“English”	it	speaks	be	bent
seriously	out	of	shape,	so	much	so	that	the	superficial	resemblance	to	natural
language	is	as	confusing	as	a	traditional	syntax	would	have	been.	(You	see	this
bad	effect	in	a	lot	of	so-called	“fourth	generation”	and	commercial	database-
query	languages.)

The	fetchmail	control	syntax	seems	to	avoid	these	problems	because	the
language	domain	is	extremely	restricted.	It’s	nowhere	near	a	general-purpose
language;	the	things	it	says	simply	are	not	very	complicated,	so	there’s	little
potential	for	confusion	in	moving	mentally	between	a	tiny	subset	of	English	and
the	actual	control	language.	I	think	there	may	be	a	broader	lesson	here:

16.	When	your	language	is	nowhere	near	Turing-complete,	syntactic	sugar	can
be	your	friend.

Another	lesson	is	about	security	by	obscurity.	Some	fetchmail	users	asked	me	to
change	the	software	to	store	passwords	encrypted	in	the	rc	file,	so	snoopers
wouldn’t	be	able	to	casually	see	them.

I	didn’t	do	it,	because	this	doesn’t	actually	add	protection.	Anyone	who’s
acquired	permissions	to	read	your	rc	file	will	be	able	to	run	fetchmail	as	you
anyway-and	if	it’s	your	password	they’re	after,	they’d	be	able	to	rip	the
necessary	decoder	out	of	the	fetchmail	code	itself	to	get	it.

All	.fetchmailrc	password	encryption	would	have	done	is	give	a	false	sense	of
security	to	people	who	don’t	think	very	hard.	The	general	rule	here	is:

17.	A	security	system	is	only	as	secure	as	its	secret.	Beware	of	pseudo-secrets.

Necessary	Preconditions	for	the	Bazaar	Style

Early	reviewers	and	test	audiences	for	this	essay	consistently	raised	questions
about	the	preconditions	for	successful	bazaar-style	development,	including	both
the	qualifications	of	the	project	leader	and	the	state	of	code	at	the	time	one	goes
public	and	starts	to	try	to	build	a	co-developer	community.

It’s	fairly	clear	that	one	cannot	code	from	the	ground	up	in	bazaar	style	[IN].
One	can	test,	debug	and	improve	in	bazaar	style,	but	it	would	be	very	hard	to
originate	a	project	in	bazaar	mode.	Linus	didn’t	try	it.	I	didn’t	either.	Your
nascent	developer	community	needs	to	have	something	runnable	and	testable	to
play	with.

When	you	start	community-building,	what	you	need	to	be	able	to	present	is	a
plausible	promise.	Your	program	doesn’t	have	to	work	particularly	well.	It	can
be	crude,	buggy,	incomplete,	and	poorly	documented.	What	it	must	not	fail	to	do
is	(a)	run,	and	(b)	convince	potential	co-developers	that	it	can	be	evolved	into
something	really	neat	in	the	foreseeable	future.

Linux	and	fetchmail	both	went	public	with	strong,	attractive	basic	designs.	Many
people	thinking	about	the	bazaar	model	as	I	have	presented	it	have	correctly
considered	this	critical,	then	jumped	from	that	to	the	conclusion	that	a	high
degree	of	design	intuition	and	cleverness	in	the	project	leader	is	indispensable.

But	Linus	got	his	design	from	Unix.	I	got	mine	initially	from	the	ancestral
popclient	(though	it	would	later	change	a	great	deal,	much	more	proportionately
speaking	than	has	Linux).	So	does	the	leader/coordinator	for	a	bazaar-style	effort
really	have	to	have	exceptional	design	talent,	or	can	he	get	by	through	leveraging
the	design	talent	of	others?

I	think	it	is	not	critical	that	the	coordinator	be	able	to	originate	designs	of
exceptional	brilliance,	but	it	is	absolutely	critical	that	the	coordinator	be	able	to
recognize	good	design	ideas	from	others.

Both	the	Linux	and	fetchmail	projects	show	evidence	of	this.	Linus,	while	not
(as	previously	discussed)	a	spectacularly	original	designer,	has	displayed	a
powerful	knack	for	recognizing	good	design	and	integrating	it	into	the	Linux
kernel.	And	I	have	already	described	how	the	single	most	powerful	design	idea

in	fetchmail	(SMTP	forwarding)	came	from	somebody	else.

Early	audiences	of	this	essay	complimented	me	by	suggesting	that	I	am	prone	to
undervalue	design	originality	in	bazaar	projects	because	I	have	a	lot	of	it	myself,
and	therefore	take	it	for	granted.	There	may	be	some	truth	to	this;	design	(as
opposed	to	coding	or	debugging)	is	certainly	my	strongest	skill.

But	the	problem	with	being	clever	and	original	in	software	design	is	that	it	gets
to	be	a	habit-you	start	reflexively	making	things	cute	and	complicated	when	you
should	be	keeping	them	robust	and	simple.	I	have	had	projects	crash	on	me
because	I	made	this	mistake,	but	I	managed	to	avoid	this	with	fetchmail.

So	I	believe	the	fetchmail	project	succeeded	partly	because	I	restrained	my
tendency	to	be	clever;	this	argues	(at	least)	against	design	originality	being
essential	for	successful	bazaar	projects.	And	consider	Linux.	Suppose	Linus
Torvalds	had	been	trying	to	pull	off	fundamental	innovations	in	operating	system
design	during	the	development;	does	it	seem	at	all	likely	that	the	resulting	kernel
would	be	as	stable	and	successful	as	what	we	have?

A	certain	base	level	of	design	and	coding	skill	is	required,	of	course,	but	I	expect
almost	anybody	seriously	thinking	of	launching	a	bazaar	effort	will	already	be
above	that	minimum.	The	open-source	community’s	internal	market	in
reputation	exerts	subtle	pressure	on	people	not	to	launch	development	efforts
they’re	not	competent	to	follow	through	on.	So	far	this	seems	to	have	worked
pretty	well.

There	is	another	kind	of	skill	not	normally	associated	with	software	development
which	I	think	is	as	important	as	design	cleverness	to	bazaar	projects-and	it	may
be	more	important.	A	bazaar	project	coordinator	or	leader	must	have	good
people	and	communications	skills.

This	should	be	obvious.	In	order	to	build	a	development	community,	you	need	to
attract	people,	interest	them	in	what	you’re	doing,	and	keep	them	happy	about
the	amount	of	work	they’re	doing.	Technical	sizzle	will	go	a	long	way	towards
accomplishing	this,	but	it’s	far	from	the	whole	story.	The	personality	you	project
matters,	too.

It	is	not	a	coincidence	that	Linus	is	a	nice	guy	who	makes	people	like	him	and
want	to	help	him.	It’s	not	a	coincidence	that	I’m	an	energetic	extrovert	who
enjoys	working	a	crowd	and	has	some	of	the	delivery	and	instincts	of	a	stand-up

comic.	To	make	the	bazaar	model	work,	it	helps	enormously	if	you	have	at	least
a	little	skill	at	charming	people.

The	Social	Context	of	Open-Source	Software

It	is	truly	written:	the	best	hacks	start	out	as	personal	solutions	to	the	author’s
everyday	problems,	and	spread	because	the	problem	turns	out	to	be	typical	for	a
large	class	of	users.	This	takes	us	back	to	the	matter	of	rule	1,	restated	in	a
perhaps	more	useful	way:

18.	To	solve	an	interesting	problem,	start	by	finding	a	problem	that	is
interesting	to	you.

So	it	was	with	Carl	Harris	and	the	ancestral	popclient,	and	so	with	me	and
fetchmail.	But	this	has	been	understood	for	a	long	time.	The	interesting	point,
the	point	that	the	histories	of	Linux	and	fetchmail	seem	to	demand	we	focus	on,
is	the	next	stage-the	evolution	of	software	in	the	presence	of	a	large	and	active
community	of	users	and	co-developers.

In	The	Mythical	Man-Month,	Fred	Brooks	observed	that	programmer	time	is	not
fungible;	adding	developers	to	a	late	software	project	makes	it	later.	As	we’ve
seen	previously,	he	argued	that	the	complexity	and	communication	costs	of	a
project	rise	with	the	square	of	the	number	of	developers,	while	work	done	only
rises	linearly.	Brooks’s	Law	has	been	widely	regarded	as	a	truism.	But	we’ve
examined	in	this	essay	an	number	of	ways	in	which	the	process	of	open-source
development	falsifies	the	assumptionms	behind	it-and,	empirically,	if	Brooks’s
Law	were	the	whole	picture	Linux	would	be	impossible.

Gerald	Weinberg’s	classic	The	Psychology	of	Computer	Programming	supplied
what,	in	hindsight,	we	can	see	as	a	vital	correction	to	Brooks.	In	his	discussion
of	“egoless	programming”,	Weinberg	observed	that	in	shops	where	developers
are	not	territorial	about	their	code,	and	encourage	other	people	to	look	for	bugs
and	potential	improvements	in	it,	improvement	happens	dramatically	faster	than
elsewhere.	(Recently,	Kent	Beck’s	`extreme	programming’	technique	of
deploying	coders	in	pairs	looking	over	one	anothers’	shoulders	might	be	seen	as
an	attempt	to	force	this	effect.)

Weinberg’s	choice	of	terminology	has	perhaps	prevented	his	analysis	from
gaining	the	acceptance	it	deserved-one	has	to	smile	at	the	thought	of	describing
Internet	hackers	as	“egoless”.	But	I	think	his	argument	looks	more	compelling

today	than	ever.

The	bazaar	method,	by	harnessing	the	full	power	of	the	“egoless	programming”
effect,	strongly	mitigates	the	effect	of	Brooks’s	Law.	The	principle	behind
Brooks’s	Law	is	not	repealed,	but	given	a	large	developer	population	and	cheap
communications	its	effects	can	be	swamped	by	competing	nonlinearities	that	are
not	otherwise	visible.	This	resembles	the	relationship	between	Newtonian	and
Einsteinian	physics-the	older	system	is	still	valid	at	low	energies,	but	if	you	push
mass	and	velocity	high	enough	you	get	surprises	like	nuclear	explosions	or
Linux.

The	history	of	Unix	should	have	prepared	us	for	what	we’re	learning	from	Linux
(and	what	I’ve	verified	experimentally	on	a	smaller	scale	by	deliberately
copying	Linus’s	methods	[EGCS]).	That	is,	while	coding	remains	an	essentially
solitary	activity,	the	really	great	hacks	come	from	harnessing	the	attention	and
brainpower	of	entire	communities.	The	developer	who	uses	only	his	or	her	own
brain	in	a	closed	project	is	going	to	fall	behind	the	developer	who	knows	how	to
create	an	open,	evolutionary	context	in	which	feedback	exploring	the	design
space,	code	contributions,	bug-spotting,	and	other	improvements	come	from
from	hundreds	(perhaps	thousands)	of	people.

But	the	traditional	Unix	world	was	prevented	from	pushing	this	approach	to	the
ultimate	by	several	factors.	One	was	the	legal	contraints	of	various	licenses,
trade	secrets,	and	commercial	interests.	Another	(in	hindsight)	was	that	the
Internet	wasn’t	yet	good	enough.

Before	cheap	Internet,	there	were	some	geographically	compact	communities
where	the	culture	encouraged	Weinberg’s	“egoless”	programming,	and	a
developer	could	easily	attract	a	lot	of	skilled	kibitzers	and	co-developers.	Bell
Labs,	the	MIT	AI	and	LCS	labs,	UC	Berkeley-these	became	the	home	of
innovations	that	are	legendary	and	still	potent.

Linux	was	the	first	project	for	which	a	conscious	and	successful	effort	to	use	the
entire	world	as	its	talent	pool	was	made.	I	don’t	think	it’s	a	coincidence	that	the
gestation	period	of	Linux	coincided	with	the	birth	of	the	World	Wide	Web,	and
that	Linux	left	its	infancy	during	the	same	period	in	1993-1994	that	saw	the
takeoff	of	the	ISP	industry	and	the	explosion	of	mainstream	interest	in	the
Internet.	Linus	was	the	first	person	who	learned	how	to	play	by	the	new	rules
that	pervasive	Internet	access	made	possible.

While	cheap	Internet	was	a	necessary	condition	for	the	Linux	model	to	evolve,	I
think	it	was	not	by	itself	a	sufficient	condition.	Another	vital	factor	was	the
development	of	a	leadership	style	and	set	of	cooperative	customs	that	could
allow	developers	to	attract	co-developers	and	get	maximum	leverage	out	of	the
medium.

But	what	is	this	leadership	style	and	what	are	these	customs?	They	cannot	be
based	on	power	relationships-and	even	if	they	could	be,	leadership	by	coercion
would	not	produce	the	results	we	see.	Weinberg	quotes	the	autobiography	of	the
19th-century	Russian	anarchist	Pyotr	Alexeyvich	Kropotkin’s	Memoirs	of	a
Revolutionist	to	good	effect	on	this	subject:

Having	been	brought	up	in	a	serf-owner’s	family,	I	entered	active	life,	like	all
young	men	of	my	time,	with	a	great	deal	of	confidence	in	the	necessity	of
commanding,	ordering,	scolding,	punishing	and	the	like.	But	when,	at	an	early
stage,	I	had	to	manage	serious	enterprises	and	to	deal	with	[free]	men,	and	when
each	mistake	would	lead	at	once	to	heavy	consequences,	I	began	to	appreciate
the	difference	between	acting	on	the	principle	of	command	and	discipline	and
acting	on	the	principle	of	common	understanding.	The	former	works	admirably
in	a	military	parade,	but	it	is	worth	nothing	where	real	life	is	concerned,	and	the
aim	can	be	achieved	only	through	the	severe	effort	of	many	converging	wills.

The	“severe	effort	of	many	converging	wills”	is	precisely	what	a	project	like
Linux	requires-and	the	“principle	of	command”	is	effectively	impossible	to
apply	among	volunteers	in	the	anarchist’s	paradise	we	call	the	Internet.	To
operate	and	compete	effectively,	hackers	who	want	to	lead	collaborative	projects
have	to	learn	how	to	recruit	and	energize	effective	communities	of	interest	in	the
mode	vaguely	suggested	by	Kropotkin’s	“principle	of	understanding”.	They
must	learn	to	use	Linus’s	Law.[SP]

Earlier	I	referred	to	the	“Delphi	effect”	as	a	possible	explanation	for	Linus’s
Law.	But	more	powerful	analogies	to	adaptive	systems	in	biology	and	economics
also	irresistably	suggest	themselves.	The	Linux	world	behaves	in	many	respects
like	a	free	market	or	an	ecology,	a	collection	of	selfish	agents	attempting	to
maximize	utility	which	in	the	process	produces	a	self-correcting	spontaneous
order	more	elaborate	and	efficient	than	any	amount	of	central	planning	could
have	achieved.	Here,	then,	is	the	place	to	seek	the	“principle	of	understanding”.

The	“utility	function”	Linux	hackers	are	maximizing	is	not	classically	economic,

but	is	the	intangible	of	their	own	ego	satisfaction	and	reputation	among	other
hackers.	(One	may	call	their	motivation	“altruistic”,	but	this	ignores	the	fact	that
altruism	is	itself	a	form	of	ego	satisfaction	for	the	altruist).	Voluntary	cultures
that	work	this	way	are	not	actually	uncommon;	one	other	in	which	I	have	long
participated	is	science	fiction	fandom,	which	unlike	hackerdom	has	long
explicitly	recognized	“egoboo”	(ego-boosting,	or	the	enhancement	of	one’s
reputation	among	other	fans)	as	the	basic	drive	behind	volunteer	activity.

Linus,	by	successfully	positioning	himself	as	the	gatekeeper	of	a	project	in
which	the	development	is	mostly	done	by	others,	and	nurturing	interest	in	the
project	until	it	became	self-sustaining,	has	shown	an	acute	grasp	of	Kropotkin’s
“principle	of	shared	understanding”.	This	quasi-economic	view	of	the	Linux
world	enables	us	to	see	how	that	understanding	is	applied.

We	may	view	Linus’s	method	as	a	way	to	create	an	efficient	market	in	“egoboo”-
to	connect	the	selfishness	of	individual	hackers	as	firmly	as	possible	to	difficult
ends	that	can	only	be	achieved	by	sustained	cooperation.	With	the	fetchmail
project	I	have	shown	(albeit	on	a	smaller	scale)	that	his	methods	can	be
duplicated	with	good	results.	Perhaps	I	have	even	done	it	a	bit	more	consciously
and	systematically	than	he.

Many	people	(especially	those	who	politically	distrust	free	markets)	would
expect	a	culture	of	self-directed	egoists	to	be	fragmented,	territorial,	wasteful,
secretive,	and	hostile.	But	this	expectation	is	clearly	falsified	by	(to	give	just	one
example)	the	stunning	variety,	quality,	and	depth	of	Linux	documentation.	It	is	a
hallowed	given	that	programmers	hate	documenting;	how	is	it,	then,	that	Linux
hackers	generate	so	much	documentation?	Evidently	Linux’s	free	market	in
egoboo	works	better	to	produce	virtuous,	other-directed	behavior	than	the
massively-funded	documentation	shops	of	commercial	software	producers.

Both	the	fetchmail	and	Linux	kernel	projects	show	that	by	properly	rewarding
the	egos	of	many	other	hackers,	a	strong	developer/coordinator	can	use	the
Internet	to	capture	the	benefits	of	having	lots	of	co-developers	without	having	a
project	collapse	into	a	chaotic	mess.	So	to	Brooks’s	Law	I	counter-propose	the
following:

19:	Provided	the	development	coordinator	has	a	communications	medium	at
least	as	good	as	the	Internet,	and	knows	how	to	lead	without	coercion,	many
heads	are	inevitably	better	than	one.

I	think	the	future	of	open-source	software	will	increasingly	belong	to	people	who
know	how	to	play	Linus’s	game,	people	who	leave	behind	the	cathedral	and
embrace	the	bazaar.	This	is	not	to	say	that	individual	vision	and	brilliance	will
no	longer	matter;	rather,	I	think	that	the	cutting	edge	of	open-source	software
will	belong	to	people	who	start	from	individual	vision	and	brilliance,	then
amplify	it	through	the	effective	construction	of	voluntary	communities	of
interest.

Perhaps	this	is	not	only	the	future	of	open-source	software.	No	closed-source
developer	can	match	the	pool	of	talent	the	Linux	community	can	bring	to	bear	on
a	problem.	Very	few	could	afford	even	to	hire	the	more	than	200	(1999:	600,
2000:	800)	people	who	have	contributed	to	fetchmail!

Perhaps	in	the	end	the	open-source	culture	will	triumph	not	because	cooperation
is	morally	right	or	software	“hoarding”	is	morally	wrong	(assuming	you	believe
the	latter,	which	neither	Linus	nor	I	do),	but	simply	because	the	closed-source
world	cannot	win	an	evolutionary	arms	race	with	open-source	communities	that
can	put	orders	of	magnitude	more	skilled	time	into	a	problem.

On	Management	and	the	Maginot	Line

The	original	Cathedral	and	Bazaar	paper	of	1997	ended	with	the	vision	above-
that	of	happy	networked	hordes	of	programmer/anarchists	outcompeting	and
overwhelming	the	hierarchical	world	of	conventional	closed	software.

A	good	many	skeptics	weren’t	convinced,	however;	and	the	questions	they	raise
deserve	a	fair	engagement.	Most	of	the	objections	to	the	bazaar	argument	come
down	to	the	claim	that	its	proponents	have	underestimated	the	productivity-
multiplying	effect	of	conventional	management.

Traditionally-minded	software-development	managers	often	object	that	the
casualness	with	which	project	groups	form	and	change	and	dissolve	in	the	open-
source	world	negates	a	significant	part	of	the	apparent	advantage	of	numbers	that
the	open-source	community	has	over	any	single	closed-source	developer.	They
would	observe	that	in	software	development	it	is	really	sustained	effort	over	time
and	the	degree	to	which	customers	can	expect	continuing	investment	in	the
product	that	matters,	not	just	how	many	people	have	thrown	a	bone	in	the	pot
and	left	it	to	simmer.

There	is	something	to	this	argument,	to	be	sure;	in	fact,	I	have	developed	the

idea	that	expected	future	service	value	is	the	key	to	the	economics	of	software
production	in	the	essay	The	Magic	Cauldron.

But	this	argument	also	has	a	major	hidden	problem;	its	implicit	assumption	that
open-source	development	cannot	deliver	such	sustained	effort.	In	fact,	there	have
been	open-source	projects	that	maintained	a	coherent	direction	and	an	effective
maintainer	community	over	quite	long	periods	of	time	without	the	kinds	of
incentive	structures	or	institutional	controls	that	conventional	management	finds
essential.	The	development	of	the	GNU	Emacs	editor	is	an	extreme	and
instructive	example;	it	has	absorbed	the	efforts	of	hundreds	of	contributors	over
15	years	into	a	unified	architectural	vision,	despite	high	turnover	and	the	fact
that	only	one	person	(its	author)	has	been	continuously	active	during	all	that
time.	No	closed-source	editor	has	ever	matched	this	longevity	record.

This	suggests	a	reason	for	questioning	the	advantages	of	conventionally-
managed	software	development	that	is	independent	of	the	rest	of	the	arguments
over	cathedral	vs.	bazaar	mode.	If	it’s	possible	for	GNU	Emacs	to	express	a
consistent	architectural	vision	over	15	years,	or	for	an	operating	system	like
Linux	to	do	the	same	over	8	years	of	rapidly	changing	hardware	and	platform
technology;	and	if	(as	is	indeed	the	case)	there	have	been	many	well-architected
open-source	projects	of	more	than	5	years	duration	—	then	we	are	entitled	to
wonder	what,	if	anything,	the	tremendous	overhead	of	conventionally-managed
development	is	actually	buying	us.

Whatever	it	is	certainly	doesn’t	include	reliable	execution	by	deadline,	or	on
budget,	or	to	all	features	of	the	specification;	it’s	a	rare	`managed’	project	that
meets	even	one	of	these	goals,	let	alone	all	three.	It	also	does	not	appear	to	be
ability	to	adapt	to	changes	in	technology	and	economic	context	during	the
project	lifetime,	either;	the	open-source	community	has	proven	far	more
effective	on	that	score	(as	one	can	readily	verify,	for	example,	by	comparing	the
30-year	history	of	the	Internet	with	the	short	half-lives	of	proprietary	networking
technologies-or	the	cost	of	the	16-bit	to	32-bit	transition	in	Microsoft	Windows
with	the	nearly	effortless	upward	migration	of	Linux	during	the	same	period,	not
only	along	the	Intel	line	of	development	but	to	more	than	a	dozen	other	hardware
platforms,	including	the	64-bit	Alpha	as	well).

One	thing	many	people	think	the	traditional	mode	buys	you	is	somebody	to	hold
legally	liable	and	potentially	recover	compensation	from	if	the	project	goes
wrong.	But	this	is	an	illusion;	most	software	licenses	are	written	to	disclaim	even

warranty	of	merchantability,	let	alone	performance-and	cases	of	successful
recovery	for	software	nonperformance	are	vanishingly	rare.	Even	if	they	were
common,	feeling	comforted	by	having	somebody	to	sue	would	be	missing	the
point.	You	didn’t	want	to	be	in	a	lawsuit;	you	wanted	working	software.

So	what	is	all	that	management	overhead	buying?

In	order	to	understand	that,	we	need	to	understand	what	software	development
managers	believe	they	do.	A	woman	I	know	who	seems	to	be	very	good	at	this
job	says	software	project	management	has	five	functions:

To	define	goals	and	keep	everybody	pointed	in	the	same	direction

To	monitor	and	make	sure	crucial	details	don’t	get	skipped

To	motivate	people	to	do	boring	but	necessary	drudgework

To	organize	the	deployment	of	people	for	best	productivity

To	marshal	resources	needed	to	sustain	the	project

Apparently	worthy	goals,	all	of	these;	but	under	the	open-source	model,	and	in
its	surrounding	social	context,	they	can	begin	to	seem	strangely	irrelevant.	We’ll
take	them	in	reverse	order.

My	friend	reports	that	a	lot	of	resource	marshalling	is	basically	defensive;	once
you	have	your	people	and	machines	and	office	space,	you	have	to	defend	them
from	peer	managers	competing	for	the	same	resources,	and	from	higher-ups
trying	to	allocate	the	most	efficient	use	of	a	limited	pool.

But	open-source	developers	are	volunteers,	self-selected	for	both	interest	and
ability	to	contribute	to	the	projects	they	work	on	(and	this	remains	generally	true
even	when	they	are	being	paid	a	salary	to	hack	open	source.)	The	volunteer
ethos	tends	to	take	care	of	the	`attack’	side	of	resource-marshalling
automatically;	people	bring	their	own	resources	to	the	table.	And	there	is	little	or
no	need	for	a	manager	to	`play	defense’	in	the	conventional	sense.

Anyway,	in	a	world	of	cheap	PCs	and	fast	Internet	links,	we	find	pretty
consistently	that	the	only	really	limiting	resource	is	skilled	attention.	Open-
source	projects,	when	they	founder,	essentially	never	do	so	for	want	of	machines

or	links	or	office	space;	they	die	only	when	the	developers	themselves	lose
interest.

That	being	the	case,	it’s	doubly	important	that	open-source	hackers	organize
themselves	for	maximum	productivity	by	self-selection-and	the	social	milieu
selects	ruthlessly	for	competence.	My	friend,	familiar	with	both	the	open-source
world	and	large	closed	projects,	believes	that	open	source	has	been	successful
partly	because	its	culture	only	accepts	the	most	talented	5%	or	so	of	the
programming	population.	She	spends	most	of	her	time	organizing	the
deployment	of	the	other	95%,	and	has	thus	observed	first-hand	the	well-known
variance	of	a	factor	of	one	hundred	in	productivity	between	the	most	able
programmers	and	the	merely	competent.

The	size	of	that	variance	has	always	raised	an	awkward	question:	would
individual	projects,	and	the	field	as	a	whole,	be	better	off	without	more	than	50%
of	the	least	able	in	it?	Thoughtful	managers	have	understood	for	a	long	time	that
if	conventional	software	management’s	only	function	were	to	convert	the	least
able	from	a	net	loss	to	a	marginal	win,	the	game	might	not	be	worth	the	candle.

The	success	of	the	open-source	community	sharpens	this	question	considerably,
by	providing	hard	evidence	that	it	is	often	cheaper	and	more	effective	to	recruit
self-selected	volunteers	from	the	Internet	than	it	is	to	manage	buildings	full	of
people	who	would	rather	be	doing	something	else.

Which	brings	us	neatly	to	the	question	of	motivation.	An	equivalent	and	often-
heard	way	to	state	my	friend’s	point	is	that	traditional	development	management
is	a	necessary	compensation	for	poorly	motivated	programmers	who	would	not
otherwise	turn	out	good	work.

This	answer	usually	travels	with	a	claim	that	the	open-source	community	can
only	be	relied	on	only	to	do	work	that	is	`sexy’	or	technically	sweet;	anything
else	will	be	left	undone	(or	done	only	poorly)	unless	it’s	churned	out	by	money-
motivated	cubicle	peons	with	managers	cracking	whips	over	them.	I	address	the
psychological	and	social	reasons	for	being	skeptical	of	this	claim	in
Homesteading	the	Noosphere.	For	present	purposes,	however,	I	think	it’s	more
interesting	to	point	out	the	implications	of	accepting	it	as	true.

If	the	conventional,	closed-source,	heavily-managed	style	of	software
development	is	really	defended	only	by	a	sort	of	Maginot	Line	of	problems

conducive	to	boredom,	then	it’s	going	to	remain	viable	in	each	individual
application	area	for	only	so	long	as	nobody	finds	those	problems	really
interesting	and	nobody	else	finds	any	way	to	route	around	them.	Because	the
moment	there	is	open-source	competition	for	a	`boring’	piece	of	software,
customers	are	going	to	know	that	it	was	finally	tackled	by	someone	who	chose
that	problem	to	solve	because	of	a	fascination	with	the	problem	itself-which,	in
software	as	in	other	kinds	of	creative	work,	is	a	far	more	effective	motivator	than
money	alone.

Having	a	conventional	management	structure	solely	in	order	to	motivate,	then,	is
probably	good	tactics	but	bad	strategy;	a	short-term	win,	but	in	the	longer	term	a
surer	loss.

So	far,	conventional	development	management	looks	like	a	bad	bet	now	against
open	source	on	two	points	(resource	marshalling,	organization),	and	like	it’s
living	on	borrowed	time	with	respect	to	a	third	(motivation).	And	the	poor
beleaguered	conventional	manager	is	not	going	to	get	any	succour	from	the
monitoring	issue;	the	strongest	argument	the	open-source	community	has	is	that
decentralized	peer	review	trumps	all	the	conventional	methods	for	trying	to
ensure	that	details	don’t	get	slipped.

Can	we	save	defining	goals	as	a	justification	for	the	overhead	of	conventional
software	project	management?	Perhaps;	but	to	do	so,	we’ll	need	good	reason	to
believe	that	management	committees	and	corporate	roadmaps	are	more
successful	at	defining	worthy	and	widely	shared	goals	than	the	project	leaders
and	tribal	elders	who	fill	the	analogous	role	in	the	open-source	world.

That	is	on	the	face	of	it	a	pretty	hard	case	to	make.	And	it’s	not	so	much	the
open-source	side	of	the	balance	(the	longevity	of	Emacs,	or	Linus	Torvalds’s
ability	to	mobilize	hordes	of	developers	with	talk	of	“world	domination”)	that
makes	it	tough.	Rather,	it’s	the	demonstrated	awfulness	of	conventional
mechanisms	for	defining	the	goals	of	software	projects.

One	of	the	best-known	folk	theorems	of	software	engineering	is	that	60%	to
75%	of	conventional	software	projects	either	are	never	completed	or	are	rejected
by	their	intended	users.	If	that	range	is	anywhere	near	true	(and	I’ve	never	met	a
manager	of	any	experience	who	disputes	it)	then	more	projects	than	not	are
being	aimed	at	goals	that	are	either	(a)	not	realistically	attainable,	or	(b)	just
plain	wrong.

This,	more	than	any	other	problem,	is	the	reason	that	in	today’s	software
engineering	world	the	very	phrase	“management	committee”	is	likely	to	send
chills	down	the	hearer’s	spine-even	(or	perhaps	especially)	if	the	hearer	is	a
manager.	The	days	when	only	programmers	griped	about	this	pattern	are	long
past;	Dilbert	cartoons	hang	over	executives’	desks	now.

Our	reply,	then,	to	the	traditional	software	development	manager,	is	simple-if	the
open-source	community	has	really	underestimated	the	value	of	conventional
management,	why	do	so	many	of	you	display	contempt	for	your	own	process?

Once	again	the	example	of	the	open-source	community	sharpens	this	question
considerably-because	we	have	fun	doing	what	we	do.	Our	creative	play	has	been
racking	up	technical,	market-share,	and	mind-share	successes	at	an	astounding
rate.	We’re	proving	not	only	that	we	can	do	better	software,	but	that	joy	is	an
asset.

Two	and	a	half	years	after	the	first	version	of	this	essay,	the	most	radical	thought
I	can	offer	to	close	with	is	no	longer	a	vision	of	an	open-source-dominated
software	world;	that,	after	all,	looks	plausible	to	a	lot	of	sober	people	in	suits
these	days.

Rather,	I	want	to	suggest	what	may	be	a	wider	lesson	about	software,	(and
probably	about	every	kind	of	creative	or	professional	work).	Human	beings
generally	take	pleasure	in	a	task	when	it	falls	in	a	sort	of	optimal-challenge	zone;
not	so	easy	as	to	be	boring,	not	too	hard	to	achieve.	A	happy	programmer	is	one
who	is	neither	underutilized	nor	weighed	down	with	ill-formulated	goals	and
stressful	process	friction.	Enjoyment	predicts	efficiency.

Relating	to	your	own	work	process	with	fear	and	loathing	(even	in	the	displaced,
ironic	way	suggested	by	hanging	up	Dilbert	cartoons)	should	therefore	be
regarded	in	itself	as	a	sign	that	the	process	has	failed.	Joy,	humor,	and
playfulness	are	indeed	assets;	it	was	not	mainly	for	the	alliteration	that	I	wrote	of
“happy	hordes”	above,	and	it	is	no	mere	joke	that	the	Linux	mascot	is	a	cuddly,
neotenous	penguin.

It	may	well	turn	out	that	one	of	the	most	important	effects	of	open	source’s
success	will	be	to	teach	us	that	play	is	the	most	economically	efficient	mode	of
creative	work.

Epilog:	Netscape	Embraces	the	Bazaar

It’s	a	strange	feeling	to	realize	you’re	helping	make	history….

On	January	22	1998,	approximately	seven	months	after	I	first	published	The
Cathedral	and	the	Bazaar,	Netscape	Communications,	Inc.	announced	plans	to
give	away	the	source	for	Netscape	Communicator.	I	had	had	no	clue	this	was
going	to	happen	before	the	day	of	the	announcement.

Eric	Hahn,	executive	vice	president	and	chief	technology	officer	at	Netscape,
emailed	me	shortly	afterwards	as	follows:	“On	behalf	of	everyone	at	Netscape,	I
want	to	thank	you	for	helping	us	get	to	this	point	in	the	first	place.	Your	thinking
and	writings	were	fundamental	inspirations	to	our	decision.”

The	following	week	I	flew	out	to	Silicon	Valley	at	Netscape’s	invitation	for	a
day-long	strategy	conference	(on	4	Feb	1998)	with	some	of	their	top	executives
and	technical	people.	We	designed	Netscape’s	source-release	strategy	and
license	together.

A	few	days	later	I	wrote	the	following:

Netscape	is	about	to	provide	us	with	a	large-scale,	real-world	test	of	the	bazaar
model	in	the	commercial	world.	The	open-source	culture	now	faces	a	danger;	if
Netscape’s	execution	doesn’t	work,	the	open-source	concept	may	be	so
discredited	that	the	commercial	world	won’t	touch	it	again	for	another	decade.

On	the	other	hand,	this	is	also	a	spectacular	opportunity.	Initial	reaction	to	the
move	on	Wall	Street	and	elsewhere	has	been	cautiously	positive.	We’re	being
given	a	chance	to	prove	ourselves,	too.	If	Netscape	regains	substantial	market
share	through	this	move,	it	just	may	set	off	a	long-overdue	revolution	in	the
software	industry.

The	next	year	should	be	a	very	instructive	and	interesting	time.

And	indeed	it	was.	As	I	write	in	mid-2000,	the	development	of	what	was	later
named	Mozilla	has	been	only	a	qualified	success.	It	achieved	Netscape’s	original
goal,	which	was	to	deny	Microsoft	a	monopoly	lock	on	the	browser	market.	It
has	also	achieved	some	dramatic	successes	(notably	the	release	of	the	next-
generation	Gecko	rendering	engine).

However,	it	has	not	yet	garnered	the	massive	development	effort	from	outside
Netscape	that	the	Mozilla	founders	had	originally	hoped	for.	The	problem	here

seems	to	be	that	for	a	long	time	the	Mozilla	distribution	actually	broke	one	of	the
basic	rules	of	the	bazaar	model;	it	didn’t	ship	with	something	potential
contributors	could	easily	run	and	see	working.	(Until	more	than	a	year	after
release,	building	Mozilla	from	source	required	a	license	for	the	proprietary	Motif
library.)

Most	negatively	(from	the	point	of	view	of	the	outside	world)	the	Mozilla	group
didn’t	ship	a	production-quality	browser	for	two	and	a	half	years	after	the	project
launch-and	in	1999	one	of	the	project’s	principals	caused	a	bit	of	a	sensation	by
resigning,	complaining	of	poor	management	and	missed	opportunities.	“Open
source,”	he	correctly	observed,	“is	not	magic	pixie	dust.”

And	indeed	it	is	not.	The	long-term	prognosis	for	Mozilla	looks	dramatically
better	now	(in	November	2000)	than	it	did	at	the	time	of	Jamie	Zawinski’s
resignation	letter-in	the	last	few	weeks	the	nightly	releases	have	finally	passed
the	critical	threshold	to	production	usability.	But	Jamie	was	right	to	point	out
that	going	open	will	not	necessarily	save	an	existing	project	that	suffers	from	ill-
defined	goals	or	spaghetti	code	or	any	of	the	software	engineering’s	other
chronic	ills.	Mozilla	has	managed	to	provide	an	example	simultaneously	of	how
open	source	can	succeed	and	how	it	could	fail.

In	the	mean	time,	however,	the	open-source	idea	has	scored	successes	and	found
backers	elsewhere.	Since	the	Netscape	release	we’ve	seen	a	tremendous
explosion	of	interest	in	the	open-source	development	model,	a	trend	both	driven
by	and	driving	the	continuing	success	of	the	Linux	operating	system.	The	trend
Mozilla	touched	off	is	continuing	at	an	accelerating	rate.

Notes

[JB]	In	Programing	Pearls,	the	noted	computer-science	aphorist	Jon	Bentley
comments	on	Brooks’s	observation	with	“If	you	plan	to	throw	one	away,	you
will	throw	away	two.”.	He	is	almost	certainly	right.	The	point	of	Brooks’s
observation,	and	Bentley’s,	isn’t	merely	that	you	should	expect	first	attempt	to
be	wrong,	it’s	that	starting	over	with	the	right	idea	is	usually	more	effective	than
trying	to	salvage	a	mess.

[QR]	Examples	of	successful	open-source,	bazaar	development	predating	the
Internet	explosion	and	unrelated	to	the	Unix	and	Internet	traditions	have	existed.
The	development	of	the	info-Zip	compression	utility	during	1990-x1992,

primarily	for	DOS	machines,	was	one	such	example.	Another	was	the	RBBS
bulletin	board	system	(again	for	DOS),	which	began	in	1983	and	developed	a
sufficiently	strong	community	that	there	have	been	fairly	regular	releases	up	to
the	present	(mid-1999)	despite	the	huge	technical	advantages	of	Internet	mail
and	file-sharing	over	local	BBSs.	While	the	info-Zip	community	relied	to	some
extent	on	Internet	mail,	the	RBBS	developer	culture	was	actually	able	to	base	a
substantial	on-line	community	on	RBBS	that	was	completely	independent	of	the
TCP/IP	infrastructure.

[CV]	That	transparency	and	peer	review	are	valuable	for	taming	the	complexity
of	OS	development	turns	out,	after	all,	not	to	be	a	new	concept.	In	1965,	very
early	in	the	history	of	time-sharing	operating	systems,	Corbat—	and	Vyssotsky,
co-designers	of	the	Multics	operating	system,	wrote

It	is	expected	that	the	Multics	system	will	be	published	when	it	is	operating
substantially…	Such	publication	is	desirable	for	two	reasons:	First,	the	system
should	withstand	public	scrutiny	and	criticism	volunteered	by	interested	readers;
second,	in	an	age	of	increasing	complexity,	it	is	an	obligation	to	present	and
future	system	designers	to	make	the	inner	operating	system	as	lucid	as	possible
so	as	to	reveal	the	basic	system	issues.

[JH]	John	Hasler	has	suggested	an	interesting	explanation	for	the	fact	that
duplication	of	effort	doesn’t	seem	to	be	a	net	drag	on	open-source	development.
He	proposes	what	I’ll	dub	“Hasler’s	Law”:	the	costs	of	duplicated	work	tend	to
scale	sub-qadratically	with	team	size-that	is,	more	slowly	than	the	planning	and
management	overhead	that	would	be	needed	to	eliminate	them.

This	claim	actually	does	not	contradict	Brooks’s	Law.	It	may	be	the	case	that
total	complexity	overhead	and	vulnerability	to	bugs	scales	with	the	square	of
team	size,	but	that	the	costs	from	duplicated	work	are	nevertheless	a	special	case
that	scales	more	slowly.	It’s	not	hard	to	develop	plausible	reasons	for	this,
starting	with	the	undoubted	fact	that	it	is	much	easier	to	agree	on	functional
boundaries	between	different	developers’	code	that	will	prevent	duplication	of
effort	than	it	is	to	prevent	the	kinds	of	unplanned	bad	interactions	across	the
whole	system	that	underly	most	bugs.

The	combination	of	Linus’s	Law	and	Hasler’s	Law	suggests	that	there	are
actually	three	critical	size	regimes	in	software	projects.	On	small	projects	(I
would	say	one	to	at	most	three	developers)	no	management	structure	more

elaborate	than	picking	a	lead	programmer	is	needed.	And	there	is	some
intermediate	range	above	that	in	which	the	cost	of	traditional	management	is
relatively	low,	so	its	benefits	from	avoiding	duplication	of	effort,	bug-tracking,
and	pushing	to	see	that	details	are	not	overlooked	actually	net	out	positive.

Above	that,	however,	the	combination	of	Linus’s	Law	and	Hasler’s	Law
suggests	there	is	a	large-project	range	in	which	the	costs	and	problems	of
traditional	management	rise	much	faster	than	the	expected	cost	from	duplication
of	effort.	Not	the	least	of	these	costs	is	a	structural	inability	to	harness	the	many-
eyeballs	effect,	which	(as	we’ve	seen)	seems	to	do	a	much	better	job	than
traditional	management	at	making	sure	bugs	and	details	are	not	overlooked.
Thus,	in	the	large-project	case,	the	combination	of	these	laws	effectively	drives
the	net	payoff	of	traditional	management	to	zero.

[HBS]	The	split	between	Linux’s	experimental	and	stable	versions	has	another
function	related	to,	but	distinct	from,	hedging	risk.	The	split	attacks	another
problem:	the	deadliness	of	deadlines.	When	programmers	are	held	both	to	an
immutable	feature	list	and	a	fixed	drop-dead	date,	quality	goes	out	the	window
and	there	is	likely	a	colossal	mess	in	the	making.	I	am	indebted	to	Marco	Iansiti
and	Alan	MacCormack	of	the	Harvard	Business	School	for	showing	me	me
evidence	that	relaxing	either	one	of	these	constraints	can	make	scheduling
workable.

One	way	to	do	this	is	to	fix	the	deadline	but	leave	the	feature	list	flexible,
allowing	features	to	drop	off	if	not	completed	by	deadline.	This	is	essentially	the
strategy	of	the	“stable”	kernel	branch;	Alan	Cox	(the	stable-kernel	maintainer)
puts	out	releases	at	fairly	regular	intervals,	but	makes	no	guarantees	about	when
particular	bugs	will	be	fixed	or	what	features	will	beback-ported	from	the
experimental	branch.

The	other	way	to	do	this	is	to	set	a	desired	feature	list	and	deliver	only	when	it	is
done.	This	is	essentially	the	strategy	of	the	“experimental”	kernel	branch.	De
Marco	and	Lister	cited	research	showing	that	this	scheduling	policy	(“wake	me
up	when	it’s	done”)	produces	not	only	the	highest	quality	but,	on	average,
shorter	delivery	times	than	either	“realistic”	or	“aggressive”	scheduling.

I	have	come	to	suspect	(as	of	early	2000)	that	in	earlier	versions	of	this	essay	I
severely	underestimated	the	importance	of	the	“wake	me	up	when	it’s	done”
anti-deadline	policy	to	the	open-source	community’s	productivity	and	quality.

General	experience	with	the	rushed	GNOME	1.0	release	in	1999	suggests	that
pressure	for	a	premature	release	can	neutralize	many	of	the	quality	benefits	open
source	normally	confers.

It	may	well	turn	out	to	be	that	the	process	transparency	of	open	source	is	one	of
three	co-equal	drivers	of	its	quality,	along	with	“wake	me	up	when	it’s	done”
scheduling	and	developer	self-selection.

[SU]	It’s	tempting,	and	not	entirely	inaccurate,	to	see	the	core-plus-halo
organization	characteristic	of	open-source	projects	as	an	Internet-enabled	spin	on
Brooks’s	own	recommendation	for	solving	the	N-squared	complexity	problem,
the	“surgical-team”	organization-but	the	differences	are	significant.	The
constellation	of	specialist	roles	such	as	“code	librarian”	that	Brooks	envisioned
around	the	team	leader	doesn’t	really	exist;	those	roles	are	executed	instead	by
generalists	aided	by	toolsets	quite	a	bit	more	powerful	than	those	of	Brooks’s
day.	Also,	the	open-source	culture	leans	heavily	on	strong	Unix	traditions	of
modularity,	APIs,	and	information	hiding-none	of	which	were	elements	of
Brooks’s	prescription.

[RJ]	The	respondent	who	pointed	out	to	me	the	effect	of	widely	varying	trace
path	lengths	on	the	difficulty	of	characterizing	a	bug	speculated	that	trace-path
difficulty	for	multiple	symptoms	of	the	same	bug	varies	“exponentially”	(which	I
take	to	mean	on	a	Gaussian	or	Poisson	distribution,	and	agree	seems	very
plausible).	If	it	is	experimentally	possible	to	get	a	handle	on	the	shape	of	this
distribution,	that	would	be	extremely	valuable	data.	Large	departures	from	a	flat
equal-probability	distribution	of	trace	difficulty	would	suggest	that	even	solo
developers	should	emulate	the	bazaar	strategy	by	bounding	the	time	they	spend
on	tracing	a	given	symptom	before	they	switch	to	another.	Persistence	may	not
always	be	a	virtue…

[IN]	An	issue	related	to	whether	one	can	start	projects	from	zero	in	the	bazaar
style	is	whether	the	bazaar	style	is	capable	of	supporting	truly	innovative	work.
Some	claim	that,	lacking	strong	leadership,	the	bazaar	can	only	handle	the
cloning	and	improvement	of	ideas	already	present	at	the	engineering	state	of	the
art,	but	is	unable	to	push	the	state	of	the	art.	This	argument	was	perhaps	most
infamously	made	by	the	Halloween	Documents,	two	embarrassing	internal
Microsoft	memoranda	written	about	the	open-source	phenomenon.	The	authors
compared	Linux’s	development	of	a	Unix-like	operating	system	to	“chasing
taillights”,	and	opined	“(once	a	project	has	achieved	“parity”	with	the	state-of-

the-art),	the	level	of	management	necessary	to	push	towards	new	frontiers
becomes	massive.”

There	are	serious	errors	of	fact	implied	in	this	argument.	One	is	exposed	when
the	Halloween	authors	themseselves	later	observe	that	“often	[…]	new	research
ideas	are	first	implemented	and	available	on	Linux	before	they	are	available	/
incorporated	into	other	platforms.”

If	we	read	“open	source”	for	“Linux”,	we	see	that	this	is	far	from	a	new
phenomenon.	Historically,	the	open-source	community	did	not	invent	Emacs	or
the	World	Wide	Web	or	the	Internet	itself	by	chasing	taillights	or	being
massively	managed-and	in	the	present,	there	is	so	much	innovative	work	going
on	in	open	source	that	one	is	spoiled	for	choice.	The	GNOME	project	(to	pick
one	of	many)	is	pushing	the	state	of	the	art	in	GUIs	and	object	technology	hard
enough	to	have	attracted	considerable	notice	in	the	computer	trade	press	well
outside	the	Linux	community.	Other	examples	are	legion,	as	a	visit	to	Freshmeat
on	any	given	day	will	quickly	prove.

But	there	is	a	more	fundamental	error	in	the	implicit	assumption	that	the
cathedral	model	(or	the	bazaar	model,	or	any	other	kind	of	management
structure)	can	somehow	make	innovation	happen	reliably.	This	is	nonsense.
Gangs	don’t	have	breakthrough	insights-even	volunteer	groups	of	bazaar
anarchists	are	usually	incapable	of	genuine	originality,	let	alone	corporate
committees	of	people	with	a	survival	stake	in	some	status	quo	ante.	Insight
comes	from	individuals.	The	most	their	surrounding	social	machinery	can	ever
hope	to	do	is	to	be	responsive	to	breakthrough	insights-to	nourish	and	reward
and	rigorously	test	them	instead	of	squashing	them.

Some	will	characterize	this	as	a	romantic	view,	a	reversion	to	outmoded	lone-
inventor	stereotypes.	Not	so;	I	am	not	asserting	that	groups	are	incapable	of
developing	breakthrough	insights	once	they	have	been	hatched;	indeed,	we	learn
from	the	peer-review	process	that	such	development	groups	are	essential	to
producing	a	high-quality	result.	Rather	I	am	pointing	out	that	every	such	group
development	starts	from-is	necessarily	sparked	by-one	good	idea	in	one	person’s
head.	Cathedrals	and	bazaars	and	other	social	structures	can	catch	that	lightning
and	refine	it,	but	they	cannot	make	it	on	demand.

Therefore	the	root	problem	of	innovation	(in	software,	or	anywhere	else)	is
indeed	how	not	to	squash	it-but,	even	more	fundamentally,	it	is	how	to	grow	lots

of	people	who	can	have	insights	in	the	first	place.

To	suppose	that	cathedral-style	development	could	manage	this	trick	but	the	low
entry	barriers	and	process	fluidity	of	the	bazaar	cannot	would	be	absurd.	If	what
it	takes	is	one	person	with	one	good	idea,	then	a	social	milieu	in	which	one
person	can	rapidly	attract	the	cooperation	of	hundreds	or	thousands	of	others
with	that	good	idea	is	going	inevitably	to	out-innovate	any	in	which	the	person
has	to	do	a	political	sales	job	to	a	hierarchy	before	he	can	work	on	his	idea
without	risk	of	getting	fired.

And,	indeed,	if	we	look	at	the	history	of	software	innovation	by	organizations
using	the	cathedral	model,	we	quickly	find	it	is	rather	rare.	Large	corporations
rely	on	university	research	for	new	ideas	(thus	the	Halloween	Documents
authors’	unease	about	Linux’s	facility	at	coopting	that	research	more	rapidly).	Or
they	buy	out	small	companies	built	around	some	innovator’s	brain.	In	neither
case	is	the	innovation	native	to	the	cathedral	culture;	indeed,	many	innovations
so	imported	end	up	being	quietly	suffocated	under	the	“massive	level	of
management”	the	Halloween	Documents’	authors	so	extol.

That,	however,	is	a	negative	point.	The	reader	would	be	better	served	by	a
positive	one.	I	suggest,	as	an	experiment,	the	following:

Pick	a	criterion	for	originality	that	you	believe	you	can	apply	consistently.	If
your	definition	is	“I	know	it	when	I	see	it”,	that’s	not	a	problem	for	purposes	of
this	test.

Pick	any	closed-source	operating	system	competing	with	Linux,	and	a	best
source	for	accounts	of	current	development	work	on	it.

Watch	that	source	and	Freshmeat	for	one	month.	Every	day,	count	the	number
of	release	announcements	on	Freshmeat	that	you	consider	`original’	work.	Apply
the	same	definition	of	`original’	to	announcements	for	that	other	OS	and	count
them.

Thirty	days	later,	total	up	both	figures.

The	day	I	wrote	this,	Freshmeat	carried	twenty-two	release	announcements,	of
which	three	appear	they	might	push	state	of	the	art	in	some	respect,	This	was	a
slow	day	for	Freshmeat,	but	I	will	be	astonished	if	any	reader	reports	as	many	as
three	likely	innovations	a	month	in	any	closed-source	channel.

[EGCS]	We	now	have	history	on	a	project	that,	in	several	ways,	may	provide	a
more	indicative	test	of	the	bazaar	premise	than	fetchmail;	EGCS,	the
Experimental	GNU	Compiler	System.

This	project	was	announced	in	mid-August	of	1997	as	a	conscious	attempt	to
apply	the	ideas	in	the	early	public	versions	of	The	Cathedral	and	the	Bazaar.	The
project	founders	felt	that	the	development	of	GCC,	the	Gnu	C	Compiler,	had
been	stagnating.	For	about	twenty	months	afterwards,	GCC	and	EGCS	continued
as	parallel	products-both	drawing	from	the	same	Internet	developer	population,
both	starting	from	the	same	GCC	source	base,	both	using	pretty	much	the	same
Unix	toolsets	and	development	environment.	The	projects	differed	only	in	that
EGCS	consciously	tried	to	apply	the	bazaar	tactics	I	have	previously	described,
while	GCC	retained	a	more	cathedral-like	organization	with	a	closed	developer
group	and	infrequent	releases.

This	was	about	as	close	to	a	controlled	experiment	as	one	could	ask	for,	and	the
results	were	dramatic.	Within	months,	the	EGCS	versions	had	pulled
substantially	ahead	in	features;	better	optimization,	better	support	for	FORTRAN
and	C++.	Many	people	found	the	EGCS	development	snapshots	to	be	more
reliable	than	the	most	recent	stable	version	of	GCC,	and	major	Linux
distributions	began	to	switch	to	EGCS.

In	April	of	1999,	the	Free	Software	Foundation	(the	official	sponsors	of	GCC)
dissolved	the	original	GCC	development	group	and	officially	handed	control	of
the	project	to	the	the	EGCS	steering	team.

[SP]	Of	course,	Kropotkin’s	critique	and	Linus’s	Law	raise	some	wider	issues
about	the	cybernetics	of	social	organizations.	Another	folk	theorem	of	software
engineering	suggests	one	of	them;	Conway’s	Law-commonly	stated	as	“If	you
have	four	groups	working	on	a	compiler,	you’ll	get	a	4-pass	compiler”.	The
original	statement	was	more	general:	“Organizations	which	design	systems	are
constrained	to	produce	designs	which	are	copies	of	the	communication	structures
of	these	organizations.”	We	might	put	it	more	succinctly	as	“The	means
determine	the	ends”,	or	even	“Process	becomes	product”.

It	is	accordingly	worth	noting	that	in	the	open-source	community	organizational
form	and	function	match	on	many	levels.	The	network	is	everything	and
everywhere:	not	just	the	Internet,	but	the	people	doing	the	work	form	a
distributed,	loosely	coupled,	peer-to-peer	network	that	provides	multiple

redundancy	and	degrades	very	gracefully.	In	both	networks,	each	node	is
important	only	to	the	extent	that	other	nodes	want	to	cooperate	with	it.

The	peer-to-peer	part	is	essential	to	the	community’s	astonishing	productivity.
The	point	Kropotkin	was	trying	to	make	about	power	relationships	is	developed
further	by	the	`SNAFU	Principle’:	“True	communication	is	possible	only
between	equals,	because	inferiors	are	more	consistently	rewarded	for	telling
their	superiors	pleasant	lies	than	for	telling	the	truth.”	Creative	teamwork	utterly
depends	on	true	communication	and	is	thus	very	seriously	hindered	by	the
presence	of	power	relationships.	The	open-source	community,	effectively	free	of
such	power	relationships,	is	teaching	us	by	contrast	how	dreadfully	much	they
cost	in	bugs,	in	lowered	productivity,	and	in	lost	opportunities.

Further,	the	SNAFU	principle	predicts	in	authoritarian	organizations	a
progressive	disconnect	between	decision-makers	and	reality,	as	more	and	more
of	the	input	to	those	who	decide	tends	to	become	pleasant	lies.	The	way	this
plays	out	in	conventional	software	development	is	easy	to	see;	there	are	strong
incentives	for	the	inferiors	to	hide,	ignore,	and	minimize	problems.	When	this
process	becomes	product,	software	is	a	disaster.

Bibliography

I	quoted	several	bits	from	Frederick	P.	Brooks’s	classic	The	Mythical	Man-
Month	because,	in	many	respects,	his	insights	have	yet	to	be	improved	upon.	I
heartily	recommend	the	25th	Anniversary	edition	from	Addison-Wesley	(ISBN
0-201-83595-9),	which	adds	his	1986	“No	Silver	Bullet”	paper.

The	new	edition	is	wrapped	up	by	an	invaluable	20-years-later	retrospective	in
which	Brooks	forthrightly	admits	to	the	few	judgements	in	the	original	text
which	have	not	stood	the	test	of	time.	I	first	read	the	retrospective	after	the	first
public	version	of	this	essay	was	substantially	complete,	and	was	surprised	to
discover	that	Brooks	attributed	bazaar-like	practices	to	Microsoft!	(In	fact,
however,	this	attribution	turned	out	to	be	mistaken.	In	1998	we	learned	from	the
Halloween	Documents	that	Microsoft’s	internal	developer	community	is	heavily
balkanized,	with	the	kind	of	general	source	access	needed	to	support	a	bazaar	not
even	truly	possible.)

Gerald	M.	Weinberg’s	The	Psychology	Of	Computer	Programming	(New	York,
Van	Nostrand	Reinhold	1971)	introduced	the	rather	unfortunately-labeled

concept	of	“egoless	programming”.	While	he	was	nowhere	near	the	first	person
to	realize	the	futility	of	the	“principle	of	command”,	he	was	probably	the	first	to
recognize	and	argue	the	point	in	particular	connection	with	software
development.

Richard	P.	Gabriel,	contemplating	the	Unix	culture	of	the	pre-Linux	era,
reluctantly	argued	for	the	superiority	of	a	primitive	bazaar-like	model	in	his	1989
paper	“LISP:	Good	News,	Bad	News,	and	How	To	Win	Big”.	Though	dated	in
some	respects,	this	essay	is	still	rightly	celebrated	among	LISP	fans	(including
me).	A	correspondent	reminded	me	that	the	section	titled	“Worse	Is	Better”	reads
almost	as	an	anticipation	of	Linux.	The	paper	is	accessible	on	the	World	Wide
Web	at	http://www.naggum.no/worse-is-better.html.

De	Marco	and	Lister’s	Peopleware:	Productive	Projects	and	Teams	(New	York;
Dorset	House,	1987;	ISBN	0-932633-05-6)	is	an	underappreciated	gem	which	I
was	delighted	to	see	Fred	Brooks	cite	in	his	retrospective.	While	little	of	what
the	authors	have	to	say	is	directly	applicable	to	the	Linux	or	open-source
communities,	the	authors’	insight	into	the	conditions	necessary	for	creative	work
is	acute	and	worthwhile	for	anyone	attempting	to	import	some	of	the	bazaar
model’s	virtues	into	a	commercial	context.

Finally,	I	must	admit	that	I	very	nearly	called	this	essay	“The	Cathedral	and	the
Agora”,	the	latter	term	being	the	Greek	for	an	open	market	or	public	meeting
place.	The	seminal	“agoric	systems”	papers	by	Mark	Miller	and	Eric	Drexler,	by
describing	the	emergent	properties	of	market-like	computational	ecologies,
helped	prepare	me	to	think	clearly	about	analogous	phenomena	in	the	open-
source	culture	when	Linux	rubbed	my	nose	in	them	five	years	later.	These	papers
are	available	on	the	Web	at	http://www.agorics.com/agorpapers.html.

Acknowledgements

This	essay	was	improved	by	conversations	with	a	large	number	of	people	who
helped	debug	it.	Particular	thanks	to	Jeff	Dutky	<dutky@wam.umd.edu>,	who
suggested	the	“debugging	is	parallelizable”	formulation,	and	helped	develop	the
analysis	that	proceeds	from	it.	Also	to	Nancy	Lebovitz
<nancyl@universe.digex.net>	for	her	suggestion	that	I	emulate	Weinberg	by
quoting	Kropotkin.	Perceptive	criticisms	also	came	from	Joan	Eslinger
<wombat@kilimanjaro.engr.sgi.com>	and	Marty	Franz	<marty@net-link.net>	of
the	General	Technics	list.	Glen	Vandenburg	<glv@vanderburg.org>	pointeed	out
the	importance	of	self-selection	in	contributor	populations	and	suggested	the
fruitful	idea	that	much	development	rectifies	`bugs	of	omission’;	Daniel	Upper
<upper@peak.org>	suggested	the	natural	analogies	for	this.	I’m	grateful	to	the
members	of	PLUG,	the	Philadelphia	Linux	User’s	group,	for	providing	the	first
test	audience	for	the	first	public	version	of	this	essay.	Paula	Matuszek
<matusp00@mh.us.sbphrd.com>	enlightened	me	about	the	practice	of	software
management.	Phil	Hudson	<phil.hudson@iname.com>	reminded	me	that	the
social	organization	of	the	hacker	culture	mirrors	the	organization	of	its	software,
and	vice-versa.	John	Buck	<johnbuck@sea.ece.umassd.edu>	pointed	out	that
MATLAB	makes	an	instructive	parallel	to	Emacs.	Russell	Johnston
<russjj@mail.com>	brought	me	to	consciousness	about	some	of	the	mechanisms
discussed	in	“How	Many	Eyeballs	Tame	Complexity.”	Finally,	Linus	Torvalds’s
comments	were	helpful	and	his	early	endorsement	very	encouraging.

