

FREE	FOR	ALL

HOW	LINUX	AND	THE	FREE	SOFTWARE	MOVEMENT	UNDERCUT	THE
HIGH	TECH	TITANS

==

BY	PETER	WAYNER

===============

1.	 ACKNOWLEDGMENTS

This	is	just	a	book	about	the	free	software	movement.	It	wouldn't	be	possible
without	the	hard	work	and	the	dedication	of	the	thousands	if	not	millions	of
people	who	like	to	spend	their	free	time	hacking	code.	I	salute	you.	Thank	you.

Many	people	spoke	to	me	during	the	process	of	assembling	this	book,	and	it
would	be	impossible	to	cite	them	all.	The	list	should	begin	with	the	millions	of
people	who	write	and	contribute	to	the	various	free	software	lists.	The	letters,
notes,	and	postings	to	these	lists	are	a	wonderful	history	of	the	evolution	of	free
software	and	an	invaluable	resource.

The	list	should	also	include	the	dozens	of	journalists	at	places	like	Slashdot.org,
LinuxWorld,	Linux	magazine,	Linux	Weekly	News,	Kernel	Traffic,	Salon,	and
the	New	York	Times.	I	should	specifically	mention	the	work	of	Joe	Barr,	Jeff
Bates,	Janelle	Brown,	Zack	Brown,	Jonathan	Corbet,	Elizabeth	Coolbaugh,	Amy
Harmon,	Andrew	Leonard,	Rob	Malda,	John	Markoff,	Mark	Nielsen,	Nicholas
Petreley,	Harald	Radke,	and	Dave	Whitinger.	They	wrote	wonderful	pieces	that
will	make	a	great	first	draft	of	the	history	of	the	open	source	movement.	Only	a
few	of	the	pieces	are	cited	directly	in	the	footnotes,	largely	for	practical	reasons.
The	entire	body	of	websites	like	Slashdot,	Linux	Journal,	Linux	World,	Kernel
Notes,	or	Linux	Weekly	News	should	be	required	reading	for	anyone	interested
in	the	free	software	movement.

There	are	hundreds	of	folks	at	Linux	trade	shows	who	took	the	time	to	show	me
their	products,	T-shirts,	or,	in	one	case,	cooler	filled	with	beer.	Almost	everyone

I	met	at	the	conferences	was	happy	to	speak	about	their	experiences	with	open
source	software.	They	were	all	a	great	source	of	information,	and	I	don't	even
know	most	of	their	names.

Some	people	went	beyond	the	call	of	duty.	John	Gilmore,	Ethan	Rasiel,	and
Caroline	McKeldin	each	read	drafts	when	the	book	was	quite	unfinished.	Their
comments	were	crucial.

Many	friends,	acquaintances,	and	subjects	of	the	book	were	kind	enough	to	read
versions	that	were	a	bit	more	polished,	but	far	from	complete:	L.	David	Baron,
Jeff	Bates,	Brian	Behlendorf,	Alan	Cox,	Robert	Dreyer,	Theo	de	Raadt,	Telsa
Gwynne,	Jordan	Hubbard,	James	Lewis	Moss,	Kirk	McKusick,	Sam	Ockman,
Tim	O'Reilly,	Sameer	Parekh,	Bruce	Perens,	Eric	Raymond,	and	Richard
Stallman.

There	are	some	people	who	deserve	a	different	kind	of	thanks.	Daniel	Greenberg
and	James	Levine	did	a	great	job	shaping	the	conception	of	the	book.	When	I
began,	it	was	just	a	few	ideas	on	paper.	My	editors,	David	Conti,	Laureen
Rowland,	Devi	Pillai,	and	Adrian	Zackheim,	were	largely	responsible	for	this
transition.	Kimberly	Monroe	suffered	through	my	mistakes	as	she	took	the	book
through	its	production	stages.	They	took	a	bunch	of	rambling	comments	about	a
social	phenomenon	and	helped	turn	it	into	a	book.

Finally,	I	want	to	thank	everyone	in	my	family	for	everything	they've	given
through	all	of	my	life.	And,	of	course,	Caroline,	who	edited	large	portions	with	a
slavish	devotion	to	grammar	and	style.

Visit	http://www.wayner.org/books/ffa/	for	updates,	corrections,	and	additional
comments.

1.	 VERSION	INFORMATION

FREE	FOR	ALL.	Copyright	2000	by	Peter	Wayner.

Some	Rights	Reserved:

This	is	[a	complete	version	of]	the	free	electronic	version	of	the	book	originally
published	by	HarperCollins.	The	book	is	still	protected	by	copyright	and	bound
by	a	license	granting	you	the	limited	rights	to	make	complete	copies	for	non-

commercial	purposes.	You're	welcome	to	read	it	in	electronic	form	subject	to
these	conditions:

1)	You	may	not	make	derivative	works.	You	must	reproduce	the	work	in	its
entirety.

2)	You	may	not	sell	versions.

3)	You	refer	everyone	receiving	a	copy	to	the	website	where	they	may	get	the
latest	corrected	version.	http://www.wayner.org/books/ffa/

A	full	license	developed	by	the	Creative	Commons	(www.creativecommons.org)
will	be	forthcoming.	Please	write	p3@wayner.org	if	you	have	any	questions	or
suggestions.

See	http://www.wayner.org/books/ffa/	for	the	FIRST	PDF	EDITION	Page	layout
for	this	and	the	original	paper	edition	designed	by	William	Ruoto,	see	Not
printed	on	acid-free	paper.	Library	of	Congress	Cataloging-in-Publication	Data
Wayner,	Peter,	1964	Free	for	all:	how	Linux	and	the	free	software	movement
undercut	the	high-tech	titans	/	Peter	Wayner.	p.	cm.	ISBN	0-06-662050-3	1.
Linux.	2.	Operating	systems	(Computers)	3.	Free	computer	software.	I.	Title.
QA76.76.063	W394	2000	005.4'469	dc21	00-023919	00	01	02	03	04	V/RRD	10
9	8	7	6	5	4	3	2	1

[ffa.png]

Free	For	All	may	be	purchased	at	Amazon.com

1.	 BATTLE

The	world	where	cash	was	king,	greed	was	good,	and	money	was	power	fell	off
its	axis	and	stopped	rotating,	if	only	for	a	second,	in	January	1999.	Microsoft,
the	great	software	giant	and	unstoppable	engine	of	cash,	was	defending	itself	in	a
courtroom	in	Washington,	D.C.	The	Department	of	Justice	claimed	that
Microsoft	was	a	monopoly	and	was	using	this	power	to	cut	off	competitors.
Microsoft	denied	it	all	and	claimed	that	the	world	was	hurling	threat	after
competitive	threat	its	way.	They	weren't	a	monopoly,	they	were	just	a	very
competitive	company	that	managed	to	withstand	the	slings	and	arrows	of	other
equally	ruthless	competitors	out	to	steal	its	market	share.

The	trial	quickly	turned	into	everyone's	worst	nightmare	as	the	lawyers,	the
economists,	and	the	programmers	filled	the	courtroom	with	a	thick	mixture	of
technobabble	and	legal	speak.	On	the	stands,	the	computer	nerds	spewed	out
three-letter	acronyms	(TLAs)	as	they	talked	about	creating	operating	systems.
Afterward,	the	legal	nerds	started	slicing	them	up	into	one-letter	acronyms	and
testing	to	see	just	which	of	the	three	letters	was	really	the	one	that	committed	the
crime.	Then	the	economists	came	forward	and	offered	their	theories	on	just	when
a	monopoly	is	a	monopoly.	Were	three	letters	working	in	collusion	enough?
What	about	two?	Everyone	in	the	courtroom	began	to	dread	spending	the	day
cooped	up	in	a	small	room	as	Microsoft	tried	to	deny	what	was	obvious	to
practically	everyone.

In	the	fall	and	early	winter	of	1998	and	1999,	the	Department	of	Justice	had
presented	its	witnesses,	who	explained	how	Microsoft	had	slanted	contracts,
tweaked	software,	and	twisted	arms	to	ensure	that	it	and	it	alone	got	the	lion's
share	of	the	computer	business.	Many	watching	the	trial	soon	developed	the
opinion	that	Microsoft	had	adopted	a	mixture	of	tactics	from	the	schoolyard
bully,	the	local	mob	boss,	and	the	mother	from	hell.	The	Department	of	Justice
trotted	out	a	number	of	witnesses	who	produced	ample	evidence	that	suggested
the	computer	customers	of	the	world	will	buy	Microsoft	products	unless
Microsoft	decides	otherwise.	Competitors	must	be	punished.

By	January,	the	journalists	covering	the	trial	were	quietly	complaining	about	this
endless	waste	of	time.	The	Department	of	Justice's	case	was	so	compelling	that
they	saw	the	whole	trial	as	just	a	delay	in	what	would	eventually	come	to	be	a
ruling	that	would	somehow	split	or	shackle	Microsoft.

But	Microsoft	wasn't	going	to	be	bullied	or	pushed	into	splitting	up.	The	trial
allowed	them	to	present	their	side	of	the	story,	and	they	had	one	ready.	Sure,
everyone	seemed	to	use	Microsoft	products,	but	that	was	because	they	were
great.	It	wasn't	because	there	weren't	any	competitors,	but	because	the
competitors	just	weren't	good	enough.

In	the	middle	of	January,	Richard	Schmalensee,	the	dean	of	the	Sloan	School	of
Management	at	the	Massachusetts	Institute	of	Technology,	took	the	stand	to
defend	Microsoft.	Schmalensee	had	worked	for	the	Federal	Trade	Commission
and	the	Department	of	Justice	as	an	economist	who	examined	the	marketplace
and	the	effects	of	anti-competitive	behavior.	He	studied	how	monopolies	behave,
and	to	him	Microsoft	had	no	monopoly	power.	Now,	he	was	being	paid

handsomely	by	Microsoft	as	an	expert	witness	to	repeat	this	view	in	court.

Schmalensee's	argument	was	simple:	competitors	are	popping	up	all	over	the
place.	Microsoft,	he	said	in	his	direct	testimony,	"is	in	a	constant	struggle	for
competitive	survival.	That	struggle--the	race	to	win	and	the	victor's	perpetual
fear	of	being	displaced--is	the	source	of	competitive	vitality	in	the
microcomputer	software	industry."

Schmalensee	even	had	a	few	competitors	ready.	"The	iMac	clearly	competes
directly	and	fiercely	with	Intel-compatible	computers	running	Windows,"	he	said
without	mentioning	that	Microsoft	had	bailed	out	Apple	several	months	before
with	hundreds	of	millions	of	dollars	in	an	investment.	When	Steve	Jobs,	the
iCEO	of	Apple,	announced	the	deal	to	a	crowd	of	Mac	lovers,	the	crowd	booed.
Jobs	quieted	them	and	tried	to	argue	that	the	days	of	stiff	competition	with
Microsoft	were	over.	The	scene	did	such	a	good	job	of	capturing	the	total
domination	of	Microsoft	that	the	television	movie	The	Pirates	of	Silicon	Valley
used	it	to	illustrate	how	Bill	Gates	had	won	all	of	the	marbles.

After	the	announcement	of	the	investment,	Apple	began	shipping	Microsoft's
Internet	Explorer	web	browser	as	the	preferred	browser	on	its	machines.
Microsoft's	competitor	Netscape	became	just	a	bit	harder	to	find	on	the	iMac.
After	that	deal,	Steve	Jobs	even	began	making	statements	that	the	old	sworn
enemies,	Apple	and	Microsoft,	were	now	more	partners	than	competitors.
Schmalensee	didn't	focus	on	this	facet	of	Apple's	new	attitude	toward
competition.

Next,	Schmalensee	trotted	out	BeOS,	an	operating	system	made	by	Be,	a	small
company	with	about	100	employees	run	by	ex-Apple	executive	Jean-Louis	Gass
e.	This	company	had	attracted	millions	of	dollars	in	funding,	he	said,	and	some
people	really	liked	it.	That	made	it	a	competitor.

Schmalensee	didn't	mention	that	Be	had	trouble	giving	away	the	BeOS	operating
system.	Gass	e	approached	a	number	of	PC	manufacturers	to	see	if	they	would
include	BeOS	on	their	machines	and	give	users	the	chance	to	switch	between
two	operating	systems.	Gass	e	found,	to	no	one's	real	surprise,	that	Microsoft's
contracts	with	manufacturers	made	it	difficult,	if	not	practically	impossible,	to
get	BeOS	in	customers'	hands.	Microsoft	controlled	much	of	what	the	user	got	to
see	and	insisted	on	almost	total	control	over	the	viewer's	experience.
Schmalensee	didn't	mention	these	details	in	his	testimony.	BeOS	may	have	been

as	locked	up	as	a	prisoner	in	a	windowless	cell	in	a	stone-walled	asylum	on	an
island	in	the	middle	of	the	ocean,	but	BeOS	was	still	a	competitor	for	the	love	of
the	fair	maiden.

The	last	competitor,	though,	was	the	most	surprising	to	everyone.	Schmalensee
saw	Linux,	a	program	given	away	for	free,	as	a	big	potential	competitor.	When
he	said	Linux,	he	really	meant	an	entire	collection	of	programs	known	as	"open
source"	software.	These	were	written	by	a	loose-knit	group	of	programmers	who
shared	all	of	the	source	code	to	the	software	over	the	Internet.

Open	source	software	floated	around	the	Internet	controlled	by	a	variety	of
licenses	with	names	like	the	GNU	General	Public	License	(GPL).	To	say	that	the
software	was	"controlled"	by	the	license	is	a	bit	of	a	stretch.	If	anything,	the
licenses	were	deliberately	worded	to	prohibit	control.	The	GNU	GPL,	for
instance,	let	users	modify	the	program	and	give	away	their	own	versions.	The
license	did	more	to	enforce	sharing	of	all	the	source	code	than	it	did	to	control	or
constrain.	It	was	more	an	anti-license	than	anything	else,	and	its	author,	Richard
Stallman,	often	called	it	a	"copyleft."

Schmalensee	didn't	mention	that	most	people	thought	of	Linux	as	a	strange	tool
created	and	used	by	hackers	in	dark	rooms	lit	by	computer	monitors.	He	didn't
mention	that	many	people	had	trouble	getting	Linux	to	work	with	their
computers.	He	forgot	to	mention	that	Linux	manuals	came	with	subheads	like
"Disk	Druid-like	'fstab	editor'	available."	He	didn't	delve	into	the	fact	that	for
many	of	the	developers,	Linux	was	just	a	hobby	they	dabbled	with	when	there
was	nothing	interesting	on	television.	And	he	certainly	didn't	mention	that	most
people	thought	the	whole	Linux	project	was	the	work	of	a	mad	genius	and	his
weirdo	disciples	who	still	hadn't	caught	on	to	the	fact	that	the	Soviet	Union	had
already	failed	big-time.	The	Linux	folks	actually	thought	sharing	would	make
the	world	a	better	place.	Fat-cat	programmers	who	spent	their	stock-option
riches	on	Porsches	and	balsamic	vinegar	laughed	at	moments	like	this.

Schmalensee	didn't	mention	these	facts.	He	just	offered	Linux	as	an	alternative
to	Windows	and	said	that	computer	manufacturers	might	switch	to	it	at	any	time.
Poof.	Therefore,	Microsoft	had	competitors.	At	the	trial,	the	discourse	quickly
broke	down	into	an	argument	over	what	is	really	a	worthy	competitor	and	what
isn't.	Were	there	enough	applications	available	for	Linux	or	the	Mac?	What
qualifies	as	"enough"?	Were	these	really	worthy?

Under	cross-examination,	Schmalensee	explained	that	he	wasn't	holding	up	the
Mac,	BeOS,	or	Linux	as	competitors	who	were	going	to	take	over	50	percent	of
the	marketplace.	He	merely	argued	that	their	existence	proved	that	the	barriers
produced	by	the	so-called	Microsoft	monopoly	weren't	that	strong.	If	rational
people	were	investing	in	creating	companies	like	BeOS,	then	Microsoft's	power
wasn't	absolute.

Afterward,	most	people	quickly	made	up	their	minds.	Everyone	had	heard	about
the	Macintosh	and	knew	that	back	then	conventional	wisdom	dictated	that	it
would	soon	fail.	But	most	people	didn't	know	anything	about	BeOS	or	Linux.
How	could	a	company	be	a	competitor	if	no	one	had	heard	of	it?	Apple	and
Microsoft	had	TV	commercials.	BeOS,	at	least,	had	a	charismatic	chairman.
There	was	no	Linux	pitchman,	no	Linux	jingle,	and	no	Linux	30-second	spot	in
major	media.	At	the	time,	only	the	best-funded	projects	in	the	Linux	community
had	enough	money	to	buy	spots	on	late-night	community-access	cable	television.
How	could	someone	without	money	compete	with	a	company	that	hired	the
Rolling	Stones	to	pump	excitement	into	a	product	launch?

When	people	heard	that	Microsoft	was	offering	a	free	product	as	a	worthy
competitor,	they	began	to	laugh	even	louder	at	the	company's	chutzpah.	Wasn't
money	the	whole	reason	the	country	was	having	a	trial?	Weren't	computer
programmers	in	such	demand	that	many	companies	couldn't	hire	as	many	as	they
needed,	no	matter	how	high	the	salary?	How	could	Microsoft	believe	that
anyone	would	buy	the	supposition	that	a	bunch	of	pseudo-communist	nerds
living	in	their	weird	techno-utopia	where	all	the	software	was	free	would	ever
come	up	with	software	that	could	compete	with	the	richest	company	on	earth?
At	first	glance,	it	looked	as	if	Microsoft's	case	was	sinking	so	low	that	it	had	to
resort	to	laughable	strategies.	It	was	as	if	General	Motors	were	to	tell	the	world
"We	shouldn't	have	to	worry	about	fixing	cars	that	pollute	because	a	collective	of
hippies	in	Ithaca,	New	York,	is	refurbishing	old	bicycles	and	giving	them	away
for	free."	It	was	as	if	Exxon	waved	away	the	problems	of	sinking	oil	tankers	by
explaining	that	folksingers	had	written	a	really	neat	ballad	for	teaching	birds	and
otters	to	lick	themselves	clean	after	an	oil	spill.	If	no	one	charged	money	for
Linux,	then	it	was	probably	because	it	wasn't	worth	buying.

But	as	everyone	began	looking	a	bit	deeper,	they	began	to	see	that	Linux	was
being	taken	seriously	in	some	parts	of	the	world.	Many	web	servers,	it	turned
out,	were	already	running	on	Linux	or	another	free	cousin	known	as	FreeBSD.	A
free	webserving	tool	known	as	Apache	had	controlled	more	than	50	percent	of

the	web	servers	for	some	time,	and	it	was	gradually	beating	out	Microsoft
products	that	cost	thousands	of	dollars.	Many	of	the	web	servers	ran	Apache	on
top	of	a	Linux	or	a	FreeBSD	machine	and	got	the	job	done.	The	software	worked
well,	and	the	nonexistent	price	made	it	easy	to	choose.

Linux	was	also	winning	over	some	of	the	world's	most	serious	physicists,
weapons	designers,	biologists,	and	hard-core	scientists.	Some	of	the	nation's	top
labs	had	wired	together	clusters	of	cheap	PCs	and	turned	them	into
supercomputers	that	were	highly	competitive	with	the	best	machines	on	the
market.	One	upstart	company	started	offering	"supercomputers"	for	$3,000.
These	machines	used	Linux	to	keep	the	data	flowing	while	the	racks	of
computers	plugged	and	chugged	their	way	for	hours	on	complicated	simulations.

There	were	other	indications.	Linux	users	bragged	that	their	system	rarely
crashed.	Some	claimed	to	have	machines	that	had	been	running	for	a	year	or
more	without	a	problem.	Microsoft	(and	Apple)	users,	on	the	other	hand,	had
grown	used	to	frequent	crashes.	The	"Blue	Screen	of	Death"	that	appears	on
Windows	users'	monitors	when	something	goes	irretrievably	wrong	is	the	butt	of
many	jokes.

Linux	users	also	bragged	about	the	quality	of	their	desktop	interface.	Most	of	the
uninitiated	thought	of	Linux	as	a	hacker's	system	built	for	nerds.	Yet	recently
two	very	good	operating	shells	called	GNOME	and	KDE	had	taken	hold.	Both
offered	the	user	an	environment	that	looked	just	like	Windows	but	was	better.
Linux	hackers	started	bragging	that	they	were	able	to	equip	their	girlfriends,
mothers,	and	friends	with	Linux	boxes	without	grief.	Some	people	with	little
computer	experience	were	adopting	Linux	with	little	trouble.

Building	websites	and	supercomputers	is	not	an	easy	task,	and	it	is	often	done	in
back	rooms	out	of	the	sight	of	most	people.	When	people	began	realizing	that
the	free	software	hippies	had	slowly	managed	to	take	over	a	large	chunk	of	the
web	server	and	supercomputing	world,	they	realized	that	perhaps	Microsoft's
claim	was	viable.	Web	servers	and	supercomputers	are	machines	built	and	run	by
serious	folks	with	bosses	who	want	something	in	return	for	handing	out
paychecks.	They	aren't	just	toys	sitting	around	the	garage.

If	these	free	software	guys	had	conquered	such	serious	arenas,	maybe	they	could
handle	the	office	and	the	desktop.	If	the	free	software	world	had	created
something	usable	by	the	programmers'	mothers,	then	maybe	they	were	viable

competitors.	Maybe	Microsoft	was	right.

3.1	SLEEPING	IN

...............

While	Microsoft	focused	its	eyes	and	ears	upon	Washington,	one	of	its	biggest
competitors	was	sleeping	late.	When	Richard	Schmalensee	was	prepping	to	take
the	stand	in	Washington,	D.C.,	to	defend	Microsoft's	outrageous	fortune	against
the	slings	and	arrows	of	a	government	inquisition,	Alan	Cox	was	still	sleeping
in.	He	didn't	get	up	until	2:00	PM.	at	his	home	in	Swansea	on	the	south	coast	of
Wales.	This	isn't	too	odd	for	him.	His	wife,	Telsa,	grouses	frequently	that	it's
impossible	to	get	him	moving	each	morning	without	a	dose	of	Jolt	Cola,	the	kind
that's	overloaded	with	caffeine.

The	night	before,	Cox	and	his	wife	went	to	see	The	Mask	of	Zorro,	the	latest
movie	that	describes	how	Don	Diego	de	la	Vega	assumed	the	secret	identity	of
Zorro	to	free	the	Mexican	people	from	the	tyranny	of	Don	Rafael	Montero.	In
this	version,	Don	Diego,	played	by	Anthony	Hopkins,	chooses	an	orphan,
Alejandro	Murrieta,	played	by	Antonio	Banderas,	and	teaches	him	to	be	the	next
Zorro	so	the	fight	can	continue.	Its	theme	resonates	with	writers	of	open	source
software:	a	small	band	of	talented,	passionate	warriors	warding	off	the	evil
oppressor.

Cox	keeps	an	open	diary	and	posts	the	entries	on	the	web.	"It's	a	nice	looking
film,	with	some	great	stunts	and	character	play,"	he	wrote,	but

You	could,	however,	have	fitted	the	plot,	including	all	the	twists,	on	the	back	of	a
matchbox.	That	made	it	feel	a	bit	ponderous	so	it	only	got	a	6	out	of	10	even
though	I'm	feeling	extremely	smug	because	I	spotted	one	of	the	errors	in	the	film
while	watching	it	not	by	consulting	imdb	later.

By	the	imdb,	he	meant	the	Internet	Movie	Database,	which	is	one	of	the	most
complete	listings	of	film	credits,	summaries,	and	glitches	available	on	the	Net.
Users	on	the	Internet	write	in	with	their	own	reviews	and	plot	synopses,	which
the	database	dutifully	catalogs	and	makes	available	to	everyone.	It's	a	reference
book	with	thousands	of	authors.

In	this	case,	the	big	glitch	in	the	film	is	the	fact	that	one	of	the	train	gauges	uses
the	metric	system.	Mexico	converted	to	this	system	in	1860,	but	the	film	is	set	in

1841.	Whoops.	Busted.

Telsa	wrote	in	her	diary,	which	she	also	posts	to	the	Net	under	the	title	"The
More	Accurate	Diary.	Really."

Dragged	him	to	cinema	to	see	Zorro.	I	should	have	remembered	he'd	done	some
fencing	and	found	something	different.	He	also	claimed	he'd	spotted	a	really
obscure	error.	I	checked	afterward	on	IMDB,	and	was	amazed.	How	did	he	see
this?

Cox	is	a	big	bear	of	a	man	who	wears	a	long,	brown	wizard's	beard.	He	has	an
agile,	analytic	mind	that	constantly	picks	apart	a	system	and	probes	it	for
weaknesses.	If	he's	playing	a	game,	he	plays	until	he	finds	a	trick	or	a	loophole
that	will	give	him	the	winning	edge.	If	he's	working	around	the	house,	he	often
ends	up	meddling	with	things	until	he	fixes	and	improves	them.	Of	course,	he
also	often	breaks	them.	His	wife	loves	to	complain	about	the	bangs	and	crashes
that	come	from	his	home	office,	where	he	often	works	until	6:30	in	the	morning.

To	his	wife,	this	crashing,	banging,	and	late-night	hacking	is	the	source	of	the
halfhearted	grousing	inherent	in	every	marriage.	She	obviously	loves	both	his
idiosyncrasies	and	the	opportunity	to	discuss	just	how	strange	they	can	be.	In
January,	Telsa	was	trying	to	find	a	way	to	automate	her	coffeepot	by	hooking	it
up	to	her	computer.

She	wrote	in	her	diary,

Alan	is	reluctant	to	get	involved	with	any	attempt	to	make	a	coffee-maker	switch
on	via	the	computer	now	because	he	seems	to	think	I	will	eventually	switch	it	on
with	no	water	in	and	start	a	fire.	I'm	not	the	one	who	welded	tinned	spaghetti	to
the	non-stick	saucepan.	Or	set	the	wok	on	fire.	More	than	once.	Once	with
fifteen	guests	in	the	house.	But	there	we	are.

To	the	rest	of	the	world,	this	urge	to	putter	and	fiddle	with	machines	is	more	than
a	source	of	marital	comedy.	Cox	is	one	of	the	great	threats	to	the	continued
dominance	of	Microsoft,	despite	the	fact	that	he	found	a	way	to	weld	spaghetti	to
a	nonstick	pan.	He	is	one	of	the	core	developers	who	help	maintain	the	Linux
kernel.	In	other	words,	he's	one	of	the	group	of	programmers	who	helps	guide
the	development	of	the	Linux	operating	system,	the	one	Richard	Schmalensee
feels	is	such	a	threat	to	Microsoft.	Cox	is	one	of	the	few	people	whom	Linus
Torvalds,	the	creator	of	Linux,	trusts	to	make	important	decisions	about	future

directions.	Cox	is	an	expert	on	the	networking	guts	of	the	system	and	is
responsible	for	making	sure	that	most	of	the	new	ideas	that	people	suggest	for
Linux	are	considered	carefully	and	integrated	correctly.	Torvalds	defers	to	Cox
on	many	matters	about	how	Linux-based	computers	talk	with	other	computers
over	a	network.	Cox	works	long	and	hard	to	find	efficient	ways	for	Linux	to
juggle	multiple	connections	without	slowing	down	or	deadlocking.

The	group	that	works	with	Cox	and	Torvalds	operates	with	no	official	structure.
Millions	of	people	use	Linux	to	keep	their	computers	running,	and	all	of	them
have	copies	of	the	source	code.	In	the	1980s,	most	companies	began	keeping	the
source	code	to	their	software	as	private	as	possible	because	they	worried	that	a
competitor	might	come	along	and	steal	the	ideas	the	source	spelled	out.	The
source	code,	which	is	written	in	languages	like	C,	Java,	FORTRAN,	BASIC,	or
Pascal,	is	meant	to	be	read	by	programmers.	Most	companies	didn't	want	other
programmers	understanding	too	much	about	the	guts	of	their	software.
Information	is	power,	and	the	companies	instinctively	played	their	cards	close	to
their	chests.

When	Linus	Torvalds	first	started	writing	Linux	in	1991,	however,	he	decided	to
give	away	the	operating	system	for	free.	He	included	all	the	source	code	because
he	wanted	others	to	read	it,	comment	upon	it,	and	perhaps	improve	it.	His
decision	was	as	much	a	radical	break	from	standard	programming	procedure	as	a
practical	decision.	He	was	a	poor	student	at	the	time,	and	this	operating	system
was	merely	a	hobby.	If	he	had	tried	to	sell	it,	he	wouldn't	have	gotten	anything
for	it.	He	certainly	had	no	money	to	build	a	company	that	could	polish	the
software	and	market	it.	So	he	just	sent	out	copies	over	the	Internet.

Sharing	software	had	already	been	endorsed	by	Richard	Stallman,	a	legendary
programmer	from	MIT	who	believed	that	keeping	source	code	private	was	a	sin
and	a	crime	against	humanity.	A	programmer	who	shares	the	source	code	lets
others	learn,	and	those	others	can	contribute	their	ideas	back	into	the	mix.
Closed	source	code	leaves	users	frustrated	because	they	can't	learn	about	the
software	or	fix	any	bugs.	Stallman	broke	away	from	MIT	in	1984	when	he
founded	the	Free	Software	Foundation.	This	became	the	organization	that
sponsored	Stallman's	grand	project	to	free	source	code,	a	project	he	called	GNU.
In	the	1980s,	Stallman	created	very	advanced	tools	like	the	GNU	Emacs	text
editor,	which	people	could	use	to	write	programs	and	articles.	Others	donated
their	work	and	the	GNU	project	soon	included	a	wide	range	of	tools,	utilities,
and	games.	All	of	them	were	distributed	for	free.

Torvalds	looked	at	Stallman	and	decided	to	follow	his	lead	with	open	source
code.	Torvalds's	free	software	began	to	attract	people	who	liked	to	play	around
with	technology.	Some	just	glanced	at	it.	Others	messed	around	for	a	few	hours.
Free	is	a	powerful	incentive.	It	doesn't	let	money,	credit	cards,	purchase	orders,
and	the	boss's	approval	get	in	the	way	of	curiosity.	A	few,	like	Alan	Cox,	had
such	a	good	time	taking	apart	an	operating	system	that	they	stayed	on	and	began
contributing	back	to	the	project.

In	time,	more	and	more	people	like	Alan	Cox	discovered	Torvalds's	little	project
on	the	Net.	Some	slept	late.	Others	kept	normal	hours	and	worked	in	offices.
Some	just	found	bugs.	Others	fixed	the	bugs.	Still	others	added	new	features	that
they	wanted.	Slowly,	the	operating	system	grew	from	a	toy	that	satisfied	the
curiosity	of	computer	scientists	into	a	usable	tool	that	powers	supercomputers,
web	servers,	and	millions	of	other	machines	around	the	world.

Today,	about	a	thousand	people	regularly	work	with	people	like	Alan	Cox	on	the
development	of	the	Linux	kernel,	the	official	name	for	the	part	of	the	operating
system	that	Torvalds	started	writing	back	in	1991.	That	may	not	be	an	accurate
estimate	because	many	people	check	in	for	a	few	weeks	when	a	project	requires
their	participation.	Some	follow	everything,	but	most	people	are	just	interested
in	little	corners.	Many	other	programmers	have	contributed	various	pieces	of
software	such	as	word	processors	or	spreadsheets.	All	of	these	are	bundled
together	into	packages	that	are	often	called	plain	Linux	or	GNU/Linux	and
shipped	by	companies	like	Red	Hat	or	more	ad	hoc	groups	like	Debian.[^1]
While	Torvalds	only	wrote	the	core	kernel,	people	use	his	name,	Linux,	to	stand
for	a	whole	body	of	software	written	by	thousands	of	others.	It's	not	exactly	fair,
but	most	let	it	slide.	If	there	hadn't	been	the	Linux	kernel,	the	users	wouldn't
have	the	ability	to	run	software	on	a	completely	free	system.	The	free	software
would	need	to	interact	with	something	from	Microsoft,	Apple,	or	IBM.	Of
course,	if	it	weren't	for	all	of	the	other	free	software	from	Berkeley,	the	GNU
project,	and	thousands	of	other	garages	around	the	world,	there	would	be	little
for	the	Linux	kernel	to	do.

[1]:	/Linux	Weekly	News/	keeps	a	complete	list	of	distributors.	These	range	from
the	small,	one-	or	two-man	operations	to	the	biggest,	most	corporate	ones	like
Red	Hat:	Alzza	Linux,	Apokalypse,	Armed	Linux,	Bad	Penguin	Linux,	Bastille
Linux,	Best	Linux	(Finnish/Swedish),	Bifrost,	Black	Cat	Linux
(Ukrainian/Russian),	Caldera	OpenLinux,	CCLinux,	Chinese	Linux	Extension,
Complete	Linux,	Conectiva	Linux	(Brazilian),	Debian	GNU/Linux,	Definite

Linux,	DemoLinux,	DLD,	DLite,	DLX,	DragonLinux,	easyLinux,	Enoch,
Eridani	Star	System,	Eonova	Linux,	e-smith	server	and	gateway,	Eurielec	Linux
(Spanish),	eXecutive	Linux,	floppyfw,	Floppix,	Green	Frog	Linux,	hal91,	Hard
Hat	Linux,	Immunix,	Independence,	Jurix,	Kha0s	Linux,	KRUD,	KSI-Linux,
Laetos,	LEM,	Linux	Cyrillic	Edition,	LinuxGT,	Linux-Kheops	(French),	Linux
MLD	(Japanese),	LinuxOne	OS,	LinuxPPC,	LinuxPPP	(Mexican),	Linux	Pro
Plus,	Linux	Router	Project,	LOAF,	LSD,	Mandrake,	Mastodon,	MicroLinux,
MkLinux,	muLinux,	nanoLinux	II,	NoMad	Linux,	OpenClassroom,	Peanut
Linux,	Plamo	Linux,	PLD,	Project	Ballantain,	PROSA,	QuadLinux,	Red	Hat,
Rock	Linux,	RunOnCD,	ShareTheNet,	Skygate,	Slackware,	Small	Linux,
Stampede,	Stataboware,	Storm	Linux,	SuSE,	Tomsrtbt,	Trinux,	TurboLinux,
uClinux,	Vine	Linux,	WinLinux	2000,	Xdenu,	XTeamLinux,	and	Yellow	Dog
Linux.

Officially,	Linus	Torvalds	is	the	final	arbiter	for	the	kernel	and	the	one	who
makes	the	final	decisions	about	new	features.	In	practice,	the	group	runs	like	a
loosely	knit	"ad-hocracy."	Some	people	might	care	about	a	particular	feature	like
the	ability	to	interface	with	Macintoshes,	and	they	write	special	code	that	makes
this	task	easier.	Others	who	run	really	big	databases	may	want	larger	file	systems
that	can	store	more	information	without	limits.

All	of	these	people	work	at	their	own	pace.	Some	work	in	their	homes,	like	Alan
Cox.	Some	work	in	university	labs.	Others	work	for	businesses	that	use	Linux
and	encourage	their	programmers	to	plug	away	so	it	serves	their	needs.

The	team	is	united	by	mailing	lists.	The	Linux	Kernel	mailing	list	hooks	up	Cox
in	Britain,	Torvalds	in	Silicon	Valley,	and	the	others	around	the	globe.	They	post
notes	to	the	list	and	discuss	ideas.	Sometimes	verbal	fights	break	out,	and
sometimes	everyone	agrees.	Sometimes	people	light	a	candle	by	actually	writing
new	code	to	make	the	kernel	better,	and	other	times	they	just	curse	the	darkness.

Cox	is	now	one	of	several	people	responsible	for	coordinating	the	addition	of
new	code.	He	tests	it	for	compatibility	and	guides	Linux	authors	to	make	sure
they're	working	together	optimally.	In	essence,	he	tests	every	piece	of	incoming
software	to	make	sure	all	of	the	gauges	work	with	the	right	system	of
measurement	so	there	will	be	no	glitches.	He	tries	to	remove	the
incompatibilities	that	marred	Zorro.

Often,	others	will	duplicate	Cox's	work.	Some	new	features	are	very	popular	and

have	many	cooks	minding	the	stew.	The	technology	for	speeding	up	computers
with	multiple	CPUs	lets	each	computer	harness	the	extra	power,	so	many	list
members	test	it	frequently.	They	want	the	fastest	machines	they	can	get,	and
smoothing	the	flow	of	data	between	the	CPUs	is	the	best	way	to	let	the	machines
cooperate.

Other	features	are	not	so	popular,	and	they're	tackled	by	the	people	who	need	the
features.	Some	people	want	to	hook	their	Linux	boxes	up	to	Macintoshes.	Doing
that	smoothly	can	require	some	work	in	the	kernel.	Others	may	want	to	add
special	code	to	enable	a	special	device	like	a	high-speed	camera	or	a	strange	type
of	disk	drive.	These	groups	often	work	on	their	own	but	coordinate	their
solutions	with	the	main	crowd.	Ideally,	they'll	be	able	to	come	up	with	some
patches	that	solve	their	problem	without	breaking	some	other	part	of	the	system.

It's	a	very	social	and	political	process	that	unrolls	in	slow	motion	through	e-mail
messages.	One	person	makes	a	suggestion.	Others	may	agree.	Someone	may
squabble	with	the	idea	because	it	seems	inelegant,	sloppy,	or,	worst	of	all,
dangerous.	After	some	time,	a	rough	consensus	evolves.	Easy	problems	can	be
solved	in	days	or	even	minutes,	but	complicated	decisions	can	wait	as	the	debate
rages	for	years.

Each	day,	Cox	and	his	virtual	colleagues	pore	through	the	lists	trying	to	figure
out	how	to	make	Linux	better,	faster,	and	more	usable.	Sometimes	they	skip	out
to	watch	a	movie.	Sometimes	they	go	for	hikes.	But	one	thing	they	don't	do	is
spend	months	huddled	in	conference	rooms	trying	to	come	up	with	legal
arguments.	Until	recently,	the	Linux	folks	didn't	have	money	for	lawyers,	and
that	means	they	didn't	get	sidetracked	by	figuring	out	how	to	get	big	and
powerful	people	like	Richard	Schmalensee	to	tell	a	court	that	there's	no
monopoly	in	the	computer	operating	system	business.

3.2	SUITS	AGAINST	HACKERS

.........................

Schmalensee	and	Cox	couldn't	be	more	different	from	each	other.	One	is	a	career
technocrat	who	moves	easily	between	the	government	and	MIT.	The	other	is
what	used	to	be	known	as	an	absentminded	professor--the	kind	who	works	when
he's	really	interested	in	a	problem.	It	just	so	happens	that	Cox	is	pretty	intrigued
with	building	a	better	operating	system	than	the	various	editions	of	Windows

that	form	the	basis	of	Microsoft's	domination	of	the	computer	industry.

The	battle	between	Linux	and	Microsoft	is	lining	up	to	be	the	classic	fight
between	the	people	like	Schmalensee	and	the	people	like	Cox.	On	one	side	are
the	armies	of	lawyers,	lobbyists,	salesmen,	and	expensive	executives	who	are
armed	with	patents,	lawsuits,	and	legislation.	They	are	skilled	at	moving	the
levers	of	power	until	the	gears	line	up	just	right	and	billions	of	dollars	pour	into
their	pockets.	They	know	how	to	schmooze,	toady,	beg,	or	even	threaten	until
they	wear	the	mantle	of	authority	and	command	the	piety	and	devotion	of	the
world.	People	buy	Microsoft	because	it's	"the	standard."	No	one	decreed	this,	but
somehow	it	has	come	to	be.

On	the	other	side	are	a	bunch	of	guys	who	just	like	playing	with	computers	and
will	do	anything	to	take	them	apart.	They're	not	like	the	guy	in	the	song	by	John
Mellencamp	who	sings	"I	fight	authority	and	authority	always	wins."	Some
might	have	an	attitude,	but	most	just	want	to	look	at	the	insides	of	their
computers	and	rearrange	them	to	hook	up	to	coffee	machines	or	networks.	They
want	to	fidget	with	the	guts	of	their	machines.	If	they	weld	some	spaghetti	to	the
insides,	so	be	it.

Normally,	these	battles	between	the	suits	and	the	geeks	don't	threaten	the
established	order.	There	are	university	students	around	the	world	building	solar-
powered	cars,	but	they	don't	actually	pose	a	threat	to	the	oil	or	auto	industries.
"21,"	a	restaurant	in	New	York,	makes	a	great	hamburger,	but	they're	not	going
to	put	McDonald's	out	of	business.	The	experimentalists	and	the	perfectionists
don't	usually	knock	heads	with	the	corporations	who	depend	upon	world
domination	for	their	profits.	Except	when	it	comes	to	software.

Software	is	different	from	cars	or	hamburgers.	Once	someone	writes	the	source
code,	copying	the	source	costs	next	to	nothing.	That	makes	it	much	easier	for
tinkerers	like	Cox	to	have	a	global	effect.	If	Cox,	Stallman,	Torvalds,	and	his
chums	just	happen	to	luck	upon	something	that's	better	than	Microsoft,	then	the
rest	of	the	world	can	share	their	invention	for	next	to	nothing.	That's	what	makes
Cox,	Torvalds,	and	their	buddies	a	credible	threat	no	matter	how	often	they	sleep
late.

It's	easy	to	get	high	off	of	the	idea	alone.	A	few	guys	sleeping	late	and	working
in	bedrooms	aren't	supposed	to	catch	up	to	a	cash	engine	like	Microsoft.	They
aren't	supposed	to	create	a	webserving	engine	that	controls	more	than	half	of	the

web.	They	aren't	supposed	to	create	a	graphical	user	interface	for	drawing
windows	and	icons	on	the	screen	that's	much	better	than	Windows.	They	aren't
supposed	to	create	supercomputers	with	sticker	prices	of	$3,000.	Money	isn't
supposed	to	lose.

Of	course,	the	folks	who	are	working	on	free	software	projects	have	advantages
that	money	can't	buy.	These	programmers	don't	need	lawyers	to	create	licenses,
negotiate	contracts,	or	argue	over	terms.	Their	software	is	free,	and	lawyers	lose
interest	pretty	quickly	when	there's	no	money	around.	The	free	software	guys
don't	need	to	scrutinize	advertising	copy.	Anyone	can	download	the	software	and
just	try	it.	The	programmers	also	don't	need	to	sit	in	the	corner	when	their
computer	crashes	and	complain	about	the	idiot	who	wrote	the	software.	Anyone
can	read	the	source	code	and	fix	the	glitches.

The	folks	in	the	free	source	software	world	are,	in	other	words,	grooving	on
freedom.	They're	high	on	the	original	American	dream	of	life,	liberty,	and	the
pursuit	of	happiness.	The	founders	of	the	United	States	of	America	didn't	set	out
to	create	a	wealthy	country	where	citizens	spent	their	days	worrying	whether
they	would	be	able	to	afford	new	sport	utility	vehicles	when	the	stock	options
were	vested.	The	founders	just	wanted	to	secure	the	blessings	of	liberty	for
posterity.	Somehow,	the	wealth	followed.

This	beautiful	story	is	easy	to	embrace:	a	group	of	people	started	out	swapping
cool	software	on	the	Net	and	ended	up	discovering	that	their	free	sharing	created
better	software	than	what	a	corporation	could	produce	with	a	mountain	of	cash.

The	programmers	found	that	unrestricted	cooperation	made	it	easy	for	everyone
to	contribute.	No	price	tags	kept	others	away.	No	stereotypes	or	biases	excluded
anyone.	The	software	and	the	source	code	were	on	the	Net	for	anyone	to	read.

Wide-open	cooperation	also	turned	out	to	be	wide-open	competition	because	the
best	software	won	the	greatest	attention.	The	corporate	weasels	with	the	ear	of
the	president	could	not	stop	a	free	source	software	project	from	shipping.	No
reorganization	or	downsizing	could	stop	people	from	working	on	free	software	if
they	wanted	to	hack.	The	freedom	to	create	was	more	powerful	than	money.

That's	an	idyllic	picture,	and	the	early	success	of	Linux,	FreeBSD,	and	other	free
packages	makes	it	tempting	to	think	that	the	success	will	build.	Today,	open
source	servers	power	more	than	50	percent	of	the	web	servers	on	the	Internet,

and	that	is	no	small	accomplishment.	Getting	thousands,	if	not	millions,	of
programmers	to	work	together	is	quite	amazing	given	how	quirky	programmers
can	be.	The	ease	of	copying	makes	it	possible	to	think	that	Alan	Cox	could	get
up	late	and	still	move	the	world.

But	the	1960s	were	also	an	allegedly	idyllic	time	when	peace,	love,	and	sharing
were	going	to	create	a	beautiful	planet	where	everyone	gave	to	everyone	else	in
an	eternal	golden	braid	of	mutual	respect	and	caring.	Everyone	assumed	that	the
same	spirit	that	so	quickly	and	easily	permeated	the	college	campuses	and
lovefests	in	the	parks	was	bound	to	sweep	the	world.	The	communes	were	really
happening,	man.	But	somehow,	the	groovy	beat	never	caught	on	beyond	those
small	nests	of	easy	caring	and	giving.	Somehow,	the	folks	started	dropping	back
in,	getting	real	jobs,	taking	on	real	mortgages,	and	buying	back	into	the	world
where	money	was	king.

Over	the	years,	the	same	sad	ending	has	befallen	many	communes,	utopian
visions,	and	hypnotic	vibes.	Freedom	is	great.	It	allows	brilliant	inventors	to
work	independently	of	the	wheels	of	power.	But	capital	is	another	powerful
beast	that	drives	innovation.	The	great	communes	often	failed	because	they
never	converted	their	hard	work	into	money,	making	it	difficult	for	them	to	save
and	invest.	Giving	things	away	may	be,	like,	really	groovy,	but	it	doesn't	build	a
nest	egg.

Right	now,	the	free	software	movement	stands	at	a	crucial	moment	in	its	history.
In	the	past,	a	culture	of	giving	and	wide-open	sharing	let	thousands	of
programmers	build	a	great	operating	system	that	was,	in	many	ways,	better	than
anything	coming	from	the	best	companies.	Many	folks	began	working	on	Linux,
FreeBSD,	and	thousands	of	other	projects	as	hobbies,	but	now	they're	waking	up
to	find	IBM,	HewlettPackard,	Apple,	and	all	the	other	big	boys	pounding	on
their	door.	If	the	kids	could	create	something	as	nice	as	Linux,	everyone	began	to
wonder	whether	these	kids	really	had	enough	good	stuff	to	go	the	distance	and
last	nine	innings	against	the	greatest	power	hitters	around.

Perhaps	the	free	software	movement	will	just	grow	faster	and	better	as	more
people	hop	on	board.	More	users	mean	more	eyes	looking	for	bugs.	More	users
mean	more	programmers	writing	new	source	code	for	new	features.	More	is
better.

On	the	other	hand,	sharing	may	be	neat,	but	can	it	beat	the	power	of	capital?

Microsoft's	employees	may	be	just	serfs	motivated	by	the	dream	that	someday
their	meager	stock	options	will	be	worth	enough	to	retire	upon,	but	they	have	a
huge	pile	of	cash	driving	them	forward.	This	capital	can	be	shifted	very	quickly.
If	Bill	Gates	wants	1,000	programmers	to	create	something,	he	can	wave	his
hand.	If	he	wants	to	buy	1,000	computers,	it	takes	him	a	second.	That's	the
power	of	capital.

Linus	Torvalds	may	be	on	the	cover	of	magazines,	but	he	can't	do	anything	with
the	wave	of	a	hand.	He	must	charm	and	cajole	the	thousands	of	folks	on	the
Linux	mailing	list	to	make	a	change.	Many	of	the	free	software	projects	may
generate	great	code,	but	they	have	to	beg	for	computers.	The	programmers	might
even	surprise	him	and	come	up	with	an	even	better	solution.	They've	done	it	in
the	past.	But	no	money	means	that	no	one	has	to	do	what	anyone	says.

In	the	past,	the	free	software	movement	was	like	the	movies	in	which	Mickey
Rooney	and	Judy	Garland	put	on	a	great	show	in	the	barn.	That	part	won't
change.	Cool	kids	with	a	dream	will	still	be	spinning	up	great	programs	that	will
be	wonderful	gifts	for	the	world.

But	shows	that	are	charming	and	fresh	in	a	barn	can	become	thin	and	weak	on	a
big	stage	on	Broadway.	The	glitches	and	raw	functionality	of	Linux	and	free
software	don't	seem	too	bad	if	you	know	that	they're	built	by	kids	in	their	spare
time.	Building	real	tools	for	real	companies,	moms,	police	stations,	and	serious
users	everywhere	is	another	matter.	Everyone	may	be	hoping	that	sharing,
caring,	and	curiosity	are	enough,	but	no	one	knows	for	certain.	Maybe	capital
will	end	up	winning.	Maybe	it	won't.	It's	freedom	versus	assurance;	it's	wide-
open	sharing	versus	stock	options;	it's	cooperation	versus	intimidation;	it's	the
geeks	versus	the	suits,	all	in	one	knockdown,	hack-till-you-drop,	winner-take-
everything	fight.

1.	 LISTS

While	Alan	Cox	was	sleeping	late	and	Microsoft	was	putting	Richard
Schmalensee	on	the	stand,	the	rest	of	the	open	source	software	world	was
tackling	their	own	problems.	Some	were	just	getting	up,	others	were	in	the
middle	of	their	day,	and	still	others	were	just	going	to	sleep.	This	is	not	just
because	the	open	source	hackers	like	to	work	at	odd	times	around	the	clock.
Some	do.	But	they	also	live	around	the	globe	in	all	of	the	different	time	zones.

The	sun	never	sets	on	the	open	source	empire.

On	January	14,	1999,	for	instance,	Peter	Jeremy,	an	Australian,	announced	that
he	had	just	discovered	a	potential	Y2K	problem	in	the	control	software	in	the
central	database	that	helped	maintain	the	FreeBSD	source	code.	He	announced
this	by	posting	a	note	to	a	mailing	list	that	forwarded	the	message	to	many	other
FreeBSD	users.	The	problem	was	that	the	software	simply	appended	the	two
characters	"19"	to	the	front	of	the	year.	When	the	new	millennium	came	about	a
year	later,	the	software	would	start	writing	the	new	date	as	"19100."	Oops.	The
problem	was	largely	cosmetic	because	it	only	occurred	in	some	of	the	support
software	used	by	the	system.

FreeBSD	is	a	close	cousin	to	the	Linux	kernel	and	one	that	predates	it	in	some
ways.	It	descends	from	a	long	tradition	of	research	and	development	of	operating
systems	at	the	University	of	California	at	Berkeley.	The	name	BSD	stands	for
"Berkeley	Software	Distribution,"	the	name	given	to	one	of	the	first	releases	of
operating	system	source	code	that	Berkeley	made	for	the	world.	That	small
package	grew,	morphed,	and	absorbed	many	other	contributions	over	the	years.

Referring	to	Linux	and	FreeBSD	as	cousins	is	an	apt	term	because	they	share
much	of	the	same	source	code	in	the	same	way	that	cousins	share	some	of	the
same	genes.	Both	borrow	source	code	and	ideas	from	each	other.	If	you	buy	a
disk	with	FreeBSD,	which	you	can	do	from	companies	like	Walnut	Creek,	you
may	get	many	of	the	same	software	packages	that	you	get	from	a	disk	from	Red
Hat	Linux.	Both	include,	for	instance,	some	of	the	GNU	compilers	that	turn
source	code	into	something	that	can	be	understood	by	computers.

FreeBSD,	in	fact,	has	some	of	its	own	fans	and	devotees.	The	FreeBSD	site	lists
thousands	of	companies	large	and	small	that	use	the	software.	Yahoo,	the	big
Internet	directory,	game	center,	and	news	operation,	uses	FreeBSD	in	some	of	its
servers.	So	does	Blue	Mountain	Arts,	the	electronic	greeting	card	company	that
is	consistently	one	of	the	most	popular	sites	on	the	web.	There	are	undoubtedly
thousands	more	who	aren't	listed	on	the	FreeBSD	site.	The	software	produced	by
the	FreeBSD	project	is,	after	all,	free,	so	people	can	give	it	away,	share	it	with
their	friends,	or	even	pretend	they	are	"stealing"	it	by	making	a	copy	of	a	disk	at
work.	No	one	really	knows	how	many	copies	of	FreeBSD	are	out	there	because
there's	no	reason	to	count.	Microsoft	may	need	to	count	heads	so	they	can	bill
everyone	for	using	Windows,	but	FreeBSD	doesn't	have	that	problem.

That	morning,	Peter	Jeremy's	message	went	out	to	everyone	who	subscribed	to
the	FreeBSD	mailing	list.	Some	users	who	cared	about	the	Y2K	bug	could	take
Jeremy's	patch	and	use	it	to	fix	their	software	directly.	They	didn't	need	to	wait
for	some	central	bureaucracy	to	pass	judgment	on	the	information.	They	didn't
need	to	wait	for	the	Y2K	guy	at	FreeBSD	to	get	around	to	vetting	the	change.
Everyone	could	just	insert	the	fix	because	they	had	all	of	the	source	code
available	to	them.

Of	course,	most	people	never	use	all	their	freedoms.	In	this	case,	most	people
didn't	have	to	bother	dealing	with	Jeremy's	patch	because	they	waited	for	the
official	version.	The	FreeBSD	infrastructure	absorbed	the	changes	into	its	source
code	vaults,	and	the	changes	appeared	in	the	next	fully	updated	version.	This
new	complete	version	is	where	most	people	first	started	using	the	fix.	Jeremy	is
a	programmer	who	created	a	solution	that	was	easy	for	other	programmers	to
use.	Most	people,	however,	aren't	programmers,	and	they	want	their	software	to
be	easy	to	use.	Most	programmers	aren't	even	interested	in	poking	around	inside
their	machines.	Everyone	wants	the	solution	to	either	fix	itself	or	come	as	close
to	that	as	possible.

Jeremy's	message	was	just	one	of	the	hundreds	percolating	through	the	FreeBSD
community	that	day.	Some	fell	on	deaf	ears,	some	drew	snotty	comments,	and	a
few	gathered	some	real	attention.	The	mailing	lists	were	fairly	complex
ecologies	where	ideas	blossomed	and	grew	before	they	faded	away	and	died.

Of	course,	it's	not	fair	to	categorize	the	FreeBSD	world	as	a	totally	decentralized
anarchy.	There	is	one	central	team	led	by	one	man,	Jordan	Hubbard,	who
organizes	the	leadership	of	a	core	group	of	devoted	programmers.	The	group
runs	the	website,	maintains	an	up-to-date	version	of	FreeBSD,	and	sponsors
dozens	of	lists	devoted	to	different	corners	or	features.	One	list	focuses	on
hooking	up	the	fast	high-performance	SCSI	hard	disks	that	are	popular	with
people	who	demand	high-performance	systems.	Another	concentrates	on
building	in	enough	security	to	keep	out	attackers	who	might	try	to	sneak	in
through	the	Internet.

That	January	14,	a	man	in	Great	Britain,	Roger	Hardiman,	was	helping	a	man	in
Switzerland,	Reto	Trachsel,	hook	up	a	Hauppauge	video	card	to	his	system.
They	were	communicating	on	the	Multimedia	mailing	list	devoted	to	finding
ways	to	add	audio	and	video	functions	to	FreeBSD	systems.	Trachsel	posted	a
note	to	the	list	asking	for	information	on	how	to	find	the	driver	software	that

would	make	sure	that	the	data	coming	out	of	the	Hauppauge	television	receiver
would	be	generally	available	to	the	rest	of	the	computer.	Hardiman	pointed	out	a
solution,	but	cautioned,	"If	your	Hauppauge	card	has	the	MSP34xx	Stereo
Decoder	audio	chip,	you	may	get	no	sound	when	watching	TV.	I	should	get	this
fixed	in	the	next	week	or	two."

Solutions	like	these	float	around	the	FreeBSD	community.	Most	people	don't
really	care	if	they	can	watch	television	with	their	computer,	but	a	few	do.	The
easy	access	to	source	code	and	drivers	means	that	the	few	can	go	off	and	do	their
own	thing	without	asking	some	major	company	for	permission.	The	big
companies	like	Microsoft	and	Apple,	for	instance,	have	internal	projects	that	are
producing	impressive	software	for	creating	and	displaying	multimedia
extravaganzas	on	computers.	But	they	have	a	strict	view	of	the	world:	the
company	is	the	producer	of	high-quality	tools	that	make	their	way	to	the
consumer	who	uses	them	and	pays	for	them	in	one	way	or	another.

The	list	ecology	is	more	organic	and	anti-hierarchical.	Everyone	has	access	to
the	source	code.	Everyone	can	make	changes.	Everyone	can	do	what	they	want.
There	is	no	need	for	the	FreeBSD	management	to	meet	and	decide	"Multimedia
is	good."	There	is	no	need	for	a	project	team	to	prioritize	and	list	action	items
and	best-of-breed	deliverables.	Someone	in	Switzerland	decides	he	wants	to
hook	up	a	television	receiver	to	his	computer	and,	what	do	you	know,	someone
in	Great	Britain	has	already	solved	the	problem.	Well,	he's	solved	it	if	you	don't
have	an	MSP34xx	stereo	decoder	chip	in	your	card.	But	that	should	be	fixed
sooner	or	later,	too.

4.1	FREE	DOESN'T	MEAN	FREELOADING

.................................

There	are	thousands	of	other	mailing	lists	linking	thousands	of	other	projects.	It's
hard	to	actually	put	a	number	to	them	because	the	projects	grow,	merge,	and	fade
as	people's	interests	wax	and	wane.	The	best	flourish,	and	the	others	just	drift
away.

Life	on	the	mailing	lists	is	often	a	bit	more	brutal	and	short	than	life	on	earth.
The	work	on	the	project	needs	to	split	up.	The	volunteers	need	to	organize
themselves	so	that	great	software	can	be	written.

On	that	January	14,	a	new	member	of	the	WINE	list	was	learning	just	how

volunteering	works.	The	guy	posted	a	note	to	the	list	that	described	his	Diamond
RIO	portable	music	device	that	lets	you	listen	to	MP3	files	whenever	you	want.
"I	think	the	WINE	development	team	should	drop	everything	and	work	on
getting	this	program	to	work	as	it	doesn't	seem	like	Diamond	wants	to	release	a
Linux	utility	for	the	Rio,"	he	wrote.

WINE	stands	for	"WINE	Is	Not	an	Emulator,"	which	is	a	joke	that	only
programmers	and	free	software	lovers	can	get.	It's	first	a	play	on	the	recursive
acronym	for	the	GNU	project	("GNU	is	not	UNIX").	It's	also	a	bit	of	a	political
statement	for	programmers.	An	emulator	is	a	piece	of	software	that	makes	one
computer	act	like	another.	A	company	named	Connectix,	for	instance,	sells	an
emulator	that	lets	a	Macintosh	behave	like	a	Windows	PC	so	anyone	can	use
their	Windows	software	on	the	Mac.	Emulators,	however,	are	pretty	slow
because	they're	constantly	translating	information	on	the	fly.	Anyone	who	has
tried	to	hold	a	conversation	with	someone	who	speaks	a	different	language
knows	how	frustrating	it	can	be	to	require	a	translator.

The	WINE	project	is	an	ambitious	attempt	to	knock	out	one	of	the	most
important	structural	elements	of	the	Microsoft	monopoly.	Software	written	for
Windows	only	functions	when	people	buy	a	version	of	Windows	from
Microsoft.	When	you	purchase	a	Connectix	emulator	for	the	Mac,	you	get	a
version	of	Windows	bundled	with	it.

The	WINE	project	is	a	group	of	people	who	are	trying	to	clone	Windows.	Well,
not	clone	all	of	it.	They	just	want	to	clone	what	is	known	as	the	Win32	API,	a
panoply	of	features	that	make	it	easier	to	write	software	for	a	Microsoft	machine.
A	programmer	who	wants	to	create	a	new	button	for	a	Windows	computer
doesn't	need	to	write	all	of	the	instructions	for	drawing	a	frame	with	three-
dimensional	shading.	A	Microsoft	employee	has	already	bundled	those
instructions	into	the	Win32	API.	There	are	millions	of	functions	in	these	kits	that
help	programmers.	Some	play	audio	files,	others	draw	complex	images	or
movies.	These	features	make	it	easy	for	programmers	to	write	software	for
Windows	because	some	of	the	most	repetitive	work	is	already	finished.

The	WINE	clone	of	the	Win32	is	a	fascinating	example	of	how	open	source
starts	slowly	and	picks	up	steam.	Bob	Amstadt	started	the	project	in	1993,	but
soon	turned	it	over	to	Alexandre	Julliard,	who	has	been	the	main	force	behind	it.
The	project,	although	still	far	from	finished,	has	produced	some	dramatic
accomplishments,	making	it	possible	to	run	major	programs	like	Microsoft	Word

or	Microsoft	Excel	on	a	Linux	box	without	using	Windows.	In	essence,	the
WINE	software	is	doing	a	good	enough	job	acting	like	Windows	that	it's	fooling
Excel	and	Word.	If	you	can	trick	the	cousins,	that's	not	too	bad.

The	WINE	home	page	(www.winehq.com)	estimates	that	more	than	90,000
people	use	WINE	regularly	to	run	programs	for	Microsoft	Windows	without
buying	Windows.	About	140	or	more	people	regularly	contribute	to	the	project
by	writing	code	or	fixing	bugs.	Many	are	hobbyists	who	want	the	thrill	of	getting
their	software	to	run	without	Windows,	but	some	are	corporate	programmers.
The	corporate	programmers	want	to	sell	their	software	to	the	broadest	possible
marketplace,	but	they	don't	want	to	take	the	time	to	rewrite	everything.	If	they
can	get	their	software	working	well	with	WINE,	then	people	who	use	Linux	or
BSD	can	use	the	software	that	was	written	for	Microsoft	Windows.

The	new	user	who	wanted	to	get	his	RIO	player	working	with	his	Linux
computer	soon	got	a	rude	awakening.	Andreas	Mohr,	a	German	programmer,
wrote	back,

Instead	of	suggesting	the	WINE	team	to	"drop	everything"	in	order	to	get	a
relatively	minor	thing	like	PMP300	to	work,	would	you	please	install	WINE,	test
it,	read	documentation/bug	reports	and	post	a	useful	bug	report	here?	There	are
zillions	of	very	useful	and	impressing	Windoze	apps	out	there.	..	(After	all	that's
only	my	personal	opinion,	maybe	that	was	a	bit	too	harsh	;-)

Most	new	free	software	users	soon	discover	that	freedom	isn't	always	easy.	If
you	want	to	get	free	software,	you're	going	to	have	to	put	in	some	work.
Sometimes	you	get	lucky.	The	man	in	Switzerland	who	posted	his	note	on	the
same	day	found	out	that	someone	in	Britain	was	solving	his	problems	for	him.
There	was	no	one,	however,	working	on	the	RIO	software	and	making	sure	it
worked	with	WINE.

Mohr's	suggestion	was	to	file	a	bug	report	that	ranks	the	usability	of	the	software
so	the	programmers	working	on	WINE	can	tweak	it.	This	is	just	the	first	step	in
the	free	software	experience.	Someone	has	to	notice	the	problem	and	fix	it.	In
this	case,	someone	needs	to	hook	up	their	Diamond	RIO	MP3	player	to	a	Linux
box	and	try	to	move	MP3	files	with	the	software	written	for	Windows.	Ideally,
the	software	will	work	perfectly,	and	now	all	Linux	users	will	be	able	to	use	RIO
players.	In	reality,	there	might	be	problems	or	glitches.	Some	of	the	graphics	on
the	screen	might	be	wrong.	The	software	might	not	download	anything	at	all.

The	first	step	is	for	someone	to	test	the	product	and	write	up	a	detailed	report
about	what	works	and	what	doesn't.

At	the	time	of	this	writing,	no	one	has	stepped	up	to	the	plate.	There	are	no
reports	about	the	Diamond	player	in	the	WINE	database.	Maybe	the	new	user
didn't	have	time.	Maybe	he	wasn't	technically	sophisticated	enough	to	get	WINE
running	in	the	first	place.	It's	still	not	a	simple	system	to	use.	In	any	case,	his
bright	idea	fell	by	the	wayside.

The	mailing	lists	buzz	with	idle	chatter	about	neat,	way-out	ideas	that	never
come	to	fruition.	Some	people	see	this	as	a	limitation	of	the	free	software	world.
A	corporation,	however,	is	able	to	dispatch	a	team	of	programmers	to	create
solutions.	These	companies	have	money	to	spend	on	polishing	a	product	and
making	sure	it	works.	Connectix,	for	instance,	makes	an	emulator	that	lets	Mac
users	play	games	written	for	the	Sony	PlayStation.	The	company	employs	a
substantial	number	of	people	who	simply	play	all	the	Sony	games	from
beginning	to	end	until	all	of	the	bugs	are	gone.	It's	a	rough	job,	but	someone	has
to	do	it.

WINE	can't	pay	anyone,	and	that	means	that	great	ideas	sometimes	get	ignored.
The	free	software	community,	however,	doesn't	necessarily	see	this	as	a
limitation.	If	the	RIO	player	were	truly	important,	someone	else	would	come
along	and	pick	up	the	project.	Someone	else	would	do	the	work	and	file	a	bug
report	so	everyone	could	use	the	software.	If	there's	no	one	else,	then	maybe	the
RIO	software	isn't	that	important	to	the	Linux	community.	Work	gets	done	when
someone	really	cares	enough	to	do	it.

These	mailing	lists	are	the	fibers	that	link	the	open	source	community	into	the
network	of	minds.	Before	e-mail,	they	were	just	a	bunch	of	rebels	haunting	the
moors	and	rattling	around	their	basements	inventing	monstrous	machines.	Now
they're	smoothly	tuned	mechanisms	coordinated	by	messages,	notes,	and
missives.	They're	not	madmen	who	roar	at	dinner	parties	about	the	bad
technology	from	Borg-like	corporations.	They've	got	friends	now.	One	person
may	be	a	flake,	but	a	group	might	be	on	to	something.

1.	 IMAGE

Consider	this	picture:	Microsoft	is	a	megalith	built	by	one	man	with	a	towering

ego.	It	may	not	be	fair	to	lump	all	of	the	serfs	in	the	corporate	cubicle	farms	in
Redmond	into	one	big	army	of	automatons,	but	it	sure	conjures	a	striking	image
that	isn't	altogether	inaccurate.	Microsoft	employees	are	fiercely	loyal	and	often
more	dedicated	to	the	cause	than	the	average	worker	bee.	Bill	Gates	built	the
company	from	scratch	with	the	help	of	several	college	friends,	and	this	group
maintains	tight	control	over	all	parts	of	the	empire.	The	flavor	of	the
organization	is	set	by	one	man	with	the	mind	and	the	ego	to	micromanage	it	all.

Now	consider	the	image	of	the	members	of	the	free	software	revolution.
Practically	every	newspaper	article	and	colorful	feature	describing	the	group
talks	about	a	ragtag	army	of	scruffy,	bearded	programmers	who	are	just	a	bit	too
pale	from	spending	their	days	in	front	of	a	computer	screen.	The	writers	love	to
conjure	up	a	picture	of	a	group	that	looks	like	it	came	stumbling	out	of	some
dystopian	fantasy	movie	like	Mad	Max	or	A	Boy	and	His	Dog.	They're	the
outsiders.	They're	a	tightly	knit	band	of	rebel	outcasts	who	are	planning	to	free
the	people	from	their	Microsoft	slavery	and	return	to	the	people	the	power
usurped	by	Mr.	Gates.	What	do	they	want?	Freedom!	When	do	they	want	it?
Now!

There's	only	one	problem	with	this	tidy,	Hollywood-ready	image:	it's	far	from
true.	While	Microsoft	is	one	big	corporation	with	reins	of	control	that	keep
everyone	in	line,	there	is	no	strong	or	even	weak	organization	that	binds	the
world	of	open	source	software.	The	movement,	if	it	could	be	called	that,	is
comprised	of	individuals,	each	one	free	to	do	whatever	he	wants	with	the
software.	That's	the	point:	no	more	shackles.	No	more	corporate	hegemony.	Just
pure	source	code	that	runs	fast,	clean,	and	light,	straight	through	the	night.

This	doesn't	mean	that	the	image	is	all	wrong.	Some	of	the	luminaries	like
Richard	Stallman	and	Alan	Cox	have	been	known	to	sport	long,	Rip	van	Winkle-
grade	beards.	Some	folks	are	strikingly	pale.	A	few	could	bathe	a	bit	more
frequently.	Caffeine	is	a	bit	too	popular	with	them.	Some	people	look	as	if	they
were	targets	for	derision	by	the	idiots	on	the	high	school	football	team.

But	there	are	many	counterexamples.	Linus	Torvalds	drives	a	Pontiac	and	lives
in	a	respectable	home	with	a	wife	and	two	children.	He	works	during	the	day	at	a
big	company	and	spends	his	evenings	shopping	and	doing	errands.	His	life
would	be	perfectly	categorized	as	late	1950s	sitcom	if	his	wife,	Tove,	weren't	a
former	Finnish	karate	champion	and	trucks	weren't	driving	up	to	his	house	to
deliver	top-of-the-line	computers	like	a	200-pound	monstrosity	with	four	Xeon

processors.	He	told	VAR	Business,	"A	large	truck	brought	it	to	our	house	and	the
driver	was	really	confused.	He	said,	'You	don't	have	a	loading	dock?'"	On	second
thought,	those	are	the	kind	of	shenanigans	that	drive	most	sitcoms.

There's	no	easy	way	to	classify	the	many	free	source	code	contributors.	Many
have	children,	but	many	don't.	Some	don't	mention	them,	some	slip	in	references
to	them,	and	others	parade	them	around	with	pride.	Some	are	married,	some	are
not.	Some	are	openly	gay.	Some	exist	in	sort	of	a	presexual	utopia	of	early
teenage	boyhood.	Some	of	them	are	still	in	their	early	teens.	Some	aren't.

Some	contributors	are	fairly	described	as	"ragtag,"	but	many	aren't.	Many	are
corporate	droids	who	work	in	cubicle	farms	during	the	day	and	create	free
software	projects	at	night.	Some	work	at	banks.	Some	work	on	databases	for
human	resource	departments.	Some	build	websites.	Everyone	has	a	day	job,	and
many	keep	themselves	clean	and	ready	to	be	promoted	to	the	next	level.	Bruce
Perens,	one	of	the	leaders	of	the	Debian	group,	used	to	work	at	the	Silicon
Valley	glitz	factory	Pixar	and	helped	write	some	of	the	software	that	created	the
hit	Toy	Story.

Still,	he	told	me,	"At	the	time	Toy	Story	was	coming	out,	there	was	a	space
shuttle	flying	with	the	Debian	GNU/Linux	distribution	on	it	controlling	a
biological	experiment.	People	would	say	'Are	you	proud	of	working	at	Pixar?'
and	then	I	would	say	my	hobby	software	was	running	on	the	space	shuttle	now.
That	was	a	turnaround	point	when	I	realized	that	Linux	might	become	my
career."

In	fact,	it's	not	exactly	fair	to	categorize	many	of	the	free	software	programmers
as	a	loosely	knit	band	of	rebel	programmers	out	to	destroy	Microsoft.	It's	a	great
image	that	feeds	the	media's	need	to	highlight	conflict,	but	it's	not	exactly	true.
The	free	software	movement	began	long	before	Microsoft	was	a	household
word.	Richard	Stallman	wrote	his	manifesto	setting	out	some	of	the	precepts	in
1984.	He	was	careful	to	push	the	notion	that	programmers	always	used	to	share
the	source	code	to	software	until	the	1980s,	when	corporations	began	to	develop
the	shrink-wrapped	software	business.	In	the	olden	days	of	the	1950s,	1960s,	and
1970s,	programmers	always	shared.	While	Stallman	has	been	known	to	flip	his
middle	finger	out	at	the	name	Bill	Gates	for	the	reporting	pleasure	of	a	writer
from	Salon	magazine,	he's	not	after	Microsoft	per	se.	He	just	wants	to	return
computing	to	the	good	old	days	when	the	source	was	free	and	sharing	was
possible.

The	same	holds	for	most	of	the	other	programmers.	Some	contribute	source	code
because	it	helps	them	with	their	day	job.	Some	stay	up	all	night	writing	code
because	they're	obsessed.	Some	consider	it	an	act	of	charity,	a	kind	of	noblesse
oblige.	Some	want	to	fix	bugs	that	bother	them.	Some	want	fame,	glory,	and	the
respect	of	all	other	computer	programmers.	There	are	thousands	of	reasons	why
new	open	source	software	gets	written,	and	very	few	of	them	have	anything	to
do	with	Microsoft.

In	fact,	it's	a	bad	idea	to	see	the	free	software	revolution	as	having	much	to	do
with	Microsoft.	Even	if	Linux,	FreeBSD,	and	other	free	software	packages	win,
Microsoft	will	probably	continue	to	fly	along	quite	happily	in	much	the	same
way	that	IBM	continues	to	thrive	even	after	losing	the	belt	of	the	Heavyweight
Computing	Champion	of	the	World	to	Microsoft.	Anyone	who	spends	his	or	her
time	focused	on	the	image	of	a	ragtag	band	of	ruffians	and	orphans	battling	the
Microsoft	leviathan	is	bound	to	miss	the	real	story.

The	fight	is	really	just	a	by-product	of	the	coming	of	age	of	the	information
business.	The	computer	trade	is	rapidly	maturing	and	turning	into	a	service
industry.	In	the	past,	the	manufacture	of	computers	and	software	took	place	on
assembly	lines	and	in	cubicle	farms.	People	bought	shrink-wrapped	items	from
racks.	These	were	items	that	were	manufactured.	Now	both	computers	and
software	are	turning	into	dirtcheap	commodities	whose	only	source	of	profit	is
customization	and	handholding.	The	real	money	now	is	in	service.

Along	the	way,	the	free	software	visionaries	stumbled	onto	a	curious	fact.	They
could	give	away	software,	and	people	would	give	back	improvements	to	it.
Software	cost	practically	nothing	to	duplicate,	so	it	wasn't	that	hard	to	just	give	it
away	after	it	was	written.	At	first,	this	was	sort	of	a	pseudo-communist	thing	to
do,	but	today	it	seems	like	a	brilliant	business	decision.	If	the	software	is	turning
into	a	commodity	with	a	price	falling	toward	zero,	why	not	go	all	the	way	and
gain	whatever	you	can	by	freely	sharing	the	code?	The	profits	could	come	by
selling	services	like	programming	and	education.	The	revolution	isn't	about
defeating	Microsoft;	it's	just	a	change	in	the	whole	way	the	world	buys	and	uses
computers.

The	revolution	is	also	the	latest	episode	in	the	battle	between	the	programmers
and	the	suits.	In	a	sense,	it's	a	battle	for	the	hearts	and	minds	of	the	people	who
are	smart	enough	to	create	software	for	the	world.	The	programmers	want	to
write	challenging	tools	that	impress	their	friends.	The	suits	want	to	rein	in

programmers	and	channel	their	energy	toward	putting	more	money	in	the
pockets	of	the	corporation.	The	suits	hope	to	keep	programmers	devoted	by
giving	them	fat	paychecks,	but	it's	not	clear	that	programmers	really	want	the
cash.	The	freedom	to	do	whatever	you	want	with	source	code	is	intrinsically
rewarding.	The	suits	want	to	keep	software	under	lock	and	key	so	they	can	sell	it
and	maximize	revenues.	The	free	software	revolution	is	really	about	a	bunch	of
programmers	saying,	"Screw	the	cash.	I	really	want	the	source	code."

The	revolution	is	also	about	defining	wealth	in	cyberspace.	Microsoft	promises
to	build	neat	tools	that	will	help	us	get	wherever	we	want	to	go	today--if	we	keep
writing	larger	and	larger	checks.	The	open	source	movement	promises	software
with	practically	no	limitations.	Which	is	a	better	deal?	The	Microsoft
millionaires	probably	believe	in	proprietary	software	and	suggest	that	the
company	wouldn't	have	succeeded	as	it	did	if	it	didn't	provide	something	society
wanted.	They	created	good	things,	and	the	people	rewarded	them.

But	the	open	source	movement	has	also	created	great	software	that	many	think	is
better	than	anything	Microsoft	has	built.	Is	society	better	off	with	a	computer
infrastructure	controlled	by	a	big	corporate	machine	driven	by	cash?	Or	does
sharing	the	source	code	create	better	software?	Are	we	at	a	point	where	money	is
not	the	best	vehicle	for	lubricating	the	engines	of	societal	advancement?	Many	in
the	free	software	world	are	pondering	these	questions.

Anyone	who	tunes	in	to	the	battle	between	Microsoft	and	the	world	expecting	to
see	a	good	old-fashioned	fight	for	marketplace	domination	is	going	to	miss	the
real	excitement.	Sure,	Linux,	FreeBSD,	OpenBSD,	NetBSD,	Mach,	and	the
thousands	of	other	free	software	projects	are	going	to	come	out	swinging.
Microsoft	is	going	to	counterpunch	with	thousands	of	patents	defended	by
armies	of	lawyers.	Some	of	the	programmers	might	even	be	a	bit	weird,	and	a
few	will	be	entitled	to	wear	the	adjective	"ragtag."	But	the	real	revolution	has
nothing	to	do	with	whether	Bill	Gates	keeps	his	title	as	King	of	the	Hill.	It	has
nothing	to	do	with	whether	the	programmers	stay	up	late	and	work	in	the	nude.	It
has	nothing	to	do	with	poor	grooming,	extravagant	beards,	Coke-bottle	glasses,
black	trench	coats,	or	any	of	the	other	stereotypes	that	fuel	the	media's	image.

It's	about	the	gradual	commodification	of	software	and	hardware.	It's	about	the
need	for	freedom	and	the	quest	to	create	cool	software.	It's	about	a	world	just
discovering	how	much	can	be	accomplished	when	information	can	be	duplicated
for	next	to	nothing.

The	real	struggle	is	finding	out	how	long	society	can	keep	hanging	ten	toes	off
the	edge	of	the	board	as	we	get	carried	by	the	wave	of	freedom.	Is	there	enough
energy	in	the	wave	and	enough	grace	in	society	to	ride	it	all	the	way	to	the
shore?	Or	will	something	wicked,	something	evil,	or	something	sloppy	come
along	and	mess	it	up?

1.	 COLLEGE

6.1	SPEAKING	IN	TONGUES

.......................

I	was	part	of	the	free	software	movement	for	many	years,	but	I	didn't	know	it.
When	I	was	a	graduate	student,	I	released	the	source	code	to	a	project.	In	1991,
that	was	the	sort	of	thing	to	do	in	universities.	Publishing	the	source	code	to	a
project	was	part	of	publishing	a	paper	about	it.	And	the	academy	put	publishing
pretty	high	on	its	list.

My	first	big	release	came	in	May	1991	when	I	circulated	a	program	that	let
people	hide	secret	messages	as	innocuous	text.	My	program	turned	any	message
into	some	cute	play-by-play	from	a	baseball	game,	like	"No	contact	in
Mudsville!	It's	a	fastball	with	wings.	No	wood	on	that	one.	He's	uncorking	what
looks	like	a	spitball.	Whooooosh!	Strike!	He's	out	of	there."	The	secret	message
was	encoded	in	the	choices	of	phrases.	"He's	out	of	there"	meant	something
different	from	"He	pops	it	up	to	Orville	Baskethands."	The	program	enabled
information	to	mutate	into	other	forms,	just	like	the	shapeshifting	monsters	from
The	X-Files.	I	sent	out	an	announcement	to	the	influential	newsgroup	comp.risks
and	soon	hundreds	of	people	were	asking	for	free	copies	of	the	software.

I	created	this	program	because	Senator	Joe	Biden	introduced	a	bill	into	the
Senate	that	would	require	the	manufacturers	of	all	computer	networks	to	provide
a	way	for	the	police	to	get	copies	of	any	message.	The	Federal	Bureau	of
Investigation,	among	others,	was	afraid	that	they	would	have	trouble	obtaining
evidence	if	people	were	able	to	encode	data.	My	software	illustrated	how	hard	it
would	be	to	stop	the	flow	of	information.

The	best,	and	perhaps	most	surprising,	part	of	the	whole	bloom	of	email	came
when	a	fellow	I	had	never	met,	D.	Jason	Penney,	converted	the	program	from	the
fading	Pascal	into	the	more	popular	C.	He	did	this	on	his	own	and	sent	the	new,

converted	software	back	to	me.	When	I	asked	him	whether	I	could	distribute	his
version,	he	said	that	it	was	my	program.	He	was	just	helping	out.

I	never	thought	much	more	about	that	project	until	I	started	to	write	this	book.
While	two	or	three	people	a	month	would	write	asking	for	copies	of	the
software,	it	never	turned	into	more	than	a	bit	of	research	into	the	foundations	of
secret	codes	and	a	bit	of	a	mathematical	parlor	trick.	It	was	more	an	academic
exercise	than	a	prototype	of	something	that	could	rival	Microsoft	and	make	me
rich.

In	the	past,	I	thought	the	project	never	developed	into	more	than	a	cute	toy
because	there	was	no	market	for	it.	The	product	wasn't	readily	useful	for
businesses,	and	no	one	starts	a	company	without	the	hope	that	millions	of	folks
desperately	need	a	product.	Projects	needed	programmers	and	programmers	cost
money.	I	just	assumed	that	other	free	software	projects	would	fall	into	the	same
chasm	of	lack	of	funding.

Now,	after	investigating	the	free	software	world,	I	am	convinced	that	my	project
was	a	small	success.	Penney's	contribution	was	not	just	a	strange	aberration	but	a
relatively	common	event	on	the	Internet.	People	are	quite	willing	to	take	a	piece
of	software	that	interests	them,	modify	it	to	suit	their	needs,	and	then	contribute
it	back	to	the	world.	Sure,	most	people	only	have	a	few	hours	a	week	to	work	on
such	projects,	but	they	add	up.	Penney's	work	made	my	software	easier	to	use	for
many	C	programmers,	thus	spreading	it	further.

In	fact,	I	may	have	been	subconsciously	belittling	the	project.	It	took	only	three
or	four	days	of	my	time	and	a	bit	more	of	Penney's,	but	it	was	a	complete	version
of	a	powerful	encryption	system	that	worked	well.	Yes,	there	was	no	money
flowing,	but	that	may	have	made	it	more	of	a	success.	Penney	probably	wouldn't
have	given	me	his	C	version	if	he	knew	I	was	going	to	sell	it.	He	probably	would
have	demanded	a	share.	Lawyers	would	have	gotten	involved.	The	whole	project
would	have	been	gummed	up	with	contracts,	release	dates,	distribution	licenses,
and	other	hassles	that	just	weren't	worth	it	for	a	neat	way	to	hide	messages.	Sure,
money	is	good,	but	money	also	brings	hassles.

6.2	CASH	VERSUS	SHARING

.......................

In	the	1980s	and	1990s,	programmers	in	universities	still	shared	heavily	with	the

world.	The	notion	of	sharing	source	code	with	the	world	owes	a	great	deal	to	the
academic	tradition	of	publishing	results	so	others	can	read	them,	think	about
them,	critique	them,	and	ultimately	extend	them.	Many	of	the	government
granting	agencies	like	the	National	Science	Foundation	and	the	Defense
Advanced	Research	Projects	Agency	fostered	this	sharing	by	explicitly	requiring
that	people	with	grants	release	the	source	code	to	the	world	with	no	restrictions.
Much	of	the	Internet	was	created	by	people	who	gave	out	these	kinds	of
contracts	and	insisted	upon	shared	standards	that	weren't	proprietary.	This
tradition	has	fallen	on	harder	times	as	universities	became	more	obsessed	with
the	profits	associated	with	patents	and	contract	research,	but	the	idea	is	so
powerful	that	it's	hard	to	displace.

The	free	software	movement	in	particular	owes	a	great	deal	to	the	Massachusetts
Institute	of	Technology.	Richard	Stallman,	the	man	who	is	credited	with	starting
the	movement,	began	working	in	MIT's	computer	labs	in	the	1970s.	He	gets
credit	for	sparking	the	revolution	because	he	wrote	the	GNU	Manifesto	in	1984.
The	document	spelled	out	why	it's	essential	to	share	the	source	code	to	a
program	with	others.	Stallman	took	the	matter	to	heart	because	he	also	practiced
what	he	wrote	about	and	contributed	several	great	programs,	including	a	text
editor	with	thousands	of	features.

Of	course,	Stallman	doesn't	take	credit	for	coming	up	with	the	idea	of	sharing
source	code.	He	remembers	his	early	years	at	MIT	quite	fondly	and	speaks	of
how	people	would	share	their	source	code	and	software	without	restrictions.	The
computers	were	new,	complicated,	and	temperamental.	Cooperation	was	the	only
way	that	anyone	could	accomplish	anything.	That's	why	IBM	shared	the	source
code	to	the	operating	systems	on	their	mainframes	though	the	early	part	of	the
1960s.

This	tradition	started	to	fade	by	the	early	1980s	as	the	microcomputer	revolution
began.	Companies	realized	that	most	people	just	wanted	software	that	worked.
They	didn't	need	the	source	code	and	all	the	instructions	that	only	programmers
could	read.	So	companies	quickly	learned	that	they	could	keep	the	source	code
to	themselves	and	keep	their	customers	relatively	happy	while	locking	out
competitors.	They	were	kings	who	built	a	wall	to	keep	out	the	intruders.

The	GNU	Manifesto	emerged	as	the	most	radical	reaction	to	the	trend	toward
locking	up	the	source	code.	While	many	people	looked	at	the	GNU	Manifesto
with	confusion,	others	became	partial	converts.	They	began	donating	code	that

they	had	written.	Some	tossed	random	utility	programs	into	the	soup,	some
offered	games,	and	some	sent	in	sophisticated	packages	that	ran	printers,
networks,	or	even	networks	of	printers.	A	few	even	became	complete	disciples
and	started	writing	code	full-time	for	the	GNU	project.	This	growth	was	largely
ignored	by	the	world,	which	became	entranced	with	the	growth	of	Microsoft.
More	and	more	programmers,	however,	were	spending	more	time	mingling	with
the	GNU	project,	and	it	was	taking	hold.

In	the	early	1980s,	an	operating	system	known	as	UNIX	had	grown	to	be	very
popular	in	universities	and	laboratories.	AT&T	designed	and	built	it	at	Bell	Labs
throughout	the	1970s.	In	the	beginning,	the	company	shared	the	source	code
with	researchers	and	computer	scientists	in	universities,	in	part	because	the
company	was	a	monopoly	that	was	only	allowed	to	sell	telephone	service.	UNIX
was	just	an	experiment	that	the	company	started	to	help	run	the	next	generation
of	telephone	switches,	which	were	already	turning	into	specialized	computers.

In	the	beginning,	the	project	was	just	an	academic	exercise,	but	all	of	the
research	and	sharing	helped	create	a	nice	operating	system	with	a	wide	audience.
UNIX	turned	out	to	be	pretty	good.	When	the	phone	company	started	splitting
up	in	1984,	the	folks	at	AT&T	wondered	how	they	could	turn	a	profit	from	what
was	a	substantial	investment	in	time	and	money.	They	started	by	asking	people
who	used	UNIX	at	the	universities	to	sign	non-disclosure	agreements.

Stallman	looked	at	this	as	mind	control	and	the	death	of	a	great	tradition.	Many
others	at	the	universities	were	more	pragmatic.	AT&T	had	given	plenty	of
money	and	resources	to	the	university.	Wasn't	it	fair	for	the	university	to	give
something	back?

Stallman	looked	at	this	a	bit	differently.	Yes,	AT&T	was	being	nice	when	they
gave	grants	to	the	university,	but	weren't	masters	always	kind	when	they	gave
bowls	of	gruel	to	their	slaves?	The	binary	version	AT&T	started	distributing	to
the	world	was	just	gruel	for	Stallman.	The	high	priests	and	lucky	few	got	to	read
the	source	code.	They	got	to	eat	the	steak	and	lobster	spread.	Stallman	saw	this
central,	controlling,	corporate	force	as	the	enemy,	and	he	began	naming	his	work
GNU,	which	was	a	recursive	acronym	that	stood	for	"GNU's	Not	UNIX."	The
GNU	project	aimed	to	produce	a	complete	working	operating	system	that	was
going	to	do	everything	that	UNIX	did	for	none	of	the	moral,	emotional,	or
ethical	cost.	Users	would	be	able	to	read	the	source	code	to	Stallman's	OS	and
modify	it	without	signing	a	tough	non-disclosure	agreement	drafted	by	teams	of

lawyers.	They	would	be	able	to	play	with	their	software	in	complete	freedom.
Stallman	notes	that	he	never	aimed	to	produce	an	operating	system	that	didn't
cost	anything.	The	world	may	be	entranced	with	the	notion	of	a	price	tag	of	zero,
but	for	Stallman,	that	was	just	a	side	effect	of	the	unrestricted	sharing.

Creating	a	stand-alone	system	that	would	do	everything	with	free	software	was
his	dream,	but	it	was	a	long	way	from	fruition,	and	Stallman	was	smart	enough
to	start	off	with	a	manageable	project.	He	began	by	producing	a	text	editor
known	as	GNU	Emacs.	The	program	was	a	big	hit	because	it	was	highly
customizable.	Some	people	just	used	the	program	to	edit	papers,	but	others
programmed	it	to	accomplish	fancier	tasks	such	as	reading	their	e-mail	and
generating	automatic	responses.	One	programmer	was	told	by	management	that
he	had	to	include	plenty	of	comments	in	his	source	code,	so	he	programmed
GNU	Emacs	to	insert	them	automatically.	One	professor	created	a	version	of
GNU	Emacs	that	would	automatically	insert	random	praise	into	requests	to	his
secretary.[^2]	Practically	everything	in	Emacs	could	be	changed	or	customized.
If	you	didn't	like	hitting	the	delete	key	to	fix	a	mistyped	character,	then	you
could	arrange	for	the	6	key	to	do	the	same	thing.	This	might	make	it	hard	to	type
numbers,	but	the	user	was	free	to	mess	up	his	life	as	much	as	he	wanted.

[2]:	"Where	are	those	reports	I	asked	you	to	copy?	You're	doing	a	great	job.
Thanks	for	all	the	help,"	on	one	day.	"Are	you	ever	going	to	copy	those	reports?
You're	doing	a	great	job.	Thanks	for	all	the	help,"	on	the	next.

It	took	Microsoft	years	to	catch	up	with	Stallman's	solution,	and	even	then	they
implemented	it	in	a	dangerous	way.	They	let	people	create	little	custom
programs	for	modifying	documents,	but	they	forgot	to	prevent	malicious	code
from	crying	havoc.	Today,	Microsoft	Word	allows	little	programs	named	macro
viruses	to	roam	around	the	planet.	Open	up	a	Word	document,	and	a	virus	might
be	lurking.

In	the	1980s,	the	free	software	world	devoted	itself	to	projects	like	this.	GNU
Emacs	became	a	big	hit	in	the	academic	world	where	system	administrators
could	install	it	for	free	and	not	worry	about	counting	students	or	negotiating
licenses.	Also,	smart	minds	were	better	able	to	appreciate	the	cool	flexibility
Stallman	had	engineered	into	the	system.	Clever	folks	wasted	time	by	adding
filters	to	the	text	editor	that	would	scan	their	text	and	translate	it	into,	like,
Valley	Girl	talk	or	more	urban	jive.

The	GNU	project	grew	by	accepting	contributions	from	many	folks	across	the
country.	Some	were	fairly	sophisticated,	eye-catching	programs	like	GNU
Chess,	a	program	that	was	quite	competitive	and	as	good	as	all	but	the	best
packages.	Most	were	simple	tools	for	handling	many	of	the	day-to-day	chores
for	running	a	computer	system.	System	administrators,	students,	and
programmers	from	around	the	country	would	often	take	on	small	jobs	because
they	felt	compelled	to	fix	something.	When	they	were	done,	a	few	would	kick
the	source	code	over	to	the	GNU	project.

Stallman's	biggest	programming	project	for	GNU	during	the	1980s	was	writing
the	GNU	C	compiler	(GCC).	This	program	was	an	important	tool	that	converted
the	C	source	code	written	by	humans	into	the	machine	code	understood	by
computers.	The	GCC	package	was	an	important	cornerstone	for	the	GNU	project
in	several	ways.	First,	it	was	one	of	the	best	compilers	around.	Second,	it	could
easily	move	from	machine	to	machine.	Stallman	personally	ported	it	to	several
different	big	platforms	like	Intel's	x86	line	of	processors.	Third,	the	package	was
free,	which	in	the	case	of	GNU	software	meant	that	anyone	was	free	to	use	and
modify	the	software.

The	GCC	provided	an	important	harmonizing	effect	to	the	GNU	project.
Someone	could	write	his	program	on	a	machine	built	by	Digital,	compile	it	with
GCC,	and	be	fairly	certain	that	it	would	run	on	all	other	machines	with	GCC.
That	allowed	the	GNU	software	to	migrate	freely	throughout	the	world,	from
machine	to	machine,	from	Sun	to	Apollo	to	DEC	to	Intel.

The	GCC's	license	also	attracted	many	developers	and	curious	engineers.
Anyone	could	use	the	source	code	for	their	projects,	and	many	did.	Over	time,
the	compiler	moved	from	machine	to	machine	as	users	converted	it.	Sometimes
a	chip	company	engineer	would	rework	the	compiler	to	make	it	work	on	a	new
chip.	Sometimes	a	user	would	do	it	for	a	project.	Sometimes	a	student	would	do
it	when	insomnia	struck.	Somehow,	it	moved	from	machine	to	machine,	and	it
carried	all	of	the	other	GNU	software	with	it.

The	next	great	leap	forward	came	in	the	early	1990s	as	people	began	to	realize
that	a	completely	free	operating	system	was	a	serious	possibility.	Stallman	had
always	dreamed	of	replacing	UNIX	with	something	that	was	just	as	good	and
accompanied	by	the	source	code,	but	it	was	a	large	task.	It	was	the	reason	he
started	the	GNU	project.	Slowly	but	surely,	the	GNU	project	was	assembling	the
parts	to	make	it	work.	There	were	hundreds	of	small	utilities	and	bigger	tools

donated	to	the	GNU	project,	and	those	little	bits	were	starting	to	add	up.

The	free	software	movement	also	owes	a	great	deal	to	Berkeley,	or	more
precisely	to	a	small	group	in	the	Department	of	Computer	Science	at	the
University	of	California	at	Berkeley.	The	group	of	hardcore	hackers,	which
included	professors,	research	associates,	graduate	students,	and	a	few
undergraduates,	had	developed	a	version	of	UNIX	known	as	BSD	(Berkeley
Software	Distribution).	AT&T	shared	their	version	of	UNIX	with	Berkeley,	and
the	programmers	at	Berkeley	fixed,	extended,	and	enhanced	the	software.	These
extensions	formed	the	core	of	BSD.	Their	work	was	part	experimental	and	part
practical,	but	the	results	were	widely	embraced.	Sun	Microsystems,	one	of
Silicon	Valley's	UNIX	workstation	companies,	used	a	version	on	its	machines
through	the	early	1990s	when	they	created	a	new	version	known	as	Solaris	by
folding	in	some	of	AT&T's	System	V.	Many	feel	that	BSD	and	its	approach
remain	the	foundation	of	the	OS.

The	big	problem	was	that	the	team	built	their	version	on	top	of	source	code	from
AT&T.	The	folks	at	Berkeley	and	their	hundreds,	if	not	thousands,	of	friends,
colleagues,	and	students	who	contributed	to	the	project	gave	their	source	code
away,	but	AT&T	did	not.	This	gave	AT&T	control	over	anyone	who	wanted	to
use	BSD,	and	the	company	was	far	from	ready	to	join	the	free	software
movement.	Millions	of	dollars	were	spent	on	the	research	developing	UNIX.
The	company	wanted	to	make	some	money	back.

The	team	at	Berkeley	fought	back,	and	Keith	Bostic,	one	of	the	core	team,	began
organizing	people	together	to	write	the	source	code	that	could	replace	these	bits.
By	the	beginning	of	the	1990s,	he	had	cajoled	enough	of	his	friends	to
accomplish	it.	In	June	1991,	the	group	produced	"Networking	Release	2,"	a
version	that	included	almost	all	of	a	complete	working	version	of	UNIX.	All	you
needed	to	do	was	add	six	files	to	have	a	complete	operating	system.

AT&T	was	not	happy.	It	had	created	a	separate	division	known	as	the	UNIX
Systems	Laboratory	and	wanted	to	make	a	profit.	Free	source	code	from
Berkeley	was	tough	competition.	So	the	UNIX	Systems	Laboratory	sued.

This	lawsuit	marked	the	end	of	universities'	preeminent	role	in	the	development
of	free	software.	Suddenly,	the	lawsuit	focused	everyone's	attention	and	made
them	realize	that	taking	money	from	corporations	came	into	conflict	with
sharing	software	source	code.	Richard	Stallman	left	MIT	in	1984	when	he

understood	that	a	university's	need	for	money	would	eventually	trump	his	belief
in	total	sharing	of	source	code.	Stallman	was	just	a	staff	member	who	kept	the
computers	running.	He	wasn't	a	tenured	professor	who	could	officially	do
anything.	So	he	started	the	Free	Software	Foundation	and	never	looked	back.
MIT	helped	him	at	the	beginning	by	loaning	him	space,	but	it	was	clear	that	the
relationship	was	near	the	end.	Universities	needed	money	to	function.	Professors
at	many	institutions	had	quotas	specifying	how	much	grant	money	they	needed
to	raise.	Stallman	wasn't	bringing	in	cash	by	giving	away	his	software.

Meanwhile,	on	the	other	coast,	the	lawsuit	tied	up	Berkeley	and	the	BSD	project
for	several	years,	and	the	project	lost	valuable	energy	and	time	by	devoting	them
to	the	legal	fight.	In	the	meantime,	several	other	completely	free	software
projects	started	springing	up	around	the	globe.	These	began	in	basements	and
depended	on	machines	that	the	programmer	owned.	One	of	these	projects	was
started	by	Linus	Torvalds	and	would	eventually	grow	to	become	Linux,	the
unstoppable	engine	of	hype	and	glory.	He	didn't	have	the	money	of	the	Berkeley
computer	science	department,	and	he	didn't	have	the	latest	machines	that
corporations	gave	them.	But	he	had	freedom	and	the	pile	of	source	code	that
came	from	unaffiliated,	free	projects	like	GNU	that	refused	to	compromise	and
cut	intellectual	corners.	Although	Torvalds	might	not	have	realized	it	at	the	time,
freedom	turned	out	to	be	most	valuable	of	all.

1.	 QUICKSAND

The	story	of	the	end	of	the	university's	preeminence	in	the	free	software	world	is
a	tale	of	greed	and	corporate	power.	While	many	saw	an	unhappy	ending	coming
for	many	years,	few	could	do	much	to	stop	the	inevitable	collision	between	the
University	of	California	at	Berkeley	and	its	former	patron,	AT&T.

The	lawsuit	between	AT&T	and	the	University	of	California	at	Berkeley	had	its
roots	in	what	marriage	counselors	love	to	call	a	"poorly	conceived	relationship."
By	the	end	of	the	1980s,	the	computer	science	department	at	Berkeley	had	a
problem.	They	had	been	collaborating	with	AT&T	on	the	UNIX	system	from	the
beginning.	They	had	written	some	nice	code,	including	some	of	the	crucial
software	that	formed	the	foundation	of	the	Internet.	Students,	professors,
scientists,	and	even	Wall	Street	traders	loved	the	power	and	flexibility	of	UNIX.
Everyone	wanted	UNIX.

The	problem	was	that	not	everyone	could	get	UNIX.	AT&T,	which	had
sponsored	much	of	the	research	at	Berkeley,	kept	an	iron	hand	on	its	invention.
If	you	wanted	to	run	UNIX,	then	you	needed	to	license	some	essential	software
from	AT&T	that	sat	at	the	core	of	the	system.	They	were	the	supreme	ruler	of	the
UNIX	domain,	and	they	expected	a	healthy	tithe	for	the	pleasure	of	living	within
it.

One	of	the	people	who	wanted	UNIX	was	the	Finnish	student	Linus	Torvalds,
who	couldn't	afford	this	tithe.	He	was	far	from	the	first	one,	and	the	conflict
began	long	before	he	started	to	write	Linux	in	1991.

Toward	the	end	of	the	1980s,	most	people	in	the	computer	world	were	well
aware	of	Stallman's	crusade	against	the	corporate	dominance	of	AT&T	and
UNIX.	Most	programmers	knew	that	GNU	stood	for	"GNU's	Not	UNIX."
Stallman	was	not	the	only	person	annoyed	by	AT&T's	attitude	toward	secrecy
and	non-disclosure	agreements.	In	fact,	his	attitude	was	contagious.	Some	of	the
folks	at	Berkeley	looked	at	the	growth	of	tools	emerging	from	the	GNU	project
and	felt	a	bit	used.	They	had	written	many	pieces	of	code	that	found	their	way
into	AT&T's	version	of	UNIX.	They	had	contributed	many	great	ideas.	Yet
AT&T	was	behaving	as	if	AT&T	alone	owned	it.	They	gave	and	gave,	while
AT&T	took.

Stallman	got	to	distribute	his	source	code.	Stallman	got	to	share	with	others.
Stallman	got	to	build	his	reputation.	Programmers	raved	about	Stallman's	Emacs.

People	played	GNU	Chess	at	their	offices.	Others	were	donating	their	tools	to
the	GNU	project.	Everyone	was	getting	some	attention	by	sharing	except	the
folks	at	Berkeley	who	collaborated	with	AT&T.	This	started	to	rub	people	the
wrong	way.

Something	had	to	be	done,	and	the	folks	at	Berkeley	started	feeling	the	pressure.
Some	at	Berkeley	wondered	why	the	professors	had	entered	into	such	a	Faustian
bargain	with	a	big	corporation.	Was	the	payoff	great	enough	to	surrender	their
academic	souls?	Just	where	did	AT&T	get	off	telling	us	what	we	could	publish?

Others	outside	of	Berkeley	looked	in	and	saw	a	treasure	trove	of	software	that
was	written	by	academics.	Many	of	them	were	friends.	Some	of	them	had
studied	at	Berkeley.	Some	had	even	written	some	of	the	UNIX	code	before	they
graduated.	Some	were	companies	competing	with	AT&T.	All	of	them	figured
that	they	could	solve	their	UNIX	problems	if	they	could	just	get	their	hands	on
the	source	code.	There	had	to	be	some	way	to	get	it	released.

Slowly,	the	two	groups	began	making	contact	and	actively	speculating	on	how	to
free	Berkeley's	version	of	UNIX	from	AT&T's	grip.

7.1	BREAKING	THE	BOND

.....................

The	first	move	to	separate	Berkeley's	version	of	UNIX	from	AT&T's	control
wasn't	really	a	revolution.	No	one	was	starting	a	civil	war	by	firing	shots	at	Fort
Sumter	or	starting	a	revolution	by	dropping	tea	in	the	harbor.	In	fact,	it	started
long	before	the	lawsuit	and	Linux.	In	1989,	some	people	wanted	to	start	hooking
their	PCs	and	other	devices	up	to	the	Internet,	and	they	didn't	want	to	use	UNIX.

Berkeley	had	written	some	of	the	software	known	as	TCP/IP	that	defined	how
computers	on	the	Internet	would	communicate	and	share	packets.	They	wrote	the
software	for	UNIX	because	that	was	one	of	the	favorite	OSs	around	the	labs.
Other	companies	got	a	copy	of	the	code	by	buying	a	source	license	for	UNIX
from	AT&T.	The	TCP/IP	code	was	just	part	of	the	mix.	Some	say	that	the	cost	of
the	license	reached	$250,000	or	more	and	required	that	the	customer	pay	a	per-
unit	fee	for	every	product	that	was	shipped.	Those	prices	didn't	deter	the	big
companies	like	IBM	or	DEC.	They	thought	of	UNIX	as	an	OS	for	the	hefty
workstations	and	minicomputers	sold	to	businesses	and	scientists.	Those	guys
had	the	budget	to	pay	for	big	hardware,	so	it	was	possible	to	slip	the	cost	of	the

UNIX	OS	in	with	the	package.

But	the	PC	world	was	different.	It	was	filled	with	guys	in	garages	who	wanted	to
build	simple	boards	that	would	let	a	PC	communicate	on	the	Internet.	These
guys	were	efficient	and	knew	how	to	scrounge	up	cheap	parts	from	all	over	the
world.	Some	of	them	had	gone	to	Berkeley	and	learned	to	program	on	the
VAXes	and	Sun	workstations	running	Berkeley's	version	of	UNIX.	A	few	of
them	had	even	helped	write	or	debug	the	code.	They	didn't	see	why	they	had	to
buy	such	a	big	license	for	something	that	non-AT&T	folks	had	written	with	the
generous	help	of	large	government	grants.	Some	even	worked	for	corporations
that	gave	money	to	support	Berkeley's	projects.	Why	couldn't	they	get	at	the
code	they	helped	pay	to	develop?

Kirk	McKusick,	one	of	the	members	of	the	Computer	Systems	Research	Group
at	the	time,	remembers,	"People	came	to	us	and	said,	'Look,	you	wrote	TCP/IP.
Surely	you	shouldn't	require	an	AT&T	license	for	that?'	These	seemed	like
reasonable	requests.	We	decided	to	start	with	something	that	was	clearly	not	part
of	the	UNIX	we	got	from	AT&T.	It	seemed	very	clear	that	we	could	pull	out	the
TCP/IP	stack	and	distribute	that	without	running	afoul	of	AT&T's	license."

So	the	Berkeley	Computer	Systems	Research	Group	(CSRG)	created	what	they
called	Network	Release	1	and	put	it	on	the	market	for	$1,000	in	June	1989.	That
wasn't	really	the	price	because	the	release	came	with	one	of	the	first	versions	of
what	would	come	to	be	known	as	the	BSD-style	license.	Once	you	paid	the
$1,000,	you	could	do	whatever	you	wanted	with	the	code,	including	just	putting
it	up	on	the	Net	and	giving	it	away.

"We	thought	that	two	or	three	groups	would	pay	the	money	and	then	put	the
code	on	the	Internet,	but	in	fact,	hundreds	of	sites	actually	paid	the	one	thousand
dollars	for	it,"	says	McKusick	and	adds,	"mostly	so	they	could	get	a	piece	of
paper	from	the	university	saying,	'You	can	do	what	you	want	with	this.'"

This	move	worked	out	well	for	Berkeley	and	also	for	UNIX.	The	Berkeley
TCP/IP	stack	became	the	best-known	version	of	the	code,	and	it	acted	like	a
reference	version	for	the	rest	of	the	Net.	If	it	had	a	glitch,	everyone	else	had	to
work	around	the	glitch	because	it	was	so	prevalent.	Even	today,	companies	like
Sun	like	to	brag	that	their	TCP/IP	forms	the	backbone	of	the	Net,	and	this	is	one
of	the	reasons	to	buy	a	Sun	instead	of	an	NT	workstation.	Of	course,	the	code	in
Sun's	OS	has	a	rich,	Berkeley-based	heritage,	and	it	may	still	contain	some	of	the

original	BSD	code	for	controlling	the	net.

7.2	IN	FOR	A	PENNY,	IN	FOR	A	POUND

..................................

In	time,	more	and	more	companies	started	forming	in	the	Bay	Area	and	more
and	more	realized	that	Berkeley's	version	of	UNIX	was	the	reference	for	the
Internet.	They	started	asking	for	this	bit	or	that	bit.

Keith	Bostic	heard	these	requests	and	decided	that	the	Berkeley	CSRG	needed	to
free	up	as	much	of	the	source	code	as	possible.	Everyone	agreed	it	was	a	utopian
idea,	but	only	Bostic	thought	it	was	possible	to	accomplish.	McKusick	writes,	in
his	history	of	BSD,	"Mike	Karels	[a	fellow	software	developer]	and	I	pointed	out
that	releasing	large	parts	of	the	system	was	a	huge	task,	but	we	agreed	that	if	he
could	sort	out	how	to	deal	with	re-implementing	the	hundreds	of	utilities	and	the
massive	C	library,	then	we	would	tackle	the	kernel.	Privately,	Karels	and	I
thought	that	would	be	the	end	of	the	discussion."

Dave	Hitz,	a	good	friend	of	Bostic's,	remembers	the	time.	"Bostic	was	more	of	a
commanding	type.	He	just	rounded	up	all	of	his	friends	to	finish	up	the	code.
You	would	go	over	to	his	house	for	dinner	and	he	would	say,	'I've	got	a	list.
What	do	you	want	to	do?'	I	think	I	did	the	cp	command	and	maybe	the	look
command."	Hitz,	of	course,	is	happy	that	he	took	part	in	the	project.	He	recently
founded	Network	Appliance,	a	company	that	packages	a	stripped-down	version
of	BSD	into	a	file	server	that	is	supposed	to	be	a	fairly	bulletproof	appliance	for
customers.	Network	Appliance	didn't	need	to	do	much	software	engineering
when	they	began.	They	just	grabbed	the	free	version	of	BSD	and	hooked	it	up.

Bostic	pursued	people	far	and	wide	to	accomplish	the	task.	He	gave	them	the
published	description	of	the	utility	or	the	part	of	the	library	from	the
documentation	and	then	asked	them	to	reimplement	it	without	looking	at	the
source	code.	This	cloning	operation	is	known	as	a	cleanroom	operation	because
it	is	entirely	legal	if	it	takes	place	inside	a	metaphorical	room	where	the
engineers	inside	don't	have	any	information	about	how	the	AT&T	engineers	built
UNIX.

This	was	not	an	easy	job,	but	Bostic	was	quite	devoted	and	pursued	people
everywhere.	He	roped	everyone	who	could	code	into	the	project	and	often	spent
time	fixing	things	afterward.	The	task	took	18	months	and	included	more	than

400	people	who	received	just	notoriety	and	some	thanks	afterward.	The	400-plus
names	are	printed	in	the	book	he	wrote	with	McKusick	and	Karels	in	1996.

When	Bostic	came	close	to	finishing,	he	stopped	by	McKusick's	office	and
asked	how	the	kernel	was	coming	along.	This	called	McKusick	and	Karels's
bluff	and	forced	them	to	do	some	hard	engineering	work.	In	some	respects,
Bostic	had	the	easier	job.	Writing	small	utility	programs	that	his	team	used	was
hard	work,	but	it	was	essentially	preorganized	and	segmented.	Many	folks	over
the	years	created	manual	files	that	documented	exactly	what	the	programs	were
supposed	to	do.	Each	program	could	be	assigned	separately	and	people	didn't
need	to	coordinate	their	work	too	much.	These	were	just	dishes	for	a	potluck
supper.

Cleaning	up	the	kernel,	however,	was	a	different	matter.	It	was	much	larger	than
many	of	the	smaller	utilities	and	was	filled	with	more	complicated	code	that
formed	a	tightly	coordinated	mechanism.	Sloppy	work	in	one	of	the	utility	files
would	probably	affect	only	that	one	utility,	but	a	glitch	in	the	kernel	would
routinely	bring	down	the	entire	system.	If	Bostic	was	coordinating	a	potluck
supper,	McKusick	and	Karels	had	to	find	a	way	to	create	an	entire	restaurant	that
served	thousands	of	meals	a	day	to	thousands	of	customers.	Every	detail	needed
to	work	together	smoothly.

To	make	matters	more	complicated,	Berkeley's	contributions	to	the	kernel	were
mixed	in	with	AT&T's	contributions.	Both	had	added	on	parts,	glued	in	new
features,	and	created	new	powers	over	the	years.	They	were	de	facto	partners	on
the	project.	Back	in	the	good	old	days,	they	had	both	shared	their	source	code
without	any	long-term	considerations	or	cares.	But	now	that	AT&T	claimed
ownership	of	it	all,	they	had	to	find	a	way	to	unwind	all	of	the	changes	and
figure	out	who	wrote	what.

McKusick	says,	"We	built	a	converted	database	up	line	by	line.	We	took	every
line	of	code	and	inserted	it	into	the	database.	You	end	up	finding	pretty	quickly
where	the	code	migrated	to	and	then	you	decide	whether	it	is	sufficiently	large
enough	to	see	if	it	needed	recoding."

This	database	made	life	much	easier	for	them	and	they	were	able	to	plow
through	the	code,	quickly	recoding	islets	of	AT&T	code	here	and	there.	They
could	easily	pull	up	a	file	filled	with	source	code	and	let	the	database	mark	up
the	parts	that	might	be	owned	by	AT&T.	Some	parts	went	quickly,	but	other

parts	dragged	on.	By	late	spring	of	1991,	they	had	finished	all	but	six	files	that
were	just	too	much	work.

It	would	be	nice	to	report	that	they	bravely	struggled	onward,	forgoing	all
distractions	like	movies,	coffeehouses,	and	friends,	but	that's	not	true.	They
punted	and	tossed	everything	out	the	door	and	called	it	"Network	Release	2."The
name	implied	that	this	new	version	was	just	a	new	revision	of	their	earlier
product,	Network	Release	1,	and	this	made	life	easier	with	the	lawyers.	They	just
grabbed	the	old,	simple	license	and	reused	it.	It	also	disguised	the	fact	that	this
new	pile	of	code	was	only	about	six	files	short	of	a	full-grown	OS.

The	good	news	about	open	source	is	that	projects	often	succeed	even	when	they
initially	fail.	A	commercial	product	couldn't	ship	without	the	complete
functionality	of	the	six	files.	Few	would	buy	it.	Plus,	no	one	could	come	along,
get	a	bug	under	his	bonnet,	and	patch	up	the	holes.	Proprietary	source	code	isn't
available	and	no	one	wants	to	help	someone	else	in	business	without
compensation.

The	new,	almost	complete	UNIX,	however,	was	something	different.	It	was	a
university	project	and	so	university	rules	of	camaraderie	and	sharing	seemed	to
apply.	Another	programmer,	Bill	Jolitz,	picked	up	Network	Release	2	and	soon
added	the	code	necessary	to	fill	the	gap.	He	became	fascinated	with	getting
UNIX	up	and	running	on	a	386	processor,	a	task	that	was	sort	of	like	trying	to	fit
the	latest	traction	control	hardware	and	anti-lock	brakes	on	a	go-cart.	At	the
time,	serious	computer	scientists	worked	on	serious	machines	from	serious
workstation	and	minicomputer	companies.	The	PC	industry	was	building	toys.
Of	course,	there	was	something	macho	to	the	entire	project.	Back	then	I
remember	joking	to	a	friend	that	we	should	try	to	get	UNIX	running	on	the	new
air-conditioning	system,	just	to	prove	it	could	be	done.

Jolitz's	project,	of	course,	found	many	people	on	the	Net	who	didn't	think	it	was
just	a	toy.	Once	he	put	the	source	code	on	the	Net,	a	bloom	of	enthusiasm	spread
through	the	universities	and	waystations	of	the	world.	People	wanted	to
experiment	with	a	high-grade	OS	and	most	could	only	afford	relatively	cheap
hardware	like	the	386.	Sure,	places	like	Berkeley	could	get	the	government	grant
money	and	the	big	corporate	donations,	but	2,000-plus	other	schools	were	stuck
waiting.	Jolitz's	version	of	386BSD	struck	a	chord.

While	news	traveled	quickly	to	some	corners,	it	didn't	reach	Finland.	Network

Release	2	came	in	June	1991,	right	around	the	same	time	that	Linus	Torvalds
was	poking	around	looking	for	a	high-grade	OS	to	use	in	experiments.	Jolitz's
386BSD	came	out	about	six	months	later	as	Torvalds	began	to	dig	into	creating
the	OS	he	would	later	call	Linux.	Soon	afterward,	Jolitz	lost	interest	in	the
project	and	let	it	lie,	but	others	came	along.	In	fact,	two	groups	called	NetBSD
and	FreeBSD	sprang	up	to	carry	the	torch.

Although	it	may	seem	strange	that	three	groups	building	a	free	operating	system
could	emerge	without	knowing	about	each	other,	it	is	important	to	realize	that
the	Internet	was	a	very	different	world	in	1991	and	1992.	The	World	Wide	Web
was	only	a	gleam	in	some	people's	eyes.	Only	the	best	universities	had	general
access	to	the	web	for	its	students,	and	most	people	didn't	understand	what	an	e-
mail	address	was.	Only	a	few	computer-related	businesses	like	IBM	and	Xerox
put	their	researchers	on	the	Net.	The	community	was	small	and	insular.

The	main	conduits	for	information	were	the	USENET	newsgroups,	which	were
read	only	by	people	who	could	get	access	through	their	universities.	This
technology	was	an	efficient	way	of	sharing	information,	although	quite	flawed.
Here's	how	it	worked:	every	so	often,	each	computer	would	call	up	its
negotiators	and	swap	the	latest	articles.	Information	traveled	like	gossip,	which
is	to	say	that	it	traveled	quickly	but	with	very	uneven	distribution.	Computers
were	always	breaking	down	or	being	upgraded.	No	one	could	count	on	every
message	getting	to	every	corner	of	the	globe.

The	NetBSD	and	the	FreeBSD	forks	of	the	BSD	kernel	continue	to	exist
separately	today.	The	folks	who	work	on	NetBSD	concentrate	on	making	their
code	run	on	all	possible	machines,	and	they	currently	list	21	different	platforms
that	range	from	the	omnipresent	Intel	486	to	the	gone	but	not	forgotten
Commodore	Amiga.

The	FreeBSD	team,	on	the	other	hand,	concentrates	on	making	their	product
work	well	on	the	Intel	386.	They	added	many	layers	of	installation	tools	to	make
it	easier	for	the	average	Joe	to	use,	and	now	it's	the	most	popular	version	of	BSD
code	around.

Those	two	versions	used	the	latest	code	from	Berkeley.	Torvalds,	on	the	other
hand,	didn't	know	about	the	386BSD,	FreeBSD,	or	NetBSD.	If	he	had	found	out,
he	says,	he	probably	would	have	just	downloaded	the	versions	and	joined	one	of
those	teams.	Why	run	off	and	reinvent	the	wheel?

7.3	AT&T	NOTICES	THE	DAMAGE

...........................

Soon	after	Network	Release	2	hit	the	world,	the	real	problems	began	for	BSD.
While	AT&T	didn't	really	notice	386BSD,	NetBSD,	or	FreeBSD,	they	did	notice
a	company	called	Berkeley	Software	Design	Incorporated.	This	corporation
created	their	own	OS	by	taking	Network	Release	2	and	adding	their	own
versions	of	the	missing	six	files,	but	they	didn't	release	this	for	free	on	the	Net.
They	started	putting	advertisements	in	the	trade	press	offering	the	source	code
for	$995,	a	price	they	claimed	was	a	huge	discount	over	AT&T's	charge.

The	modern,	post-Internet	reader	should	find	this	hilarious.	Two	to	three	groups
and	countless	splinter	factions	were	distributing	the	BSD	software	over	the
Internet	for	free	and	this	didn't	seem	to	catch	AT&T's	attention,	but	the
emergence	of	BSDI	selling	the	same	product	for	almost	$1,000	rang	alarm	bells.
That	was	the	time,	though,	before	the	Internet	infrastructure	became	ubiquitous.
In	the	early	1990s,	people	only	halfjoked	that	FedEx	was	the	most	efficient
Internet	Service	Provider	around.	It	was	much	faster	to	copy	hundreds	of
megabytes	of	data	onto	a	magnetic	tape	and	drop	it	in	FedEx	than	to	actually	try
to	copy	it	over	the	Internet.	Back	then	only	real	nerds	were	on	the	Internet.
Managers	and	lawyers	wore	suits	and	got	their	news	from	the	trade	press	and
advertisements.

BSDI's	cost-cutting	was	a	major	headache	for	AT&T.	This	small	company	was
selling	a	product	that	AT&T	felt	it	had	shepherded,	organized,	and	coordinated
over	time.

AT&T	started	off	by	claiming	UNIX	as	a	trademark	and	threatening	BSDI	with
infringing	upon	it.	BSDI	countered	by	changing	the	ads	to	emphasize	that	BSDI
was	a	separate	company	that	wasn't	related	to	AT&T	or	the	subsidiary	AT&T
created	to	market	UNIX	known	as	UNIX	System	Laboratories,	or	USL.

That	didn't	work.	USL	saw	its	cash	cow	melting	away	and	assumed	folks	would
jump	at	the	chance	to	buy	a	complete	OS	with	all	the	source	code	for	$995.	The
price	seems	outrageously	high	today,	but	that's	only	after	the	stiff	price
competition	of	the	1990s.	It	was	still	a	good	deal	at	the	time.	So	USL	sued	BSDI
for	actually	stealing	proprietary	source	code	from	AT&T.

This	argument	didn't	work,	either.	BSDI	turned	around	and	waved	the	Network

Release	2	license	they	got	from	Berkeley.	They	bought	all	but	six	of	the	files
from	Berkeley,	and	Berkeley	claimed	that	all	of	the	source	code	was	theirs	to
sell.	BSDI	wrote	the	missing	six	files	themselves	and	they	were	quite	sure	that
they	got	no	help	from	AT&T	or	USL.	Therefore,	BSDI	didn't	steal	anything.	If
AT&T	thought	it	was	stolen,	they	should	take	it	up	with	Berkeley.	The	judge
bought	BSDI's	argument	and	narrowed	the	case	to	focus	on	the	six	files.

This	was	a	crucial	moment	in	the	development	of	the	free	software	movement
and	its	various	kernels.	AT&T	found	itself	cornered.	Backing	down	meant	giving
up	its	claim	to	UNIX	and	the	wonderful	stream	of	license	fees	that	kept	pouring
in.	Pressing	ahead	meant	suing	the	University	of	California,	its	old	friend,
partner,	and	author	of	lots	of	UNIX	code.	Eventually,	the	forces	of	greed	and
omnipotent	corporate	power	won	out	and	AT&T's	USL	filed	a	lawsuit	naming
both	BSDI	and	the	University	of	California.

Taking	sides	in	this	case	was	pretty	easy	for	most	folks	in	the	academic	and	free
software	world.	The	CSRG	at	Berkeley	did	research.	They	published	things.
University	research	was	supposed	to	be	open	and	freely	distributed.	AT&T	was
trying	to	steal	the	work	of	hundreds	if	not	thousands	of	students,	researchers,
professors,	and	others.	That	wasn't	fair.

In	reality,	AT&T	did	pay	something	for	what	they	got.	They	sent	their	employees
to	Berkeley	to	get	master's	degrees,	they	shared	the	original	Versions	5,	6,	and	7
and	32/V	source	code,	and	they	even	sent	some	hardware	to	the	computer
science	department.	The	original	creators	of	UNIX	lived	and	worked	at	Bell
Labs	drawing	AT&T	paychecks.	Berkeley	students	got	summer	jobs	at	AT&T.
There	wasn't	an	official	quid-pro-quo.	It	wasn't	very	well	spelled	out,	but	AT&T
was	paying	something.

Some	folks	on	AT&T's	side	might	even	want	to	paint	the	CSRG	at	Berkeley	as
filled	with	academic	freeloaders	who	worked	hard	to	weasel	money	out	of	the
big	corporations	without	considering	the	implications.	The	folks	at	Berkeley
should	have	known	that	AT&T	was	going	to	want	something	for	its
contributions.	There's	no	such	thing	as	a	free	lunch.

There's	something	to	this	argument	because	running	a	high-rent	research	project
at	a	top-notch	school	requires	a	fair	amount	of	guile	and	marketing
sophistication.	By	the	1990s,	the	top	universities	had	become	very	good	at
making	vague,	unofficial	promises	with	their	pleas	for	corporate	gifts.	This	sort

of	coquetry	and	teasing	was	bound	to	land	someone	in	a	fight.	McKusick,	for
instance,	says	that	the	CSRG	designed	the	BSD	license	to	be	very	liberal	to
please	the	corporate	donors.	"Hewlett-Packard	put	in	hundreds	of	thousands	of
dollars	and	they	were	doing	so	under	the	understanding	that	they	were	going	to
use	the	code,"	he	said.	If	the	BSD	hadn't	kept	releasing	code	like	Network
Release	2	in	a	clear,	easy-to-reuse	legal	form,	he	says,	some	of	the	funding	for
the	group	would	have	dried	up.

But	there's	also	a	bit	of	irony	here.	McKusick	points	out	that	AT&T	was	far	from
the	most	generous	company	to	support	the	CSRG.	"In	fact,	we	even	had	to	pay
for	our	license	to	UNIX,"	he	says	before	adding,	"although	it	was	only	ninety-
nine	dollars	at	the	time."

AT&T's	support	of	the	department	was	hardly	bountiful.	The	big	checks	weren't
grants	outright.	They	paid	for	the	out-of-state	tuition	for	AT&T	employees	who
came	to	Berkeley	to	receive	their	master's	degrees.	While	AT&T	could	have	sent
their	employees	elsewhere,	there's	no	doubt	that	there	are	more	generous	ways	to
send	money	to	researchers.

McKusick	also	notes	that	AT&T	didn't	even	send	along	much	hardware.	The
only	hardware	he	remembers	receiving	from	them	were	some	5620	terminals
and	a	Datakit	circuit-based	switch	that	he	says	"was	a	huge	headache	that	really
did	us	very	little	good."	Berkeley	was	on	the	forefront	of	developing	the	packet-
based	standards	that	would	dominate	the	Internet.	If	anything,	the	older	circuit-
based	switch	convinced	the	Berkeley	team	that	basing	the	Internet	on	the	old
phone	system	would	be	a	major	mistake.

To	make	matters	worse,	AT&T	often	wanted	the	BSD	team	to	include	features
that	would	force	all	the	BSD	users	to	buy	a	newer,	more	expensive	license	from
AT&T.	In	addition,	license	verification	was	never	a	quick	or	easy	task.
McKusick	says,	"We	had	a	person	whose	fulltime	job	was	to	keep	the	AT&T
licensing	person	happy."

In	the	end,	he	concludes,	"They	paid	us	next	to	nothing	and	got	a	huge	windfall."

Choosing	sides	in	this	battle	probably	isn't	worth	the	trouble	at	this	point	because
Berkeley	eventually	won.	The	hard	work	of	Bostic's	hundreds	of	volunteers	and
the	careful	combing	of	the	kernel	by	the	CSRG	paid	off.	AT&T's	case	slowly
withered	away	as	the	University	of	California	was	able	to	show	how	much	of	the

distribution	came	from	innocent,	non-AT&T	sources.

Berkeley	even	landed	a	few	good	blows	of	its	own.	They	found	that	AT&T	had
stripped	copyrights	from	Berkeley	code	that	they	had	imported	to	System	V	and
had	failed	to	provide	due	credit	to	Berkeley.	The	BSD	license	is	probably	one	of
the	least	restrictive	ones	in	the	world.	Companies	like	Apple	use	BSD	source
code	all	the	time.	The	license	has	few	requirements	beyond	keeping	the
copyright	notice	intact	and	including	some	credit	for	the	University	of
California.	AT&T	didn't	pay	attention	to	this	and	failed	to	cite	Berkeley's
contributions	in	their	releases.	Oops.	The	CSRG	countersued	claiming	that
AT&T	had	violated	a	license	that	may	be	one	of	the	least	restrictive	in	the	world.

The	battle	raged	in	the	courts	for	more	than	a	year.	It	moved	from	federal	to
California	state	court.	Judges	held	hearings,	lawyers	took	depositions,	clerks
read	briefs,	judges	heard	arguments	presented	by	briefs	written	by	lawyers	who
had	just	held	depositions.	The	burn	rate	of	legal	fees	was	probably	larger	than
most	Internet	start-ups.

Any	grown-up	should	take	one	look	at	this	battle	and	understand	just	how	the
free	software	movement	got	so	far.	While	the	Berkeley	folks	were	meeting	with
lawyers	and	worrying	about	whether	the	judges	were	going	to	choose	the	right
side,	Linus	Torvalds	was	creating	his	own	kernel.	He	started	Linux	on	his	own,
and	that	made	him	a	free	man.

In	the	end,	the	University	of	California	settled	the	lawsuit	after	the	USL	was	sold
to	Novell,	a	company	run	by	Ray	Noorda.	McKusick	believes	that	Noorda's
embrace	of	free	competition	made	a	big	difference,	and	by	January	1994	the
legal	fight	was	over.	Berkeley	celebrated	by	releasing	a	completely	free	and
unencumbered	4.4BSD-Lite	in	June	1994.

The	terms	of	the	settlement	were	pretty	minor.	Net	Release	2	came	with	about
18,000	files.	4.4BSD-Lite	contained	all	but	three	of	them.	Seventy	of	them
included	a	new,	expanded	copyright	that	gave	some	credit	to	AT&T	and	USL,
but	didn't	constrain	anyone's	right	to	freely	distribute	them.	McKusick,	Bostic,
and	the	hundreds	of	volunteers	did	a	great	job	making	sure	that	Net	Release	2
was	clean.	In	fact,	two	people	familiar	with	the	settlement	talks	say	that
Berkeley	just	deleted	a	few	files	to	allow	USL's	lawyers	to	save	face.	We'll	never
know	for	sure	because	the	details	of	the	settlement	are	sealed.	McKusick	and	the
others	can't	talk	about	the	details.	That's	another	great	example	of	how	the	legal

system	fails	the	American	people	and	inadvertently	gives	the	free	software	world
another	leg	up.	There's	no	information	in	the	record	to	help	historians	or	give
future	generations	some	hints	on	how	to	solve	similar	disputes.

1.	 OUTSIDER

The	battle	between	the	University	of	California	at	Berkeley's	computer	science
department	and	AT&T	did	not	reach	the	court	system	until	1992,	but	the	friction
between	the	department's	devotion	to	sharing	and	the	corporation's	insistence	on
control	started	long	before.

While	the	BSD	team	struggled	with	lawyers,	a	free	man	in	Finland	began	to
write	his	own	operating	system	without	any	of	the	legal	or	institutional
encumbrance.	At	the	beginning	he	said	it	was	a	project	that	probably	wouldn't
amount	to	much,	but	only	a	few	years	later	people	began	to	joke	about	"Total
World	Domination."	A	few	years	after	that,	they	started	using	the	phrase
seriously.

In	April	1991,	Linus	Torvalds	had	a	problem.	He	was	a	relatively	poor	university
student	in	Finland	who	wanted	to	hack	in	the	guts	of	a	computer	operating
system.	Microsoft's	machines	at	the	time	were	the	cheapest	around,	but	they
weren't	very	interesting.	The	basic	Disk	Operating	System	(DOS)	essentially	let
one	program	control	the	computer.	Windows	3.1	was	not	much	more	than	a
graphical	front	end	to	DOS	featuring	pretty	pictures--icons--to	represent	the
files.	Torvalds	wanted	to	experiment	with	a	real	OS,	and	that	meant	UNIX	or
something	that	was	UNIX-like.	These	real	OSs	juggled	hundreds	of	programs	at
one	time	and	often	kept	dozens	of	users	happy.	Playing	with	DOS	was	like
practicing	basketball	shots	by	yourself.	Playing	with	UNIX	was	like	playing
with	a	team	that	had	5,	10,	maybe	as	many	as	100	people	moving	around	the
court	in	complicated,	clockwork	patterns.

But	UNIX	machines	cost	a	relative	fortune.	The	high-end	customers	requested
the	OS,	so	generally	only	high-end	machines	came	with	it.	A	poor	university
student	in	Finland	didn't	have	the	money	for	a	topnotch	Sun	Sparc	station.	He
could	only	afford	a	basic	PC,	which	came	with	the	386	processor.	This	was	a
top-of-the-line	PC	at	the	time,	but	it	still	wasn't	particularly	exciting.	A	few
companies	made	a	version	of	UNIX	for	this	low-end	machine,	but	they	charged
for	it.

In	June	1991,	soon	after	Torvalds[^3]	started	his	little	science	project,	the
Computer	Systems	Research	Group	at	Berkeley	released	what	they	thought	was
their	completely	unencumbered	version	of	BSD	UNIX	known	as	Network
Release	2.	Several	projects	emerged	to	port	this	to	the	386,	and	the	project
evolved	to	become	the	FreeBSD	and	NetBSD	versions	of	today.	Torvalds	has
often	said	that	he	might	never	have	started	Linux	if	he	had	known	that	he	could
just	download	a	more	complete	OS	from	Berkeley.

[3]:	Everyone	in	the	community,	including	many	who	don't	know	him,	refers	to
him	by	his	first	name.	The	rules	of	style	prevent	me	from	using	that	in	something
as	proper	as	a	book.

But	Torvalds	didn't	know	about	BSD	at	the	time,	and	he's	lucky	he	didn't.
Berkeley	was	soon	snowed	under	by	the	lawsuit	with	AT&T	claiming	that	the
university	was	somehow	shipping	AT&T's	intellectual	property.	Development	of
the	BSD	system	came	to	a	screeching	halt	as	programmers	realized	that	AT&T
could	shut	them	down	at	any	time	if	Berkeley	was	found	guilty	of	giving	away
source	code	that	AT&T	owned.

If	he	couldn't	afford	to	buy	a	UNIX	machine,	he	would	write	his	own	version.
He	would	make	it	POSIX-compatible,	a	standard	for	UNIX	designers,	so	others
would	be	able	to	use	it.	Minix	was	another	UNIXlike	OS	that	a	professor,
Andrew	Tanenbaum,	wrote	for	students	to	experiment	with	the	guts	of	an	OS.
Torvalds	initially	considered	using	Minix	as	a	platform.	Tanenbaum	included	the
source	code	to	his	project,	but	he	charged	for	the	package.	It	was	like	a	textbook
for	students	around	the	world.

Torvalds	looked	at	the	price	of	Minix	($150)	and	thought	it	was	too	much.
Richard	Stallman's	GNU	General	Public	License	had	taken	root	in	Torvalds's
brain,	and	he	saw	the	limitations	in	charging	for	software.	GNU	had	also
produced	a	wide	variety	of	tools	and	utility	programs	that	he	could	use	on	his
machine.	Minix	was	controlled	by	Tanenbaum,	albeit	with	a	much	looser	hand
than	many	of	the	other	companies	at	the	time.

People	could	add	their	own	features	to	Minix	and	some	did.	They	did	get	a	copy
of	the	source	code	for	$150.	But	few	changes	made	their	way	back	into	Minix.
Tanenbaum	wanted	to	keep	it	simple	and	grew	frustrated	with	the	many	people
who,	as	he	wrote	back	then,	"want	to	turn	Minix	into	BSD	UNIX."

So	Torvalds	started	writing	his	own	tiny	operating	system	for	this	386.	It	wasn't
going	to	be	anything	special.	It	wasn't	going	to	topple	AT&T	or	the	burgeoning
Microsoft.	It	was	just	going	to	be	a	fun	experiment	in	writing	a	computer
operating	system	that	was	all	his.	He	wrote	in	January	1992,"	Many	things
should	have	been	done	more	portably	if	it	would	have	been	a	real	project.	I'm	not
making	overly	many	excuses	about	it	though:	it	was	a	design	decision,	and	last
April	when	I	started	the	thing,	I	didn't	think	anybody	would	actually	want	to	use
it."

Still,	Torvalds	had	high	ambitions.	He	was	writing	a	toy,	but	he	wanted	it	to	have
many,	if	not	all,	of	the	features	found	in	full-strength	UNIX	versions	on	the
market.	On	July	3,	he	started	wondering	how	to	accomplish	this	and	placed	a
posting	on	the	USENET	newsgroup	comp.os.minix,	writing:

Hello	netlanders,	Due	to	a	project	I'm	working	on	(in	minix),	I'm	interested	in
the	posix	standard	definition.	Could	somebody	please	point	me	to	a	(preferably)
machine-readable	format	of	the	latest	posix	rules?	Ftp-sites	would	be	nice.

Torvalds's	question	was	pretty	simple.	When	he	wrote	the	message	in	1991,
UNIX	was	one	of	the	major	operating	systems	in	the	world.	The	project	that
started	at	AT&T	and	Berkeley	was	shipping	on	computers	from	IBM,	Sun,
Apple,	and	most	manufacturers	of	higher-powered	machines	known	as
workstations.	Wall	Street	banks	and	scientists	loved	the	more	powerful
machines,	and	they	loved	the	simplicity	and	hackability	of	UNIX	machines.	In
an	attempt	to	unify	the	marketplace,	computer	manufacturers	created	a	way	to
standardize	UNIX	and	called	it	POSIX.	POSIX	ensured	that	each	UNIX
machine	would	behave	in	a	standardized	way.

Torvalds	worked	quickly.	By	September	he	was	posting	notes	to	the	group	with
the	subject	line	"What	would	you	like	to	see	most	in	Minix?"	He	was	adding
features	to	his	clone,	and	he	wanted	to	take	a	poll	about	where	he	should	add
next.

Torvalds	already	had	some	good	news	to	report.	"I've	currently	ported	bash(1.08)
and	GCC(1.40),	and	things	seem	to	work.	This	implies	that	I'll	get	something
practical	within	a	few	months,"	he	said.

At	first	glance,	he	was	making	astounding	progress.	He	created	a	working
system	with	a	compiler	in	less	than	half	a	year.	But	he	also	had	the	advantage	of

borrowing	from	the	GNU	project.	Stallman's	GNU	project	group	had	already
written	a	compiler	(GCC)	and	a	nice	text	user	interface	(bash).	Torvalds	just
grabbed	these	because	he	could.	He	was	standing	on	the	shoulders	of	the	giants
who	had	come	before	him.

The	core	of	an	OS	is	often	called	the	"kernel,"	which	is	one	of	the	strange	words
floating	around	the	world	of	computers.	When	people	are	being	proper,	they	note
that	Linus	Torvalds	was	creating	the	Linux	kernel	in	1991.	Most	of	the	other
software,	like	the	desktop,	the	utilities,	the	editors,	the	web	browsers,	the	games,
the	compilers,	and	practically	everything	else,	was	written	by	other	folks.	If	you
measure	this	in	disk	space,	more	than	95	percent	of	the	code	in	an	average
distribution	lies	outside	the	kernel.	If	you	measure	it	by	user	interaction,	most
people	using	Linux	or	BSD	don't	even	know	that	there's	a	kernel	in	there.	The
buttons	they	click,	the	websites	they	visit,	and	the	printing	they	do	are	all
controlled	by	other	programs	that	do	the	work.

Of	course,	measuring	the	importance	of	the	kernel	this	way	is	stupid.	The	kernel
is	sort	of	the	combination	of	the	mail	room,	boiler	room,	kitchen,	and	laundry
room	for	a	computer.	It's	responsible	for	keeping	the	data	flowing	between	the
hard	drives,	the	memory,	the	printers,	the	video	screen,	and	any	other	part	that
happens	to	be	attached	to	the	computer.

In	many	respects,	a	well-written	kernel	is	like	a	fine	hotel.	The	guests	check	in,
they're	given	a	room,	and	then	they	can	order	whatever	they	need	from	room
service	and	a	smoothly	oiled	concierge	staff.	Is	this	new	job	going	to	take	an
extra	10	megabytes	of	disk	space?	No	problem,	sir.	Right	away,	sir.	We'll	be
right	up	with	it.	Ideally,	the	software	won't	even	know	that	other	software	is
running	in	a	separate	room.	If	that	other	program	is	a	loud	rock-and-roll	MP3
playing	tool,	the	other	software	won't	realize	that	when	it	crashes	and	burns	up
its	own	room.	The	hotel	just	cruises	right	along,	taking	care	of	business.

In	1991,	Torvalds	had	a	short	list	of	features	he	wanted	to	add	to	the	kernel.	The
Internet	was	still	a	small	network	linking	universities	and	some	advanced	labs,
and	so	networking	was	a	small	concern.	He	was	only	aiming	at	the	386,	so	he
could	rely	on	some	of	the	special	features	that	weren't	available	on	other	chips.
High-end	graphics	hardware	cards	were	still	pretty	expensive,	so	he	concentrated
on	a	text-only	interface.	He	would	later	fix	all	of	these	problems	with	the	help	of
the	people	on	the	Linux	kernel	mailing	list,	but	for	now	he	could	avoid	them.

Still,	hacking	the	kernel	means	anticipating	what	other	programmers	might	do	to
ruin	things.	You	don't	know	if	someone's	going	to	try	to	snag	all	128	megabytes
of	RAM	available.	You	don't	know	if	someone's	going	to	hook	up	a	strange	old
daisy-wheel	printer	and	try	to	dump	a	PostScript	file	down	its	throat.	You	don't
know	if	someone's	going	to	create	an	endless	loop	that's	going	to	write	random
numbers	all	over	the	memory.	Stupid	programmers	and	dumb	users	do	these
things	every	day,	and	you've	got	to	be	ready	for	it.	The	kernel	of	the	OS	has	to
keep	things	flowing	smoothly	between	all	the	different	parts	of	the	system.	If
one	goes	bad	because	of	a	sloppy	bit	of	code,	the	kernel	needs	to	cut	it	off	like	a
limb	that's	getting	gangrene.	If	one	job	starts	heating	up,	the	kernel	needs	to	try
to	give	it	all	the	resources	it	can	so	the	user	will	be	happy.	The	kernel	hacker
needs	to	keep	all	of	these	things	straight.

Creating	an	operating	system	like	this	is	no	easy	job.	Many	of	the	commercial
systems	crash	frequently	for	no	perceptible	reason,	and	most	of	the	public	just
takes	it.[^4]	Many	people	somehow	assume	that	it	must	be	their	fault	that	the
program	failed.	In	reality,	it's	probably	the	kernel's.	Or	more	precisely,	it's	the
kernel	designer's	fault	for	not	anticipating	what	could	go	wrong.

[4]:	Microsoft	now	acknowledges	the	existence	of	a	bug	in	the	tens	of	millions
of	copies	of	Windows	95	and	Windows	98	that	will	cause	your	computer	to	'stop
responding	(hang)'--you	know,	what	you	call	crash--after	exactly	49	days,	17
hours,	2	minutes,	and	47.296	seconds	of	continuous	operation.	..	.	Why	49.7?
days?	Because	computers	aren't	counting	the	days.	They're	counting	the
milliseconds.	One	counter	begins	when	Windows	starts	up;	when	it	gets	to	232
milliseconds--which	happens	to	be	49.7	days--well,	that's	the	biggest	number
this	counter	can	handle.	And	instead	of	gracefully	rolling	over	and	starting	again
at	zero,	it	manages	to	bring	the	entire	operating	system	to	a	halt."--James	Gleick
in	the	New	York	Times.

By	the	mid-1970s,	companies	and	computer	scientists	were	already
experimenting	with	many	different	ways	to	create	workable	operating	systems.
While	the	computers	of	the	day	weren't	very	powerful	by	modern	standards,	the
programmers	created	operating	systems	that	let	tens	if	not	hundreds	of	people
use	a	machine	simultaneously.	The	OS	would	keep	the	different	tasks	straight
and	make	sure	that	no	user	could	interfere	with	another.

As	people	designed	more	and	more	operating	systems,	they	quickly	realized	that
there	was	one	tough	question:	how	big	should	it	be?	Some	people	argued	that	the

OS	should	be	as	big	as	possible	and	come	complete	with	all	the	features	that
someone	might	want	to	use.	Others	countered	with	stripped-down	designs	that
came	with	a	small	core	of	the	OS	surrounded	by	thousands	of	little	programs	that
did	the	same	thing.

To	some	extent,	the	debate	is	more	about	semantics	than	reality.	A	user	wants	the
computer	to	be	able	to	list	the	different	files	stored	in	one	directory.	It	doesn't
matter	if	the	question	is	answered	by	a	big	operating	system	that	handles
everything	or	a	little	operating	system	that	uses	a	program	to	find	the	answer.
The	job	still	needs	to	be	done,	and	many	of	the	instructions	are	the	same.	It's	just
a	question	of	whether	the	instructions	are	labeled	the	"operating	system"	or	an
ancillary	program.

But	the	debate	is	also	one	about	design.	Programmers,	teachers,	and	the	Lego
company	all	love	to	believe	that	any	problem	can	be	solved	by	breaking	it	down
into	small	parts	that	can	be	assembled	to	create	the	whole.	Every	programmer
wants	to	turn	the	design	of	an	operating	system	into	thousands	of	little	problems
that	can	be	solved	individually.	This	dream	usually	lasts	until	someone	begins	to
assemble	the	parts	and	discovers	that	they	don't	work	together	as	perfectly	as
they	should.

When	Torvalds	started	crafting	the	Linux	kernel,	he	decided	he	was	going	to
create	a	bigger,	more	integrated	version	that	he	called	a	"monolithic	kernel."
This	was	something	of	a	bold	move	because	the	academic	community	was
entranced	with	what	they	called	"microkernels."	The	difference	is	partly
semantic	and	partly	real,	but	it	can	be	summarized	by	analogy	with	businesses.
Some	companies	try	to	build	large,	smoothly	integr	the	steps	of	production.
Others	try	to	create	smaller	operations	that	subcontract	much	of	the	production
work	to	other	companies.	One	is	big,	monolithic,	and	all-encompassing,	while
the	other	is	smaller,	fragmented,	and	heterogeneous.	It's	not	uncommon	to	find
two	companies	in	the	same	industry	taking	different	approaches	and	thinking
they're	doing	the	right	thing.

The	design	of	an	operating	system	often	boils	down	to	the	same	decision.	Do	we
want	to	build	a	monolithic	core	that	handles	all	the	juggling	internally,	or	do	we
want	a	smaller,	more	fragmented	model	that	should	be	more	flexible	as	long	as
the	parts	interact	correctly?

In	time,	the	OS	world	started	referring	to	this	core	as	the	kernel	of	the	operating

system.	People	who	wanted	to	create	big	OSs	with	many	features	wrote
monolithic	kernels.	Their	ideological	enemies	who	wanted	to	break	the	OS	into
hundreds	of	small	programs	running	on	a	small	core	wrote	microkernels.	Some
of	the	most	extreme	folks	labeled	their	work	a	nanokernel	because	they	thought
it	did	even	less	and	thus	was	even	more	pure	than	those	bloated	microkernels.

The	word	"kernel"	is	a	bit	confusing	for	most	people	because	they	often	use	it	to
mean	a	fragment	of	an	object	or	a	small	fraction.	An	extreme	argument	may
have	a	kernel	of	truth	to	it.	A	disaster	movie	always	gives	the	characters	and	the
audience	a	kernel	of	hope	to	which	to	cling.

Mathematicians	use	the	word	a	bit	differently	and	emphasize	the	word's	ability
to	let	a	small	part	define	a	larger	concept.	Technically,	a	kernel	of	a	function	f	is
the	set	of	values,	x[1],	x[2],.	..	x[n]	such	that	f(x[i])=1,	or	whatever	the	identity
element	happens	to	be.	The	action	of	the	kernel	of	a	function	does	a	good	job	of
defining	how	the	function	behaves	with	all	the	other	elements.	The	algebraists
study	a	kernel	of	a	function	because	it	reveals	the	overall	behavior.[^5]

[5]:	The	kernel	of	f(x)=x[2]	is	(-1,	1)	and	it	illustrates	how	the	function	has	two
branches.

The	OS	designers	use	the	word	in	the	same	way.	If	they	define	the	kernel
correctly,	then	the	behavior	of	the	rest	of	the	OS	will	follow.	The	small	part	of
the	code	defines	the	behavior	of	the	entire	computer.	If	the	kernel	does	one	thing
well,	the	entire	computer	will	do	it	well.	If	it	does	one	thing	badly,	then
everything	will	suffer.

Many	computer	users	often	notice	this	effect	without	realizing	why	it	ated
operations	where	one	company	controls	all	exists.	Most	Macintosh	computers,
for	instance,	can	be	sluggish	at	times	because	the	OS	does	not	do	a	good	job
juggling	the	workload	between	processes.	The	kernel	of	the	OS	has	not	been
completely	overhauled	since	the	early	days	when	the	machines	ran	one	program
at	a	time.	This	sluggishness	will	persist	for	a	bit	longer	until	Macintosh	releases
a	new	version	known	as	MacOS	X.	This	will	be	based	on	the	Mach	kernel,	a
version	developed	at	Carnegie-Mellon	University	and	released	as	open	source
software.	Steve	Jobs	adopted	it	when	he	went	to	NeXT,	a	company	that	was
eventually	folded	back	into	Apple.	This	kernel	does	a	much	better	job	of
juggling	different	tasks	because	it	uses	preemptive	multitasking	instead	of
cooperative	multitasking.	The	original	version	of	the	MacOS	let	each	program

decide	when	and	if	it	was	going	to	give	up	control	of	the	computer	to	let	other
programs	run.	This	low-rent	version	of	juggling	was	called	cooperative
multitasking,	but	it	failed	when	some	program	in	the	hotel	failed	to	cooperate.
Most	software	developers	obeyed	the	rules,	but	mistakes	would	still	occur.	Bad
programs	would	lock	up	the	machine.	Preemptive	multitasking	takes	this	power
away	from	the	individual	programs.	It	swaps	control	from	program	to	program
without	asking	permission.	One	pig	of	a	program	can't	slow	down	the	entire
machine.	When	the	new	MacOS	X	kernel	starts	offering	preemptive
multitasking,	the	users	should	notice	less	sluggish	behavior	and	more	consistent
performance.

Torvalds	plunged	in	and	created	a	monolithic	kernel.	This	made	it	easier	to
tweak	all	the	strange	interactions	between	the	programs.	Sure,	a	microkernel
built	around	a	clean,	message-passing	architecture	was	an	elegant	way	to
construct	the	guts	of	an	OS,	but	it	had	its	problems.	There	was	no	easy	way	to
deal	with	special	exceptions.	Let's	say	you	want	a	web	server	to	run	very	quickly
on	your	machine.	That	means	you	need	to	treat	messages	coming	into	the
computer	from	the	Internet	with	exceptional	speed.	You	need	to	ship	them	with
the	equivalent	of	special	delivery	or	FedEx.	You	need	to	create	a	special
exception	for	them.	Tacking	these	exceptions	onto	a	clean	microkernel	starts	to
make	it	look	bad.	The	design	starts	to	get	cluttered	and	less	elegant.	After	a	few
special	exceptions	are	added,	the	microkernel	can	start	to	get	confused.

Torvalds's	monolithic	kernel	did	not	have	the	elegance	or	the	simplicity	of	a
microkernel	OS	like	Minix	or	Mach,	but	it	was	easier	to	hack.	New	tweaks	to
speed	up	certain	features	were	relatively	easy	to	add.	There	was	no	need	to	come
up	with	an	entirely	new	architecture	for	the	message-passing	system.	The
downside	was	that	the	guts	could	grow	remarkably	byzantine,	like	the
bureaucracy	of	a	big	company.

In	the	past,	this	complexity	hurt	the	success	of	proprietary	operating	systems.
The	complexity	produced	bugs	because	no	one	could	understand	it.	Torvalds's
system,	however,	came	with	all	the	source	code,	making	it	much	easier	for
application	programmers	to	find	out	what	was	causing	their	glitch.	To	carry	the
corporate	bureaucracy	metaphor	a	bit	further,	the	source	code	acted	like	the
omniscient	secretary	who	is	able	to	explain	everything	to	a	harried	executive.
This	perfect	knowledge	reduced	the	cost	of	complexity.

By	the	beginning	of	1992,	Linux	was	no	longer	a	Finnish	student's	part-time

hobby.	Several	influential	programmers	became	interested	in	the	code.	It	was
free	and	relatively	usable.	It	ran	much	of	the	GNU	code,	and	that	made	it	a	neat,
inexpensive	way	to	experiment	with	some	excellent	tools.	More	and	more	people
downloaded	the	system,	and	a	significant	fraction	started	reporting	bugs	and
suggestions	to	Torvalds.	He	rolled	them	back	in	and	the	project	snowballed.

8.1	A	HOBBY	BEGETS	A	PROJECT	THAT	BEGETS	A	MOVEMENT

...

On	the	face	of	it,	Torvalds's	decision	to	create	an	OS	wasn't	extraordinary.
Millions	of	college-age	students	decide	that	they	can	do	anything	if	they	just	put
in	a	bit	more	elbow	grease.	The	college	theater	departments,	newspapers,	and
humor	magazines	all	started	with	this	impulse,	and	the	notion	isn't	limited	to
college	students.	Millions	of	adults	run	Little	League	teams,	build	model
railroads,	lobby	the	local	government	to	create	parks,	and	take	on	thousands	of
projects	big	and	small	in	their	spare	time.

Every	great	idea	has	a	leader	who	can	produce	a	system	to	sustain	it.	Every
small-town	lot	had	kids	playing	baseball,	but	a	few	guys	organized	a	Little
League	program	that	standardized	the	rules	and	the	competition.	Every	small
town	had	people	campaigning	for	parks,	but	one	small	group	created	the	Sierra
Club,	which	fights	for	parks	throughout	the	world.

This	talent	for	organizing	the	work	of	others	is	a	rare	commodity,	and	Torvalds
had	a	knack	for	it.	He	was	gracious	about	sharing	his	system	with	the	world	and
he	never	lorded	it	over	anyone.	His	messages	were	filled	with	jokes	and	self-
deprecating	humor,	most	of	which	were	carefully	marked	with	smiley	faces	(:-))
to	make	sure	that	the	message	was	clear.	If	he	wrote	something	pointed,	he
would	apologize	for	being	a	"hothead."	He	was	always	gracious	in	giving	credit
to	others	and	noted	that	much	of	Linux	was	just	a	clone	of	UNIX.	All	of	this
made	him	easy	to	read	and	thus	influential.

His	greatest	trick,	though,	was	his	decision	to	avoid	the	mantle	of	power.	He
wrote	in	1992,	"Here's	my	standing	on	'keeping	control,'	in	2	words	(three?):	I
won't.	The	only	control	I've	effectively	been	keeping	on	Linux	is	that	I	know	it
better	than	anybody	else."

He	pointed	out	that	his	control	was	only	an	illusion	that	was	caused	by	the	fact
that	he	did	a	good	job	maintaining	the	system.	"I've	made	my	changes	available

to	ftp-sites	etc.	Those	have	become	effectively	official	releases,	and	I	don't
expect	this	to	change	for	some	time:	not	because	I	feel	I	have	some	moral	right
to	it,	but	because	I	haven't	heard	too	many	complaints."

As	he	added	new	features	to	his	OS,	he	shipped	new	copies	frequently.	The
Internet	made	this	easy	to	do.	He	would	just	pop	a	new	version	up	on	a	server
and	post	a	notice	for	all	to	read:	come	download	the	latest	version.

He	made	it	clear	that	people	could	vote	to	depose	him	at	any	time.	"If	people	feel
I	do	a	bad	job,	they	can	do	it	themselves."	They	could	just	take	all	of	his	Linux
code	and	start	their	own	version	using	Torvalds's	work	as	a	foundation.

Anyone	could	break	off	from	Torvalds's	project	because	Torvalds	decided	to	ship
the	source	code	to	his	project	under	Richard	Stallman's	GNU	General	Public
License,	or	GPL.	In	the	beginning,	he	issued	it	with	a	more	restrictive	license
that	prohibited	any	"commercial"	use,	but	eventually	moved	to	the	GNU	license.
This	was	a	crucial	decision	because	it	cemented	a	promise	with	anyone	who
spent	a	few	minutes	playing	with	his	toy	operating	system	for	the	386.	It	stated
that	all	of	the	source	code	that	Torvalds	or	anyone	else	wrote	would	be	freely
accessible	and	shared	with	everyone.	This	decision	was	a	double-edged	sword
for	the	community.	Everyone	could	take	the	software	for	free,

but	if	they	started	circulating	some	new	software	built	with	the	code,	they	would
have	to	donate	their	changes	back	to	the	project.	It	was	like	flypaper.	Anyone
who	started	working	with	the	project	grew	attached	to	it.	They	couldn't	run	off
into	their	own	corner.	Some	programmers	joke	that	this	flypaper	license	is	like
sex.	If	you	make	one	mistake	by	hooking	up	with	a	project	protected	by	GPL,
you	pay	for	it	forever.	If	you	ever	ship	a	version	of	the	project,	you	must	include
all	of	the	source	code.	It	can	be	distributed	freely	forever.

While	some	people	complained	about	the	sticky	nature	of	the	GPL,	enough	saw
it	as	a	virtue.	They	liked	Torvalds's	source	code,	and	they	liked	the	fact	that	the
GPL	made	them	full	partners	in	the	project.	Anyone	could	donate	their	time	and
be	sure	it	wasn't	going	to	disappear.	The	source	code	became	a	body	of	work
held	in	common	trust	for	everyone.	No	one	could	rope	it	off,	fence	it	in,	or	take
control.

In	time,	Torvalds's	pet	science	project	and	hacking	hobby	grew	as	more	people
got	interested	in	playing	with	the	guts	of	machines.	The	price	was	right,	and	idle

curiosity	could	be	powerful.	Some	wondered	what	a	guy	in	Finland	could	do
with	a	386	machine.	Others	wondered	if	it	was	really	as	usable	as	the	big
machines	from	commercial	companies.	Others	wondered	if	it	was	powerful
enough	to	solve	some	problems	in	the	lab.	Still	others	just	wanted	to	tinker.	All
of	these	folks	gave	it	a	try,	and	some	even	began	to	contribute	to	the	project.

Torvalds's	burgeoning	kernel	dovetailed	nicely	with	the	tools	that	the	GNU
project	created.	All	of	the	work	by	Stallman	and	his	disciples	could	be	easily
ported	to	work	with	the	operating	system	core	that	Torvalds	was	now	calling
Linux.	This	was	the	power	of	freely	distributable	source	code.	Anyone	could
make	a	connection,	and	someone	invariably	did.	Soon,	much	of	the	GNU	code
began	running	on	Linux.	These	tools	made	it	easier	to	create	more	new
programs,	and	the	snowball	began	to	roll.

Many	people	feel	that	Linus	Torvalds's	true	act	of	genius	was	in	coming	up	with
a	flexible	and	responsive	system	for	letting	his	toy	OS	grow	and	change.	He
released	new	versions	often,	and	he	encouraged	everyone	to	test	them	with	him.
In	the	past,	many	open	source	developers	using	the	GNU	GPL	had	only	shipped
new	versions	at	major	landmarks	in	development,	acting	a	bit	like	the
commercial	developers.	After	they	released	version	1.0,	they	would	hole	up	in
their	basements	until	they	had	added	enough	new	features	to	justify	version	2.0.

Torvalds	avoided	this	perfectionism	and	shared	frequently.	If	he	fixed	a	bug	on
Monday,	then	he	would	roll	out	a	new	version	that	afternoon.	It's	not	strange	to
have	two	or	three	new	versions	hit	the	Internet	each	week.	This	was	a	bit	more
work	for	Torvalds,	but	it	also	made	it	much	easier	for	others	to	become	involved.
They	could	watch	what	he	was	doing	and	make	their	own	suggestions.

This	freedom	also	attracted	others	to	the	party.	They	knew	that	Linux	would
always	be	theirs,	too.	They	could	write	neat	features	and	plug	them	into	the
Linux	kernel	without	worrying	that	Torvalds	would	yank	the	rug	out	from	under
them.	The	GPL	was	a	contract	that	lasted	long	into	the	future.	It	was	a	promise
that	bound	them	together.

The	Linux	kernel	also	succeeded	because	it	was	written	from	the	ground	up	for
the	PC	platform.	When	the	Berkeley	UNIX	hackers	were	porting	BSD	to	the	PC
platform,	they	weren't	able	to	make	it	fit	perfectly.	They	were	taking	a	piece	of
software	crafted	for	older	computers	like	the	VAX,	and	shaving	off	corners	and
rewriting	sections	until	it	ran	on	the	PC.

Alan	Cox	pointed	out	to	me,	"The	early	BSD	stuff	was	by	UNIX	people	for
UNIX	people.	You	needed	a	calculator	and	familiarity	with	BSD	UNIX	on	big
machines	(or	a	lot	of	reading)	to	install	it.	You	also	couldn't	share	a	disk	between
DOS/Windows	and	386BSD	or	the	early	branches	off	it.

"Nowadays	FreeBSD	understands	DOS	partitions	and	can	share	a	disk,	but	at	the
time	BSD	was	scary	to	install,"	he	continued.

The	BSD	also	took	certain	pieces	of	hardware	for	granted.	Early	versions	of
BSD	required	a	387,	a	numerical	coprocessor	that	would	speed	up	the	execution
of	floating	point	numbers.	Cox	remembers	that	the	price	(about	$100)	was	just
too	much	for	his	budget.	At	that	time,	the	free	software	world	was	a	very	lean
organization.

Torvalds's	operating	system	plugged	a	crucial	hole	in	the	world	of	free	source
software	and	made	it	possible	for	someone	to	run	a	computer	without	paying
anyone	for	a	license.	Richard	Stallman	had	dreamed	of	this	day,	and	Torvalds
came	up	with	the	last	major	piece	of	the	puzzle.

8.2	A	DIFFERENT	KIND	OF	TRIAL

.............................

During	the	early	months	of	Torvalds's	work,	the	BSD	group	was	stuck	in	a	legal
swamp.	While	the	BSD	team	was	involved	with	secret	settlement	talks	and
secret	depositions,	Linus	Torvalds	was	happily	writing	code	and	sharing	it	with
the	world	on	the	Net.	His	life	wasn't	all	peaches	and	cream,	but	all	of	his	hassles
were	open.	Professor	Andy	Tanenbaum,	a	fairly	well-respected	and	famous
computer	scientist,	got	in	a	long,	extended	debate	with	Torvalds	over	the
structure	of	Linux.	He	looked	down	at	Linux	and	claimed	that	Linux	would	have
been	worth	two	F's	in	his	class	because	of	its	design.	This	led	to	a	big	flame	war
that	was	every	bit	as	nasty	as	the	fight	between	Berkeley	and	AT&T's	USL.	In
fact,	to	the	average	observer	it	was	even	nastier.	Torvalds	returned	Tanenbaum's
fire	with	strong	words	like	"fiasco,"	"brain-damages,"	and	"suck."	He	brushed
off	the	bad	grades	by	pointing	out	that	Albert	Einstein	supposedly	got	bad	grades
in	math	and	physics.	The	highpriced	lawyers	working	for	AT&T	and	Berkeley
probably	used	very	expensive	and	polite	words	to	try	and	hide	the	shivs	they
were	trying	to	stick	in	each	other's	back.	Torvalds	and	Tanenbaum	pulled	out
each	other's	virtual	hair	like	a	squawkfest	on	the	Jerry	Springer	show.

But	Torvalds's	flame	war	with	Tanenbaum	occurred	in	the	open	in	an	Internet
newsgroup.	Other	folks	could	read	it,	think	about	it,	add	their	two	cents'	worth,
and	even	take	sides.	It	was	a	wide-open	debate	that	uncovered	many	flaws	in	the
original	versions	of	Linux	and	Tanenbaum's	Minix.	They	forced	Torvalds	to
think	deeply	about	what	he	wanted	to	do	with	Linux	and	consider	its	flaws.	He
had	to	listen	to	the	arguments	of	a	critic	and	a	number	of	his	peers	on	the	Net
and	then	come	up	with	arguments	as	to	why	his	Linux	kernel	didn't	suck	too
badly.

This	open	fight	had	a	very	different	effect	from	the	one	going	on	in	the	legal
system.	Developers	and	UNIX	hackers	avoided	the	various	free	versions	of	BSD
because	of	the	legal	cloud.	If	a	judge	decided	that	AT&T	and	USL	were	right,
everyone	would	have	to	abandon	their	work	on	the	platform.	While	the	CSRG
worked	hard	to	get	free,	judges	don't	always	make	the	choices	we	want.

The	fight	between	Torvalds	and	Tanenbaum,	however,	drew	people	into	the
project.	Other	programmers	like	David	Miller,	Ted	T'so,	and	Peter	da	Silva
chimed	in	with	their	opinions.	At	the	time,	they	were	just	interested	bystanders.
In	time,	they	became	part	of	the	Linux	brain	trust.	Soon	they	were	contributing
source	code	that	ran	on	Linux.	The	argument's	excitement	forced	them	to	look	at
Torvalds's	toy	OS	and	try	to	decide	whether	his	defense	made	any	sense.	Today,
David	Miller	is	one	of	the	biggest	contributors	to	the	Linux	kernel.	Many	of	the
original	debaters	became	major	contributors	to	the	foundations	of	Linux.

This	fight	drew	folks	in	and	kept	them	involved.	It	showed	that	Torvalds	was
serious	about	the	project	and	willing	to	think	about	its	limitations.	More
important,	it	exposed	these	limitations	and	inspired	other	folks	on	the	Net	to	step
forward	and	try	to	fix	them.	Everyone	could	read	the	arguments	and	jump	in.
Even	now,	you	can	dig	up	the	archives	of	this	battle	and	read	in	excruciating
detail	what	people	were	thinking	and	doing.	The	AT&T/USL-versus-Berkeley
fight	is	still	sealed.

To	this	day,	all	of	the	devotees	of	the	various	BSDs	grit	their	teeth	when	they
hear	about	Linux.	They	think	that	FreeBSD,	NetBSD,	and	OpenBSD	are	better,
and	they	have	good	reasons	for	these	beliefs.	They	know	they	were	out	the	door
first	with	a	complete	running	system.	But	Linux	is	on	the	cover	of	the
magazines.	All	of	the	great	technically	unwashed	are	now	starting	to	use	"Linux"
as	a	synonym	for	free	software.	If	AT&T	never	sued,	the	BSD	teams	would	be
the	ones	reaping	the	glory.	They	would	be	the	ones	to	whom	Microsoft	turned

when	it	needed	a	plausible	competitor.	They	would	be	more	famous.

But	that's	crying	over	spilled	milk.	The	Berkeley	CSRG	lived	a	life	of	relative
luxury	in	their	world	made	fat	with	big	corporate	and	government	donations.
They	took	the	cash,	and	it	was	only	a	matter	of	time	before	someone	called	them
on	it.	Yes,	they	won	in	the	end,	but	it	came	too	late.	Torvalds	was	already	out	of
the	gate	and	attracting	more	disciples.

McKusick	says,	"If	you	plot	the	installation	base	of	Linux	and	BSD	over	the	last
five	years,	you'll	see	that	they're	both	in	exponential	growth.	But	BSD's	about
eighteen	to	twenty	months	behind.	That's	about	how	long	it	took	between	Net
Release	2	and	the	unencumbered	4.4BSD-Lite.	That's	about	how	long	it	took	for
the	court	system	to	do	its	job."

1.	 GROWTH

Through	the	1990s,	the	little	toy	operating	system	grew	slowly	and	quietly	as
more	and	more	programmers	were	drawn	into	the	vortex.	At	the	beginning,	the
OS	wasn't	rich	with	features.	You	could	run	several	different	programs	at	once,
but	you	couldn't	do	much	with	the	programs.	The	system's	interface	was	just
text.	Still,	this	was	often	good	enough	for	a	few	folks	in	labs	around	the	world.
Some	just	enjoyed	playing	with	computers.	Getting	Linux	running	on	their	PC
was	a	challenge,	not	unlike	bolting	an	aftermarket	supercharger	onto	a	Honda
Civic.	But	others	took	the	project	more	seriously	because	they	had	serious	jobs
that	couldn't	be	solved	with	a	proprietary	operating	system	that	came	from
Microsoft	or	others.

In	time,	more	people	started	using	the	system	and	started	contributing	their
additions	to	the	pot.	Someone	figured	out	how	to	make	MIT's	free	X	Window
System	run	on	Linux	so	everyone	could	have	a	graphical	interface.	Someone
else	discovered	how	to	roll	in	technology	for	interfacing	with	the	Internet.	That
made	a	big	difference	because	everyone	could	hack,	tweak,	and	fiddle	with	the
code	and	then	just	upload	the	new	versions	to	the	Net.

It	goes	without	saying	that	all	the	cool	software	coming	out	of	Stallman's	Free
Software	Foundation	found	its	way	to	Linux.	Some	were	simple	toys	like	GNU
Chess,	but	others	were	serious	tools	that	were	essential	to	the	growth	of	the
project.	By	1991,	the	FSF	was	offering	what	might	be	argued	were	the	best	text

editor	and	compiler	in	the	world.	Others	might	have	been	close,	but	Stallman's
were	free.	These	were	crucial	tools	that	made	it	possible	for	Linux	to	grow
quickly	from	a	tiny	experimental	kernel	into	a	full-featured	OS	for	doing
everything	a	programmer	might	want	to	do.

James	Lewis-Moss,	one	of	the	many	programmers	who	devote	some	time	to
Linux,	says	that	GCC	made	it	possible	for	programmers	to	create,	revise,	and
extend	the	kernel.	"GCC	is	integral	to	the	success	of	Linux,"	he	says,	and	points
out	that	this	may	be	one	of	the	most	important	reasons	why	"it's	polite	to	refer	to
it	as	GNU/Linux."

Lewis-Moss	points	out	one	of	the	smoldering	controversies	in	the	world	of	free
software:	all	of	the	tools	and	games	that	came	from	the	GNU	project	started
becoming	part	of	what	people	simply	thought	of	as	plain	"Linux."	The	name	for
the	small	kernel	of	the	operating	system	soon	grew	to	apply	to	almost	all	the	free
software	that	ran	with	it.	This	angered	Stallman,	who	first	argued	that	a	better
name	would	be"Lignux."When	that	failed	to	take	hold,	he	moved	to
"GNU/Linux."	Some	ignored	his	pleas	and	simply	used	"Linux,"	which	is	still	a
bit	unfair.	Some	feel	that"GNU/Linux"is	too	much	of	a	mouthful	and,	for	better
or	worse,	just	plain	Linux	is	an	appropriate	shortcut.	Some,	like	Lewis-Moss,
hold	firm	to	GNU/Linux.

Soon	some	people	were	bundling	together	CD-ROMs	with	all	this	software	in
one	batch.	The	group	would	try	to	work	out	as	many	glitches	as	possible	so	that
the	purchaser's	life	would	be	easier.	All	boasted	strange	names	like	Yggdrasil,
Slackware,	SuSE,	Debian,	or	Red	Hat.	Many	were	just	garage	projects	that	never
made	much	money,	but	that	was	okay.	Making	money	wasn't	really	the	point.
People	just	wanted	to	play	with	the	source.	Plus,	few	thought	that	much	money
could	be	made.	The	GPL,	for	instance,	made	it	difficult	to	differentiate	the
product	because	it	required	everyone	to	share	their	source	code	with	the	world.	If
Slackware	came	up	with	a	neat	fix	that	made	their	version	of	Linux	better,	then
Debian	and	SuSE	could	grab	it.	The	GPL	prevented	anyone	from	constraining
the	growth	of	Linux.

But	only	greedy	businessmen	see	sharing	and	competition	as	negatives.	In
practice,	the	free	flow	of	information	enhanced	the	market	for	Linux	by	ensuring
that	it	was	stable	and	freely	available.	If	one	key	CDROM	developer	gets	a	new
girlfriend	and	stops	spending	enough	time	programming,	another	distribution
will	pick	up	the	slack.	If	a	hurricane	flattened	Raleigh,	North	Carolina,	the	home

of	Red	Hat,	then	another	supplier	would	still	be	around.	A	proprietary	OS	like
Windows	is	like	a	set	of	manacles.	An	earthquake	in	Redmond,	Washington,
could	cause	a	serious	disruption	for	everyone.

The	competition	and	the	GPL	meant	that	the	users	would	never	feel	bound	to	one
OS.	If	problems	arose,	anyone	could	always	just	start	a	splinter	group	and	take
Linux	in	that	direction.	And	they	did.	All	the	major	systems	began	as	splinter
groups,	and	some	picked	up	enough	steam	and	energy	to	dominate.	In	time,	the
best	splinter	groups	spun	off	their	own	splinter	groups	and	the	process	grew
terribly	complicated.

9.1	THE	ESTABLISHMENT	BEGINS	TO	NOTICE

......................................

By	the	mid-1990s,	the	operating	system	had	already	developed	quite	a
following.	In	1994,	Jon	Hall	was	a	programmer	for	Digital,	a	company	that	was
later	bought	by	Compaq.	Hall	also	wears	a	full	beard	and	uses	the	name
"maddog"	as	a	nickname.	At	that	time,	Digital	made	workstations	that	ran	a
version	of	UNIX.	In	the	early	1990s,	Digital	made	a	big	leap	forward	by	creating
a	64-bit	processor	version	of	its	workstation	CPU	chip,	the	Alpha,	and	the
company	wanted	to	make	sure	that	the	chip	found	widespread	acceptance.

Hall	remembers	well	the	moment	he	discovered	Linux.	He	told	Linux	Today,

I	didn't	even	know	I	was	involved	with	Linux	at	first.	I	got	a	copy	of	Dr.	Dobb's
Journal,	and	in	there	was	an	advertisement	for	"get	a	UNIX	operating	system,	all
the	source	code,	and	run	it	on	your	PC."	And	I	think	it	was	$99.	And	I	go,	"Oh,
wow,	that's	pretty	cool.	For	$99,	I	can	do	that."	So	I	sent	away	for	it,	got	the	CD.
The	only	trouble	was	that	I	didn't	have	a	PC	to	run	it	on.	So	I	put	it	on	my	Ultrix
system,	took	a	look	at	the	main	pages,	directory	structure	and	stuff,	and	said,
"Hey,	that	looks	pretty	cool."	Then	I	put	it	away	in	the	filing	cabinet.	That	was
probably	around	January	of	1994.

In	May	1994,	Hall	met	Torvalds	at	a	DECUS	(Digital	Equipment	Corporation
User	Society)	meeting	and	became	a	big	fan.	Hall	is	a	programmer's	programmer
who	has	written	code	for	many	different	machines	over	the	years,	like	the	IBM
1130	and	the	DEC	PDP-8.	He	started	out	as	an	electrical	engineer	in	college,	but
took	up	writing	software	"after	seeing	a	friend	of	mine	fried	by	13,600	volts	and
400	amps,	which	was	not	a	pretty	sight."	Hall	started	playing	with	UNIX	when

he	worked	at	Bell	Labs	and	fell	in	love	with	the	OS.

At	the	meeting,	Torvalds	helped	Hall	and	his	boss	set	up	a	PC	with	Linux.	This
was	the	first	time	that	Hall	actually	saw	Linux	run,	and	he	was	pleasantly
surprised.	He	said,	"By	that	time	I	had	been	using	UNIX	for	probably	about
fifteen	years.	I	had	used	System	V,	I	had	used	Berkeley,	and	all	sorts	of	stuff,	and
this	really	felt	like	UNIX.	You	know.	..	I	mean,	it's	kind	of	like	playing	the	piano.
You	can	play	the	piano,	even	if	it's	a	crappy	piano.	But	when	it's	a	really	good
piano,	your	fingers	just	fly	over	the	keys.	That's	the	way	this	felt.	It	felt	good,
and	I	was	really	impressed."

This	experience	turned	Hall	into	a	true	convert	and	he	went	back	to	Digital
convinced	that	the	Linux	project	was	more	than	just	some	kids	playing	with	a
toy	OS.	These	so-called	amateurs	with	no	centralized	system	or	corporate
backing	had	produced	a	very,	very	impressive	system	that	was	almost	as	good	as
the	big	commercial	systems.	Hall	was	an	instant	devotee.	Many	involved	in	the
project	recall	their	day	of	conversion	with	the	same	strength.	A	bolt	of	lightning
peeled	the	haze	away	from	their	eyes,	and	they	saw.

Hall	set	out	trying	to	get	Torvalds	to	rewrite	Linux	so	it	would	work	well	on	the
Alpha.	This	was	not	a	simple	task,	but	it	was	one	that	helped	the	operating
system	grow	a	bit	more.	The	original	version	included	some	software	that
assumed	the	computer	was	designed	like	the	Intel	386.	This	was	fine	when
Linux	only	ran	on	Intel	machines,	but	removing	these	assumptions	made	it
possible	for	the	software	to	run	well	on	all	types	of	machines.

Hall	went	sailing	with	Torvalds	to	talk	about	the	guts	of	the	Linux	OS.	Hall	told
me,	"I	took	him	out	on	the	Mississippi	River,	went	up	and	down	the	Mississippi
in	the	river	boat,	drinking	Hurricanes,	and	I	said	to	him,	'Linus,	did	you	ever
think	about	porting	Linux	to	a	64-bit	processor,	like	the	Alpha?'	He	said,	'Well,	I
thought	about	doing	that,	but	the	Helsinki	office	has	been	having	problems
getting	me	a	system,	so	I	guess	I'll	have	to	do	the	PowerPC	instead.'

"I	knew	that	was	the	wrong	answer,	so	I	came	back	to	Digital	(at	the	time),	and
got	a	friend	of	mine,	named	Bill	Jackson,	to	send	out	a	system	to	Linus,	and	he
received	it	about	a	couple	weeks	after	that.	Then	I	found	some	people	inside
Digital	who	were	also	thinking	about	porting	Linux	to	an	Alpha.	I	got	the	two
groups	together,	and	after	that,	we	started	on	the	Alpha	Linux	project."

This	was	one	of	the	first	times	that	a	major	corporation	started	taking	note	of
what	was	happening	in	the	garages	and	basements	of	hardcore	computer
programmers.	It	was	also	one	of	the	first	times	that	a	corporation	looked	at	an
open	source	operating	system	and	did	not	react	with	fear	or	shock.	Sun	was
always	a	big	contributor	of	open	source	software,	but	they	kept	their	OS
proprietary.	Hall	worked	tirelessly	at	Digital	to	ensure	that	the	corporation
understood	the	implications	of	the	GPL	and	saw	that	it	was	a	good	way	to	get
more	interested	in	the	Alpha	chip.	He	says	he	taught	upper	management	at
Digital	how	to	"say	the	L-word."

Hall	also	helped	start	a	group	called	Linux	International,	which	works	to	make
the	corporate	world	safe	for	Linux.	"We	help	vendors	understand	the	Linux
marketplace,"	Hall	told	me.	"There's	a	lot	of	confusion	about	what	the	GPL
means.	Less	now,	but	still	there's	a	lot	of	confusion.	We	helped	them	find	the
markets."

Today,	Linux	International	helps	control	the	trademark	on	the	name	Linux	and
ensures	that	it	is	used	in	an	open	way.	"When	someone	wanted	to	call	themselves
something	like	'Linux	University,'	we	said	that's	bad	because	there's	going	to	be
more	than	one.	'Linux	University	of	North	Carolina'	is	okay.	It	opens	up	the
space."

In	the	beginning,	Torvalds	depended	heavily	on	the	kindness	of	strangers	like
Hall.	He	didn't	have	much	money,	and	the	Linux	project	wasn't	generating	a
huge	salary	for	him.	Of	course,	poverty	also	made	it	easier	for	people	like	Hall
to	justify	giving	him	a	machine.	Torvalds	wasn't	rich	monetarily,	but	he	became
rich	in	machines.

By	1994,	when	Hall	met	Torvalds,	Linux	was	already	far	from	just	a	one-man
science	project.	The	floppy	disks	and	CD-ROMs	holding	a	version	of	the	OS
were	already	on	the	market,	and	this	distribution	mechanism	was	one	of	the
crucial	unifying	forces.	Someone	could	just	plunk	down	a	few	dollars	and	get	a
version	that	was	more	or	less	ready	to	run.	Many	simply	downloaded	their
versions	for	free	from	the	Internet.

9.2	MAKING	IT	EASY	TO	USE

.........................

In	1994,	getting	Linux	to	run	was	never	really	as	simple	as	putting	the	CD-ROM

in	the	drive	and	pressing	a	button.	Many	of	the	programs	didn't	work	with
certain	video	cards.	Some	modems	didn't	talk	to	Linux.	Not	all	of	the	printers
communicated	correctly.	Yet	most	of	the	software	worked	together	on	many
standard	machines.	It	often	took	a	bit	of	tweaking,	but	most	people	could	get	the
OS	up	and	running	on	their	computers.

This	was	a	major	advance	for	the	Linux	OS	because	most	people	could	quickly
install	a	new	version	without	spending	too	much	time	downloading	the	new	code
or	debugging	it.	Even	programmers	who	understood	exactly	what	was	happening
felt	that	installing	a	new	version	was	a	long,	often	painful	slog	through	technical
details.	These	CDROMs	not	only	helped	programmers,	they	also	encouraged
casual	users	to	experiment	with	the	system.

The	CD-ROM	marketplace	also	created	a	new	kind	of	volunteer	for	the	project.
Someone	had	to	download	the	latest	code	from	the	author.	Someone	had	to
watch	the	kernel	mailing	list	to	see	when	Torvalds,	Cox,	and	the	rest	had	minted
a	new	version	that	was	stable	enough	to	release.	Someone	needed	to	check	all
the	other	packages	like	GNU	Emacs	or	GNU	CC	to	make	sure	they	still	worked
correctly.	This	didn't	require	the	obsessive	programming	talent	that	created	the
kernel,	but	it	did	take	some	dedication	and	devotion.

Today,	there	are	many	different	kinds	of	volunteers	putting	together	these
packages.	The	Debian	group,	for	instance,	is	one	of	the	best	known	and	most
devoted	to	true	open	source	principles.	It	was	started	by	Ian	Murdock,	who
named	it	after	himself	and	his	girlfriend,	Debra.	The	Debian	group,	which	now
includes	hundreds	of	official	members,	checks	to	make	sure	that	the	software	is
both	technically	sound	and	politically	correct.	That	is,	they	check	the	licenses	to
make	sure	that	the	software	can	be	freely	distributed	by	all	users.	Their
guidelines	later	morphed	into	the	official	definition	of	open	source	software.

Other	CD-ROM	groups	became	more	commercial.	Debian	sold	its	disks	to	pay
for	Internet	connection	fees	and	other	expenses,	but	they	were	largely	a	garage
operation.	So	were	groups	with	names	like	Slackware,	FreeBSD,	and	OpenBSD.
Other	groups	like	Red	Hat	actually	set	out	to	create	a	burgeoning	business,	and
to	a	large	extent,	they	succeeded.	They	took	the	money	and	used	it	to	pay
programmers	who	wrote	more	software	to	make	Linux	easier	to	use.

In	the	beginning,	there	wasn't	much	difference	between	the	commercially
minded	groups	like	Red	Hat	and	the	more	idealistic	collectives	like	Debian.	The

marketplace	was	small,	fragmented,	and	tribal.	But	by	1998,	Red	Hat	had
attracted	major	funding	from	companies	like	Intel,	and	it	plowed	more	and	more
money	into	making	the	package	as	presentable	and	easy	to	use	as	possible.	This
investment	paid	off	because	more	users	turned	instinctively	to	Red	Hat,	whose
CD-ROM	sales	then	exploded.

Most	of	this	development	lived	in	its	own	Shangri-La.	Red	Hat,	for	instance,
charged	money	for	its	disks,	but	released	all	of	its	software	under	the	GPL.
Others	could	copy	their	disks	for	free,	and	many	did.	Red	Hat	may	be	a
company,	but	the	management	realized	that	they	depended	on	thousands	if	not
millions	of	unpaid	volunteers	to	create	their	product.

Slowly	but	surely,	more	and	more	people	became	aware	of	Linux,	the	GNU
project,	and	its	cousins	like	FreeBSD.	No	one	was	making	much	money	off	the
stuff,	but	the	word	of	mouth	was	spreading	very	quickly.	The	disks	were	priced
reasonably,	and	people	were	curious.	The	GPL	encouraged	people	to	share.
People	began	borrowing	disks	from	their	friends.	Some	companies	even
manufactured	cheap	rip-off	copies	of	the	CD-ROMs,	an	act	that	the	GPL
encouraged.

At	the	top	of	the	pyramid	was	Linus	Torvalds.	Many	Linux	developers	treated
him	like	the	king	of	all	he	surveyed,	but	he	was	like	the	monarchs	who	were
denuded	by	a	popular	constitutional	democracy.	He	had	always	focused	on
building	a	fast,	stable	kernel,	and	that	was	what	he	continued	to	do.	The	rest	of
the	excitement,	the	packaging,	the	features,	and	the	toys,	were	the	dominion	of
the	volunteers	and	contributors.

Torvalds	never	said	much	about	the	world	outside	his	kernel,	and	it	developed
without	him.

Torvalds	moved	to	Silicon	Valley	and	took	a	job	with	the	very	secret	company
Transmeta	in	order	to	help	design	the	next	generation	of	computer	chips.	He
worked	out	a	special	deal	with	the	company	that	allowed	him	to	work	on	Linux
in	his	spare	time.	He	felt	that	working	for	one	of	the	companies	like	Red	Hat
would	give	that	one	version	of	Linux	a	special	imprimatur,	and	he	wanted	to
avoid	that.	Plus,	Transmeta	was	doing	cool	things.

In	January	1999,	the	world	caught	up	with	the	pioneers.	Schmalensee	mentioned
Linux	on	the	witness	stand	during	the	trial	and	served	official	notice	to	the	world

that	Microsoft	was	worried	about	the	growth	of	Linux.	The	system	had	been	on
the	company's	radar	screen	for	some	time.	In	October	1998,	an	internal	memo
from	Microsoft	describing	the	threat	made	its	way	to	the	press.	Some	thought	it
was	just	Microsoft's	way	of	currying	favor	during	the	antitrust	investigation.
Others	thought	it	was	a	serious	treatment	of	a	topic	that	was	difficult	for	the
company	to	understand.

The	media	followed	Schmalensee's	lead.	Everyone	wanted	to	know	about	Linux,
GNU,	open	source	software,	and	the	magical	effects	of	widespread,
unconditional	sharing.	The	questions	came	in	tidal	waves,	and	Torvalds	tried	to
answer	them	again	and	again.	Was	he	sorry	he	gave	it	all	away?	No.	If	he
charged	anything,	no	one	would	have	bought	his	toy	and	no	one	would	have
contributed	anything.	Was	he	a	communist?	No,	he	was	rather	apolitical.	Don't
programmers	have	to	eat?	Yes,	but	they	will	make	their	money	selling	a	service
instead	of	getting	rich	off	bad	proprietary	code.	Was	Linux	going	to	overtake
Microsoft?	Yes,	if	he	had	his	way.	World	Domination	Soon	became	the	motto.

But	there	were	also	difficult	questions.	How	would	the	Linux	world	resist	the
embrace	of	big	companies	like	IBM,	Apple,	Hewlett-Packard,	and	maybe	even
Microsoft?	These	were	massive	companies	with	paid	programmers	and
schedules	to	meet.	All	the	open	source	software	was	just	as	free	to	them	as
anyone	else.	Would	these	companies	use	their	strength	to	monopolize	Linux?

Some	were	worried	that	the	money	would	tear	apart	the	open	source	community.
It's	easy	to	get	everyone	to	donate	their	time	to	a	project	when	no	one	is	getting
paid.	Money	changes	the	equation.	Would	a	gulf	develop	between	the	rich
companies	like	Red	Hat	and	the	poor	programmers	who	just	gave	away	their
hard	work?

Many	wanted	to	know	when	Linux	would	become	easier	to	use	for
nonprogrammers.	Programmers	built	the	OS	to	be	easy	to	take	apart	and	put
back	together	again.	That's	a	great	feature	if	you	like	hacking	the	inside	of	a
kernel,	but	that	doesn't	excite	the	average	computer	user.	How	was	the	open
source	community	going	to	get	the	programmers	to	donate	their	time	to	fix	the
mundane,	everyday	glitches	that	confused	and	infuriated	the	nonprogrammers?
Was	the	Linux	community	going	to	be	able	to	produce	something	that	a
nonprogrammer	could	even	understand?

Others	wondered	if	the	Linux	world	could	ever	agree	enough	to	create	a

software	package	with	some	coherence.	Today,	Microsoft	users	and
programmers	pull	their	hair	out	trying	to	keep	Windows	95,	Windows	98,	and
Windows	NT	straight.	Little	idiosyncrasies	cause	games	to	crash	and	programs
to	fail.	Microsoft	has	hundreds	of	quality	assurance	engineers	and	thousands	of
support	personnel.	Still,	the	little	details	drive	everyone	crazy.

New	versions	of	Linux	appear	as	often	as	daily.	People	often	create	their	own
versions	to	solve	particular	problems.	Many	of	these	changes	won't	affect
anyone,	but	they	can	add	up.	Is	there	enough	consistency	to	make	the	tools	easy
enough	to	use?

Many	wondered	if	Linux	was	right	for	world	domination.	Programmers	might
love	playing	with	source	code,	but	the	rest	of	the	world	just	wants	something
that	delivers	the	e-mail	on	time.	More	important,	the	latter	are	willing	to	pay	for
this	efficiency.

Such	questions	have	been	bothering	the	open	source	community	for	years	and
still	have	no	easy	answers	today.	Programmers	need	food,	and	food	requires
money.	Making	easy-to-use	software	requires	discipline,	and	discipline	doesn't
always	agree	with	total	freedom.

When	the	first	wave	of	hype	about	free	software	swept	across	the	zeitgeist,	no
one	wanted	to	concentrate	on	these	difficult	questions.	The	high	quality	of	free
operating	systems	and	their	use	at	high-profile	sites	like	Yahoo!	was	good	news
for	the	world.	The	success	of	unconditional	cooperation	was	intoxicating.	If	free
software	could	do	so	much	with	so	little,	it	could	overcome	the	difficult
questions.	Besides,	it	didn't	have	to	be	perfect.	It	just	needed	to	be	better	than
Microsoft.

1.	 FREEDOM

The	notion	embodied	by	the	word	"free"	is	one	of	the	great	marketing	devices	of
all	time.	Cereal	manufacturers	know	that	kids	will	slog	through	bowls	of	sugar	to
get	a	free	prize.	Stores	know	that	people	will	gladly	give	them	their	names	and
addresses	if	they	stand	a	chance	of	winning	something	for	free.	Car	ads	love	to
emphasize	the	freedom	a	new	car	will	give	to	someone.

Of	course,	Microsoft	knows	this	fact	as	well.	One	of	their	big	advertising
campaigns	stresses	the	freedom	to	create	new	documents,	write	long	novels,

fiddle	with	photographs,	and	just	do	whatever	you	want	with	a	computer.
"Where	do	you	want	to	go	today?"	the	Microsoft	ads	ask.

Microsoft	also	recognizes	the	pure	power	of	giving	away	something	for	free.
When	Bill	Gates	saw	Netscape's	browser	emerging	as	a	great	competitive	threat,
he	first	bought	a	competing	version	and	then	wrote	his	own	version	of	a	web
browser.	Microsoft	gave	their	versions	away	for	free.	This	bold	move	shut	down
the	revenue	stream	of	Netscape,	which	had	to	cut	its	price	to	zero	in	order	to
compete.	Of	course,	Netscape	didn't	have	revenues	from	an	operating	system	to
pay	the	rent.	Netscape	cried	foul	and	eventually	the	Department	of	Justice
brought	a	lawsuit	to	decide	whether	the	free	software	from	Microsoft	was	just	a
plot	to	keep	more	people	paying	big	bucks	for	their	not-so-free	Windows	OS.
The	fact	that	Microsoft	is	now	threatened	by	a	group	of	people	who	are	giving
away	a	free	OS	has	plenty	of	irony.

The	word	"free"	has	a	much	more	complicated	and	nuanced	meaning	within	the
free	software	movement.	In	fact,	many	people	who	give	away	their	software
don't	even	like	the	word	"free"	and	prefer	to	use	"open"	to	describe	the	process
of	sharing.	In	the	case	of	free	software,	it's	not	just	an	ad	campaign	to	make
people	feel	good	about	buying	a	product.	It's	also	not	a	slick	marketing	sleight	of
hand	to	focus	people's	attention	on	a	free	gift	while	the	magician	charges	full
price	for	a	product.	The	word	"free"	is	more	about	a	way	of	life.	The	folks	who
write	the	code	throw	around	the	word	in	much	the	same	way	the	Founding
Fathers	of	the	United	States	used	it.	To	many	of	them,	the	free	software
revolution	was	also	conceived	in	liberty	and	dedicated	to	certain	principles	like
the	fact	that	all	men	and	women	have	certain	inalienable	rights	to	change,
modify,	and	do	whatever	they	please	with	their	software	in	the	pursuit	of
happiness.

Tossing	about	the	word	"free"	is	easy	to	do.	Defining	what	it	means	takes	much
longer.	The	Declaration	of	Independence	was	written	in	1776,	but	the	colonial
governments	fought	and	struggled	with	creating	a	free	government	through	the
ratification	of	the	current	United	States	Constitution	in	1787.	The	Bill	of	Rights
came	soon	afterward,	and	the	Supreme	Court	is	still	continually	struggling	with
defining	the	boundaries	of	freedom	described	by	the	document.	Much	of	the
political	history	of	the	United	States	might	be	said	to	be	an	extended	argument
about	the	meaning	of	the	words	"free	country."

The	free	software	movement	is	no	different.	It's	easy	for	one	person	to	simply

give	their	software	away	for	free.	It's	much	harder	to	attract	and	organize	an
army	to	take	on	Microsoft	and	dominate	the	world.	That	requires	a	proper
definition	of	the	word	"free"	so	that	everyone	understands	the	rights	and
limitations	behind	the	word.	Everyone	needs	to	be	on	the	same	page	if	the	battle
is	to	be	won.	Everyone	needs	to	understand	what	is	meant	by	"free	software."

The	history	of	the	free	software	world	is	also	filled	with	long,	extended
arguments	defining	the	freedom	that	comes	bundled	with	the	source	code.	Many
wonder	if	it	is	more	about	giving	the	user	something	for	nothing,	or	if	is	it	about
empowering	him.	Does	this	freedom	come	with	any	responsibilities?	What
should	they	be?	How	is	the	freedom	enforced?	Is	freeloading	a	proper	part	of	the
freedom?

In	the	early	years	of	computers,	there	were	no	real	arguments.	Software	was	free
because	people	just	shared	it	with	each	other.	Magazines	like	Creative
Computing	and	BYTE	published	the	source	code	to	programs	because	that	was
an	easy	way	to	share	information.

People	would	even	type	in	the	data	themselves.	Computers	cost	money,	and
getting	them	to	run	was	part	of	the	challenge.	Sharing	software	was	just	part	of
being	neighborly.	If	someone	needed	to	borrow	your	plow,	you	lent	it	to	them
when	you	weren't	using	it.

This	changed	as	corporations	recognized	that	they	could	copyright	software	and
start	charging	money	for	it.	Most	people	loved	this	arrangement	because	the
competition	brought	new	packages	and	tools	to	market	and	people	were	more
than	willing	to	pay	for	them.	How	else	are	the	programmers	and	the	manual
writers	going	to	eat?

A	few	people	thought	this	was	a	disaster.	Richard	Stallman	watched	the	world
change	from	his	office	in	the	artificial	intelligence	labs	of	MIT.	Stallman	is	the
ultimate	hacker,	if	you	use	the	word	in	the	classical	sense.	In	the	beginning,	the
word	only	described	someone	who	knows	how	to	program	well	and	loves	to
poke	around	in	the	insides	of	computers.	It	only	took	on	its	more	malicious	tone
later	as	the	media	managed	to	group	all	of	those	with	the	ability	to	wrangle
computers	into	the	same	dangerous	camp.	Hackers	often	use	the	term	"cracker"
to	refer	to	these	people.

Stallman	is	a	model	of	the	hacker.	He	is	strident,	super	intelligent,	highly	logical,

and	completely	honest.	Most	corporations	keep	their	hackers	shut	off	in	a	back
room	because	these	traits	seem	to	scare	away	customers	and	investors	who	just
want	sweet	little	lies	in	their	ears.	Stallman	was	never	that	kind	of	guy.	He
looked	at	the	burgeoning	corporate	control	of	software	and	didn't	like	it	one	bit.
His	freedom	was	slowly	being	whittled	away,	and	he	wasn't	the	type	to	simply
sit	by	and	not	say	anything.

When	Stallman	left	the	AI	lab	in	1984,	he	didn't	want	to	be	controlled	by	its
policies.	Universities	started	adopting	many	of	the	same	practices	as	the
corporations	in	the	1980s,	and	Stallman	couldn't	be	a	special	exception.	If	MIT
was	going	to	be	paying	him	a	salary,	MIT	would	own	his	code	and	any	patents
that	came	from	it.	Even	MIT,	which	is	a	much	cooler	place	than	most,	couldn't
accommodate	him	on	staff.	He	didn't	move	far,	however,	because	after	he	set	up
the	Free	Software	Foundation,	he	kept	an	office	at	MIT,	first	unofficially	and
then	officially.	Once	he	wasn't	"on	the	staff,"	the	rules	became	different.

Stallman	turned	to	consulting	for	money,	but	it	was	consulting	with	a	twist.	He
would	only	work	for	companies	that	wouldn't	put	any	restrictions	on	the
software	he	created.	This	wasn't	an	easy	sell.	He	was	insisting	that	any	work	he
did	for	Corporation	X	could	also	be	shared	with	Corporations	Y	and	Z,	even	if
they	were	direct	competitors.

This	wasn't	how	things	were	done	in	the	1980s.	That	was	the	decade	when
companies	figured	out	how	to	lock	up	the	source	code	to	a	program	by	only
distributing	a	machine-readable	version.	They	hoped	this	would	control	their
product	and	let	them	restrain	people	who	might	try	to	steal	their	ideas	and	their
intellectual	property.	Stallman	thought	it	was	shutting	down	his	ability	to	poke
around	inside	the	computer	and	fix	it.	This	secrecy	blocked	him	from	sharing	his
thoughts	and	ideas	with	other	programmers.

Most	programmers	looked	at	the	scheme	of	charging	for	locked-up	binary
versions	of	a	program	as	a	necessary	evil.	Sure,	they	couldn't	play	around	with
the	guts	of	Microsoft	Windows,	but	it	also	meant	that	no	one	could	play	around
with	the	guts	of	the	programs	they	wrote.	The	scheme	locked	doors	and
compartmentalized	the	world,	but	it	also	gave	the	creator	of	programs	more
power.	Most	programmers	thought	having	power	over	their	own	creation	was
pretty	neat,	even	if	others	had	more	power.	Being	disarmed	is	okay	if	everyone
else	is	disarmed	and	locked	in	a	cage.

Stallman	thought	this	was	a	disaster	for	the	world	and	set	out	to	convince	the
world	that	he	was	right.	In	1984,	he	wrote	the	GNU	Manifesto,	which	started	his
GNU	project	and	laid	out	the	conditions	for	his	revolution.	This	document	stood
out	a	bit	in	the	middle	of	the	era	of	Ronald	Reagan	because	it	laid	out	Stallman's
plan	for	creating	a	virtual	commune	where	people	would	be	free	to	use	the
software.	It	is	one	of	the	first	cases	when	someone	tried	to	set	down	a	definition
of	the	word	"free"	for	software	users.	Sure,	software	and	ideas	were	quite	free
long	ago,	but	no	one	noticed	until	the	freedom	was	gone.

He	wrote,

I	consider	that	the	golden	rule	requires	that	if	I	like	a	program	I	must	share	it
with	other	people	who	like	it.	Software	sellers	want	to	divide	the	users	and
conquer	them,	making	each	user	agree	not	to	share	with	others.	I	refuse	to	break
solidarity	with	other	users	in	this	way..	..	So	that	I	can	continue	to	use	computers
without	dishonor,	I	have	decided	to	put	together	a	sufficient	body	of	free
software	so	that	I	will	be	able	to	get	along	without	any	software	that	is	not	free.

The	document	is	a	wonderful	glimpse	at	the	nascent	free	software	world	because
it	is	as	much	a	recruiting	document	as	a	tirade	directed	at	corporate	business
practices.	When	the	American	colonies	split	off	from	England,	Thomas	Paine
spelled	out	the	problems	with	the	English	in	the	first	paragraph	of	his	pamphlet
"Common	Sense."	In	his	manifesto,	Stallman	didn't	get	started	using	words	like
"dishonor"	until	the	sixth	paragraph.	The	first	several	paragraphs	spelled	out	the
cool	tools	he	had	developed	already:	"an	Emacs	text	editor	with	Lisp	for	writing
editor	commands,	a	source	level	debugger,	a	yacc-compatible	parser	generator,	a
linker,	and	around	35	utilities."	Then	he	pointed	to	the	work	he	wanted	to
complete	soon:	"A	new	portable	optimizing	C	compiler	has	compiled	itself	and
may	be	released	this	year.	An	initial	kernel	exists	but	many	more	features	are
needed	to	emulate	Unix."	He	was	saying,	in	effect,	that	he	already	had	a	few
juicy	peaches	growing	on	the	trees	of	his	commune.

If	this	wasn't	enough,	he	intended	to	do	things	a	bit	better	than	UNIX.	His
operating	system	was	going	to	offer	the	latest,	greatest	ideas	of	computer
science,	circa	1984.	"In	particular,	we	plan	to	have	longer	file	names,	file	version
numbers,	a	crashproof	file	system,	file	name	completion	perhaps,	terminal-
independent	display	support,	and	perhaps	eventually	a	Lisp-based	window
system	through	which	several	Lisp	programs	and	ordinary	Unix	programs	can
share	a	screen."	The	only	thing	that	was	missing	from	every	computer	nerd's

wish	list	was	a	secret	submarine	docking	site	in	the	basement	grotto.

The	fifth	paragraph	even	explained	to	everyone	that	the	name	of	the	project
would	be	the	acronym	GNU,	which	stood	for	"GNU's	Not	UNIX,"	and	it	should
be	pronounced	with	a	hard	G	to	make	sure	that	no	one	would	get	it	confused
with	the	word	"new."	Stallman	has	always	cared	about	words,	the	way	they're
used	and	the	way	they're	pronounced.

In	1984,	UNIX	became	the	focus	of	Stallman's	animus	because	its	original
developer,	AT&T,	was	pushing	to	try	to	make	some	money	back	after	paying	so
many	people	at	Bell	Labs	to	create	it.	Most	people	were	somewhat	conflicted	by
the	fight.	They	understood	that	AT&T	had	paid	good	money	and	supported	many
researchers	with	the	company's	beneficence.	The	company	gave	money,	time,
and	spare	computers.	Sure,	it	was	a	pain	to	pay	AT&T	for	something	and	get
only	a	long	license	drafted	by	teams	of	lawyers.	Yes,	it	would	be	nice	if	we	could
poke	around	under	the	hood	of	UNIX	without	signing	a	non-disclosure
agreement.	It	would	be	nice	if	we	could	be	free	to	do	whatever	we	want,	but
certainly	someone	who	pays	for	something	deserves	the	right	to	decide	how	it	is
used.	We've	all	got	to	eat.

Stallman	wasn't	confused	at	all.	Licenses	like	AT&T's	would	constrict	his
freedom	to	share	with	others.	To	make	matters	worse,	the	software	companies
wanted	him	to	pay	for	the	privilege	of	getting	software	without	the	source	code.

Stallman	explains	that	his	feelings	weren't	focused	on	AT&T	per	se.	Software
companies	were	springing	up	all	over	the	place,	and	most	of	them	were	locking
up	their	source	code	with	proprietary	licenses.	It	was	the	1980s	thing	to	do,	like
listening	to	music	by	Duran	Duran	and	Boy	George.

"When	I	decided	to	write	a	free	operating	system,	I	did	not	have	AT&T	in	mind
at	all,	because	I	had	never	had	any	dealings	with	them.	I	had	never	used	a	UNIX
system.	They	were	just	one	of	many	companies	doing	the	same	discreditable
thing,"	he	told	me	recently.	"I	chose	a	Unix-like	design	just	because	I	thought	it
was	a	good	design	for	the	job,	not	because	I	had	any	particular	feelings	about
AT&T."

When	he	wrote	the	GNU	Manifesto,	he	made	it	clear	to	the	world	that	his	project
was	more	about	choosing	the	right	moral	path	than	saving	money.	He	wrote	then
that	the	GNU	project	means	"much	more	than	just	saving	everyone	the	price	of	a

UNIX	license.	It	means	that	much	wasteful	duplication	of	system	programming
effort	will	be	avoided.	This	effort	can	go	instead	into	advancing	the	state	of	the
art."

This	was	a	crucial	point	that	kept	Stallman	from	being	dismissed	as	a	quasi-
communist	crank	who	just	wanted	everyone	to	live	happily	on	some	nerd
commune.	The	source	code	is	a	valuable	tool	for	everyone	because	it	is	readable
by	humans,	or	at	least	humans	who	happen	to	be	good	at	programming.
Companies	learned	to	keep	source	code	proprietary,	and	it	became	almost	a
reflex.	If	people	wanted	to	use	it,	they	should	pay	to	help	defray	the	cost	of
creating	it.	This	made	sense	to	programmers	who	wanted	to	make	a	living	or
even	get	rich	writing	their	own	code.	But	it	was	awfully	frustrating	at	times.
Many	programmers	have	pulled	their	hair	out	in	grief	when	their	work	was
stopped	by	some	bug	or	undocumented	feature	buried	deep	in	the	proprietary,
super-secret	software	made	by	Microsoft,	IBM,	Apple,	or	whomever.	If	they	had
the	source	code,	they	would	be	able	to	poke	around	and	figure	out	what	was
really	happening.	Instead,	they	had	to	treat	the	software	like	a	black	box	and
keep	probing	it	with	test	programs	that	might	reveal	the	secrets	hidden	inside.
Every	programmer	has	had	an	experience	like	this,	and	every	programmer	knew
that	they	could	solve	the	problem	much	faster	if	they	could	only	read	the	source
code.	They	didn't	want	to	steal	anything,	they	just	wanted	to	know	what	was
going	on	so	they	could	make	their	own	code	work.

Stallman's	GNU	project	would	be	different,	and	he	explained,	"Complete	system
sources	will	be	available	to	everyone.	As	a	result,	a	user	who	needs	changes	in
the	system	will	always	be	free	to	make	them	himself,	or	hire	any	available
programmer	or	company	to	make	them	for	him.	Users	will	no	longer	be	at	the
mercy	of	one	programmer	or	company	which	owns	the	sources	and	is	in	sole
position	to	make	changes."

He	was	quick	to	mention	that	people	would	be	"free	to	hire	any	available
programmer"	to	ensure	that	people	understood	he	wasn't	against	taking	money
for	writing	software.	That	was	okay	and	something	he	did	frequently	himself.	He
was	against	people	controlling	the	source	with	arbitrarily	complex	legal	barriers
that	made	it	impossible	for	him	or	anyone	else	to	get	something	done.

When	people	first	heard	of	his	ideas,	they	became	fixated	on	the	word	"free."
These	were	the	Reagan	years.	Saying	that	people	should	just	give	away	their
hard	work	was	sounding	mighty	communist	to	everyone,	and	this	was	long

before	the	Berlin	Wall	fell.	Stallman	reexamined	the	word	"free"	and	all	of	its
different	meanings.	He	carefully	considered	all	of	the	different	connotations,
examined	the	alternatives,	and	decided	that	"free"	was	still	the	best	word.	He
began	to	try	to	explain	the	shades	of	meaning	he	was	after.	His	revolution	was
about	"free	speech,"	not	"free	beer."	This	wasn't	going	to	be	a	revolution	in	the
sense	that	frequent	flyer	miles	revolutionized	air	travel	nor	in	the	way	that
aluminum	cans	revolutionized	beer	drinking.	No,	this	was	going	to	be	a
revolution	as	Rousseau,	Locke,	and	Paine	used	the	word.

He	later	codified	this	into	four	main	principles:

The	freedom	to	run	the	program,	for	any	purpose	(freedom	0).[^6]

[6]:	He	numbered	them	starting	at	zero	because	that	was	what	computer
scientists	did.	Someone	figured	out	that	it	was	simpler	to	start	numbering
databases	at	zero	because	you	didn't	have	to	subtract	1	as	often.

The	freedom	to	study	how	the	program	works,	and	adapt	it	to	your	needs
(freedom	1).

The	freedom	to	redistribute	copies	so	you	can	help	your	neighbor	(freedom	2).

The	freedom	to	improve	the	program,	and	release	your	improvements	to	the
public,	so	that	the	whole	community	benefits	(freedom	3).

10.1	FREE	BEER

..............

While	Stallman	pushed	people	away	from	the	notion	of	"free	beer,"	there's	little
question	that	this	element	turned	out	to	be	a	very	important	part	of	the	strategy
and	a	foundation	of	its	success.	Stallman	insisted	that	anyone	could	do	what	they
wanted	with	the	software,	so	he	insisted	that	the	source	code	must	be	freely
distributed.	That	is,	no	one	could	put	any	restrictions	on	how	you	used	the
software.	While	this	didn't	make	it	free	beer,	it	did	mean	that	you	could	turn
around	and	give	a	copy	to	your	friends	or	your	clients.	It	was	pretty	close.

The	"free	beer"	nature	of	Stallman's	software	also	attracted	users.	If	some
programmers	wanted	to	check	out	a	new	tool,	they	could	download	it	and	try	it
out	without	paying	for	it.	They	didn't	need	to	ask	their	boss	for	a	budget,	and

they	didn't	need	to	figure	out	a	way	to	deal	with	an	invoice.	Just	one	click	and
the	software	was	there.	Commercial	software	companies	continue	to	imitate	this
feature	by	distributing	trial	versions	that	come	with	either	a	few	crippled	features
or	a	time	lock	that	shuts	them	down	after	a	few	days.

Of	course,	the	"free	beer"	nature	of	the	GNU	project	soon	led	to	money
problems.	The	GNU	project	took	up	his	time	and	generated	no	real	revenues	at
first.	Stallman	had	always	lived	frugally.	He	says	that	he	never	made	more	than
$20,000	a	year	at	MIT,	and	still	managed	to	save	on	that	salary.	But	he	was
finding	it	harder	and	harder	to	get	his	assigned	jobs	done	at	MIT	and	write	the
cool	GNU	code.	While	Stallman	always	supported	a	programmer's	right	to	make
money	for	writing	code,	the	GNU	project	wasn't	generating	any	money.

Most	folks	saw	this	conflict	coming	from	the	beginning.	Sure,	Stallman	would
be	able	to	rant	and	rave	about	corporate	software	development	for	a	bit,	but
eventually	he	and	his	disciples	would	need	to	eat.

When	the	MIT	support	ended,	Stallman	soon	stumbled	upon	a	surprising	fact:	he
could	charge	for	the	software	he	was	giving	away	and	make	some	money.	People
loved	his	software,	but	it	was	often	hard	to	keep	track	of	it.	Getting	the	package
delivered	on	computer	tape	or	a	CD-ROM	gave	people	a	hard	copy	that	they
could	store	for	future	reference	or	backup.	Online	manuals	were	also	nice,	but
the	printed	book	is	still	a	very	popular	and	easy-to-use	way	of	storing
information.	Stallman's	Free	Software	Foundation	began	selling	printed	manuals,
tapes,	and	then	CD-ROMs	filled	with	software	to	make	money.	Surprisingly,
people	started	paying	money	for	these	versions	despite	the	fact	that	they	could
download	the	same	versions	for	free.

Some	folks	enjoyed	pointing	out	the	hypocrisy	in	Stallman's	move.	Stallman	had
run	his	mouth	for	so	long	that	many	programming	"sellouts"	who	worked	for
corporations	savored	the	irony.	At	last	that	weenie	had	gotten	the	picture.	He	was
forced	to	make	money	to	support	himself,	and	he	was	selling	out,	too.	These
cynics	didn't	get	what	Stallman	was	trying	to	do.

Most	of	us	would	have	given	up	at	this	time.	The	free	software	thing	seemed	like
a	good	idea,	but	now	that	the	money	was	running	out	it	was	time	to	get	a	real
job.	In	writing	this	book	and	interviewing	some	of	the	famous	and	not-so-
famous	free	software	developers,	I	found	that	some	were	involved	in	for-profit,
not-so-free	software	development	now.	Stallman,	though,	wasn't	going	to	give

up	his	ideals,	and	his	mind	started	shifting	to	accommodate	this	new	measure	of
reality.	He	decided	that	it	wouldn't	be	wrong	to	sell	copies	of	software	or	even
software	services	as	long	as	you	didn't	withhold	the	source	code	and	stomp	on
anyone's	freedom	to	use	the	source	code	as	they	wished.

Stallman	has	always	been	great	at	splitting	hairs	and	creating	Jesuitical
distinctions,	and	this	insight	was	one	of	his	best.	At	first	glance,	it	looked
slightly	nutty.	If	people	were	free	to	do	anything	they	wanted	with	software,	they
could	just	give	a	copy	to	their	friend	and	their	friend	would	never	send	money
back	to	Stallman's	Free	Software	Foundation.	In	fact,	someone	could	buy	a	copy
from	Stallman	and	then	start	reselling	copies	to	others	to	undercut	Stallman.	The
Free	Software	Foundation	and	the	GNU	GPL	gave	them	the	freedom	to	do	so.	It
was	as	if	a	movie	theater	sold	tickets	to	a	movie,	but	also	posted	a	big	sign	near
the	exit	door	that	said	"Hey,	it's	absolutely	okay	for	you	to	prop	this	open	so	your
friends	can	sneak	in	without	paying."

While	this	total	freedom	befuddled	most	people,	it	didn't	fail.	Many	paid	for
tapes	or	CD-ROM	versions	because	they	wanted	the	convenience.	Stallman's
versions	came	with	the	latest	bug	fixes	and	new	features.	They	were	the	quasi-
official	versions.	Others	felt	that	paying	helped	support	the	work	so	they	didn't
feel	bad	about	doing	it.	They	liked	the	FSF	and	wanted	it	to	produce	more	code.
Others	just	liked	printed	books	better	than	electronic	documentation.	Buying
them	from	Stallman	was	cheaper	than	printing	them	out.	Still	others	paid	for	the
CD-ROMs	because	they	just	wanted	to	support	the	Free	Software	Foundation.

Stallman	also	found	other	support.	The	MacArthur	Foundation	gave	him	one	of
their	genius	grants	that	paid	him	a	nice	salary	for	five	years	to	do	whatever	he
wanted.	Companies	like	Intel	hired	him	as	a	consultant	and	asked	him	to	make
sure	that	some	of	his	software	ran	on	Intel	chips.	People	were	quite	willing	to
pay	for	convenience	because	even	free	software	didn't	do	everything	that	it
should.

Stallman	also	recognized	that	this	freedom	introduced	a	measure	of	competition.
If	he	could	charge	for	copies,	then	so	could	others.	The	source	code	would	be	a
vast	commonweal,	but	the	means	of	delivering	it	would	be	filled	with	people
struggling	to	do	the	best	job	of	distributing	the	software.	It	was	a	pretty	hard-
core	Reaganaut	notion	for	a	reputed	communist.	At	the	beginning,	few	bothered
to	compete	with	him,	but	in	time	all	of	the	GNU	code	began	to	be	included	with
computer	operating	systems.	By	the	time	Linus	Torvalds	wrote	his	OS,	the	GNU

code	was	ready	to	be	included.

10.2	COPYLEFT

.............

If	Stallman's	first	great	insight	was	that	the	world	did	not	need	to	put	up	with
proprietary	source	code,	then	his	second	was	that	he	could	strictly	control	the	use
of	GNU	software	with	an	innovative	legal	document	entitled	GNU	General
Public	License,	or	GPL.	To	illustrate	the	difference,	he	called	the	agreement	a
"copyleft"	and	set	about	creating	a	legal	document	defining	what	it	meant	for
software	to	be	"free."	Well,	defining	what	he	thought	it	should	mean.

The	GPL	was	a	carefully	crafted	legal	document	that	didn't	put	the	software	into
the	"public	domain,"	a	designation	that	would	have	allowed	people	to	truly	do
anything	they	wanted	with	the	software.	The	license,	in	fact,	copyrighted	the
software	and	then	extended	users	very	liberal	rights	for	making	innumerable
copies	as	long	as	the	users	didn't	hurt	other	people's	rights	to	use	the	software.

The	definition	of	stepping	on	other	people's	rights	is	one	that	keeps	political
science	departments	at	universities	in	business.	There	are	many	constituencies
that	all	frame	their	arguments	in	terms	of	protecting	someone's	rights.	Stallman
saw	protecting	the	rights	of	other	users	in	very	strong	terms	and	strengthened	his
grip	a	bit	by	inserting	a	controversial	clause.	He	insisted	that	a	person	who
distributes	an	improved	version	of	the	program	must	also	share	the	source	code.
That	meant	that	some	greedy	company	couldn't	download	his	GNU	Emacs
editor,	slap	on	a	few	new	features,	and	then	sell	the	whole	package	without
including	all	of	the	source	code	they	created.	If	people	were	going	to	benefit
from	the	GNU	sharing,	they	were	going	to	have	to	share	back.	It	was	freedom
with	a	price.

This	strong	compact	was	ready-built	for	some	ironic	moments.	When	Apple
began	trying	to	expand	the	scope	of	intellectual	property	laws	by	suing
companies	like	Microsoft	for	stealing	their	"look	and	feel,"	Stallman	became
incensed	and	decided	that	he	wouldn't	develop	software	for	Apple	machines	as	a
form	of	protest	and	spite.	If	Apple	was	going	to	pollute	the	legal	landscape	with
terrible	impediments	to	sharing	ideas,	then	Stallman	wasn't	going	to	help	them
sell	machines	by	writing	software	for	the	machines.	But	the	GNU	copyleft
license	specifically	allowed	anyone	to	freely	distribute	the	source	code	and	use	it

as	they	wanted.	That	meant	that	others	could	use	the	GNU	code	and	convert	it	to
run	on	the	Apple	if	they	wanted	to	do	so.	Many	did	port	much	of	the	GNU
software	to	the	Mac	and	distributed	the	source	code	with	it	in	order	to	comply
with	the	license.	Stallman	couldn't	do	anything	about	it.	Sure,	he	was	the	great
leader	of	the	FSF	and	the	author	of	some	of	its	code,	but	he	had	given	away	his
power	with	the	license.	The	only	thing	he	could	do	was	refuse	to	help	the	folks
moving	the	software	to	the	Mac.	When	it	came	to	principles,	he	placed	freedom
to	use	the	source	code	at	the	top	of	the	hierarchy.

10.3	THE	GNU	VIRUS

..................

Some	programmers	soon	started	referring	to	the	sticky	nature	of	the	license	as
the	"GNU	virus"	because	it	infected	software	projects	with	its	freedom	bug.	If	a
developer	wanted	to	save	time	and	grab	some	of	the	neat	GNU	software,	he	was
stuck	making	the	rest	of	his	work	just	as	free.	These	golden	handcuffs	often
scared	away	programmers	who	wanted	to	make	money	by	charging	for	their
work.

Stallman	hates	that	characterization.	"To	call	anything	'like	a	virus'	is	a	very
vicious	thing.	People	who	say	things	like	that	are	trying	to	find	ways	to	make	the
GPL	look	bad,"	he	says.

Stallman	did	try	to	work	around	this	problem	by	creating	what	he	at	first	called
the	"Library	General	Public	License"	and	now	refers	to	as	the	"Lesser	General
Public	License,"	a	document	that	allowed	software	developers	to	share	small
chunks	of	code	with	each	other	under	less	restrictive	circumstances.	A
programmer	can	use	the	LGPL	to	bind	chunks	of	code	known	as	libraries.	Others
can	share	the	libraries	and	use	them	with	their	source	code	as	long	as	they	don't
fully	integrate	them.	Any	changes	they	make	to	the	library	itself	must	be	made
public,	but	there	is	no	requirement	to	release	the	source	code	for	the	main
program	that	uses	the	library.

This	license	is	essentially	a	concession	to	some	rough	edges	at	the	corners	where
the	world	of	programming	joins	the	world	of	law.	While	Stallman	was	dead	set
on	creating	a	perfect	collection	of	free	programs	that	would	solve	everyone's
needs,	he	was	far	from	finished.	If	people	were	going	to	use	his	software,	they
were	going	to	have	to	use	it	on	machines	made	by	Sun,	AT&T,	IBM,	or	someone

else	who	sold	a	proprietary	operating	system	along	with	it.	He	understood	that	he
needed	to	compromise,	at	least	for	system	libraries.

The	problem	is	drawing	boundaries	around	what	is	one	pile	of	software	owned
by	one	person	and	what	is	another	pile	owned	by	someone	else.	The	GPL
guaranteed	that	GNU	software	would	"infect"	other	packages	and	force	people
who	used	his	code	to	join	the	party	and	release	theirs	as	well.	So	he	had	to	come
up	with	a	definition	that	spelled	out	what	it	meant	for	people	to	use	his	code	and
"incorporate"	it	with	others.

This	is	often	easier	said	than	done.	The	marketplace	has	developed	ways	to	sell
software	as	big	chunks	to	people,	but	these	are	fictions	that	camouflage	software
integration.	In	modern	practice,	programmers	don't	just	create	one	easily
distinguished	chunk	of	software	known	as	Microsoft	Word	or	Adobe	Photoshop.
They	build	up	a	variety	of	smaller	chunks	known	as	libraries	and	link	these
together.	Microsoft	Windows,	in	fact,	includes	a	large	collection	of	libraries	for
creating	the	menus,	forms,	click	boxes,	and	what-not	that	make	the	graphical
user	interfaces.	Programmers	don't	need	to	write	their	own	instructions	for
drawing	these	on	the	screen	and	interacting	with	them.	This	saves	plenty	of	time
and	practice	for	the	programmers,	and	it	is	a	large	part	of	what	Microsoft	is
selling	when	it	sells	someone	a	box	with	Windows	on	it.

Stallman	recognized	that	programmers	sometimes	wrote	libraries	that	they
wanted	others	to	use.	After	all,	that	was	the	point	of	GNU:	creating	tools	that
others	would	be	free	to	use.	So	Stallman	relented	and	created	the	Lesser	Public
License,	which	would	allow	people	to	create	libraries	that	might	be	incorporated
into	other	programs	that	weren't	fully	GNU.	The	library	itself	still	came	with
source	code,	and	the	user	would	need	to	distribute	all	changes	made	to	the
library,	but	there	was	no	limitation	on	the	larger	package.

This	new	license	was	also	something	of	a	concession	to	reality.	In	the	most
abstract	sense,	programs	are	just	black	boxes	that	take	some	input	and	produce
some	output.	There's	no	limit	to	the	hierarchies	that	can	be	created	by	plugging
these	boxes	together	so	that	the	output	for	one	is	the	input	for	another.
Eventually,	the	forest	of	connections	grows	so	thick	that	it	is	difficult	to	draw	a
line	and	label	one	collection	of	boxes	"ProprietarySoft's	SUX-2000"	and	another
collection	"GNUSoft's	Wombat	3.14.15."	The	connections	are	so	numerous	in
well-written,	effective	software	that	line-drawing	is	difficult.

The	problem	is	similar	to	the	one	encountered	by	biologists	as	they	try	to	define
ecosystems	and	species.	Some	say	there	are	two	different	groups	of	tuna	that
swim	in	the	Atlantic.	Others	say	there	is	only	one.	The	distinction	would	be	left
to	academics	if	it	didn't	affect	the	international	laws	on	fishing.	Some	groups
pushing	the	vision	of	one	school	are	worried	that	others	on	the	other	side	of	the
ocean	are	catching	their	fish.	Others	push	the	two-school	theory	to	minimize	the
meddling	of	the	other	side's	bureaucracy.	No	one	knows,	though,	how	to	draw	a
good	line.

Stallman's	LGPL	was	a	concession	to	the	fact	that	sometimes	programs	can	be
used	like	libraries	and	sometimes	libraries	can	be	used	like	programs.	In	the	end,
the	programmer	can	draw	a	strong	line	around	one	set	of	boxes	and	say	that	the
GPL	covers	these	functions	without	leaking	out	to	infect	the	software	that	links
up	with	the	black	boxes.

10.4	IS	THE	FREE	SOFTWARE	FOUNDATION	ANTI-FREEDOM?

..

Still,	these	concessions	aren't	enough	for	some	people.	Many	continue	to	rail
against	Stallman's	definition	of	freedom	and	characterize	the	GPL	as	a	fascist
document	that	steals	the	rights	of	any	programmer	who	comes	along	afterward.
Being	free	means	having	the	right	to	do	anything	you	want	with	the	code,
including	keeping	all	your	modifications	private.

To	be	fair,	the	GPL	never	forces	you	to	give	away	your	changes	to	the	source
code.	It	just	forces	you	to	release	your	modifications	if	you	redistribute	it.	If	you
just	run	your	own	version	in	your	home,	then	you	don't	need	to	share	anything.
When	you	start	sharing	binary	versions	of	the	software,	however,	you	need	to
ship	the	source	code,	too.

Some	argue	that	corporations	have	the	potential	to	work	around	this	loophole
because	they	act	like	one	person.	A	company	could	revise	software	and	"ship	it"
by	simply	hiring	anyone	who	wanted	to	buy	it.	The	new	employees	or	members
of	the	corporation	would	get	access	to	the	software	without	shipping	the	source.
The	source	code	would	never	be	distributed	because	it	was	not	publicly	shipped.
No	one	seriously	believes	that	anyone	would	try	to	exploit	this	provision	with
such	an	extreme	interpretation,	but	it	does	open	the	question	of	whether	an
airtight	license	can	ever	be	created.

These	fine	distinctions	didn't	satisfy	many	programmers	who	weren't	so	taken
with	Stallman's	doctrinaire	version	of	freedom.	They	wanted	to	create	free
software	and	have	the	freedom	to	make	some	money	off	of	it.	This	tradition
dates	back	many	years	before	Stallman	and	is	a	firm	part	of	academic	life.	Many
professors	and	students	developed	software	and	published	a	free	version	before
starting	up	a	company	that	would	commercialize	the	work.	They	used	their
professor's	salary	or	student	stipend	to	support	the	work,	and	the	free	software
they	contributed	to	the	world	was	meant	as	an	exchange.	In	many	cases,	the	U.S.
government	paid	for	the	creation	of	the	software	through	a	grant,	and	the	free
release	was	a	gift	to	the	taxpayers	who	ultimately	funded	it.	In	other	cases,
corporations	paid	for	parts	of	the	research	and	the	free	release	was	seen	as	a	way
to	give	something	back	to	the	sponsoring	corporation	without	turning	the
university	into	a	home	for	the	corporation's	lowpaid	slave	programmers	who
were	students	in	name	only.

In	many	cases,	the	free	distribution	was	an	honest	gift	made	by	researchers	who
wanted	to	give	their	work	the	greatest	possible	distribution.	They	would	be
repaid	in	fame	and	academic	prestige,	which	can	be	more	lucrative	than
everything	but	a	good	start-up's	IPO.	Sharing	knowledge	and	creating	more	of	it
was	what	universities	were	all	about.	Stallman	tapped	into	that	tradition.

But	many	others	were	fairly	cynical.	They	would	work	long	enough	to	generate
a	version	that	worked	well	enough	to	convince	people	of	its	value.	Then,	when
the	funding	showed	up,	they	would	release	this	buggy	version	into	the	"public
domain,"	move	across	the	street	into	their	own	new	start-up,	and	resume
development.	The	public	domain	version	satisfied	the	university's	rules	and
placated	any	granting	agencies,	but	it	was	often	close	to	unusable.	The	bugs
were	too	numerous	and	too	hidden	in	the	cruft	to	make	it	worth	someone's	time.
Of	course,	the	original	authors	knew	where	the	problems	lurked,	and	they	would
fix	them	before	releasing	the	commercial	version.

The	leader	of	this	academic	branch	of	the	free	software	world	became	the
Computer	Systems	Research	Group	at	the	University	of	California	at	Berkeley.
The	published	Berkeley	Software	Distribution	(BSD)	versions	of	UNIX	started
emerging	from	Berkeley	in	the	late	1970s.	Their	work	emerged	with	a	free
license	that	gave	everyone	the	right	to	do	what	they	wanted	with	the	software,
including	start	up	a	company,	add	some	neat	features,	and	start	reselling	the
whole	package.	The	only	catch	was	that	the	user	must	keep	the	copyright
message	intact	and	give	the	university	some	credit	in	the	manual	and	in

advertisements.	This	requirement	was	loosened	in	1999	when	the	list	of	people
who	needed	credit	on	software	projects	grew	too	long.	Many	groups	were	taking
the	BSD	license	and	simply	replacing	the	words	"University	of	California"	with
their	name.	The	list	of	people	who	needed	to	be	publicly	acknowledged	grew
with	each	new	project.	As	the	distributions	grew	larger	to	include	all	of	these
new	projects,	the	process	of	listing	all	the	names	and	projects	became	onerous.
The	University	of	California	struck	the	clause	requiring	advertising	credit	in	the
hopes	of	setting	an	example	that	others	would	follow.

Today,	many	free	software	projects	begin	with	a	debate	of	"GNU	versus	BSD"	as
the	initial	founders	argue	whether	it	is	a	good	idea	to	restrict	what	users	can	do
with	the	code.	The	GNU	side	always	believes	that	programmers	should	be
forced	to	donate	the	code	they	develop	back	to	the	world,	while	the	BSD	side
pushes	for	practically	unlimited	freedom.

Rick	Rashid	is	one	of	the	major	forces	behind	the	development	of	Microsoft's
Windows	NT	and	also	a	major	contributor	to	our	knowledge	of	how	to	build	a
computer	operating	system.	Before	he	went	to	Microsoft,	he	was	a	professor	at
Carnegie-Mellon.	While	he	was	there,	he	spearheaded	the	team	responsible	for
developing	Mach,	an	operating	system	that	offered	relatively	easy-to-use
multitasking	built	upon	a	very	tiny	kernel.	Mach	let	programmers	break	their
software	into	multiple	"threads"	that	could	run	independently	of	each	other	while
sharing	the	same	access	to	data.

When	asked	recently	about	Mach	and	the	Mach	license,	he	explained	that	he
deliberately	wrote	the	license	to	be	as	free	as	possible.

The	GNU	GPL,	he	felt,	wasn't	appropriate	for	technology	that	was	developed
largely	with	government	grants.	The	work	should	be	as	free	as	possible	and
shouldn't	force	"other	people	to	do	things	(e.g.,	give	away	their	personal	work)
in	order	to	get	access	to	what	you	had	done."

He	said,	in	an	e-mail	interview,	"It	was	my	intent	to	encourage	use	of	the	system
both	for	academic	and	commercial	use	and	it	was	used	heavily	in	both
environments.	Accent,	the	predecessor	to	Mach,	had	already	been
commercialized	and	used	by	a	variety	of	companies.	Mach	continues	to	be
heavily	used	today--both	as	the	basis	for	Apple's	new	MacOS	and	as	the	basis
for	variants	of	Unix	in	the	marketplace	(e.g.,	Compaq's	64-bit	Unix	for	the
Alpha)."

10.5	THE	EVOLUTION	OF	BSD

.........................

The	BSD	license	evolved	along	a	strange	legal	path	that	was	more	like	the
meandering	of	a	drunken	cow	than	the	laser-like	devotion	of	Stallman.

Many	professors	and	students	cut	their	teeth	experimenting	with	UNIX	on	DEC
Vaxes	that	communicated	with	old	teletypes	and	dumb	terminals.	AT&T	gave
Berkeley	the	source	code	to	UNIX,	and	this	allowed	the	students	and	professors
to	add	their	instructions	and	features	to	the	software.	Much	of	their	insight	into
operating	system	design	and	many	of	their	bug	fixes	made	their	way	back	to
AT&T,	where	they	were	incorporated	in	the	next	versions	of	UNIX.	No	one
really	thought	twice	about	the	source	code	being	available	because	the	shrink-
wrapped	software	market	was	still	in	its	infancy.	The	personal	computer	market
wasn't	even	born	until	the	latter	half	of	the	1970s,	and	it	took	some	time	for
people	to	believe	that	source	code	was	something	for	a	company	to	withhold	and
protect.	In	fact,	many	of	the	programs	still	weren't	being	written	in	higher-level
languages.	The	programmers	would	write	instructions	directly	for	the	computer,
and	while	these	often	would	include	some	instructions	for	humans,	there	was
little	difference	between	what	the	humans	wrote	and	the	machine	read.

After	Bill	Joy	and	others	at	Berkeley	started	coming	up	with	several	good	pieces
of	software,	other	universities	started	asking	for	copies.	At	the	time,	Joy
remembers,	it	was	considered	a	bit	shabby	for	computer	science	researchers	to
actually	write	software	and	share	it	with	others.	The	academic	departments	were
filled	with	many	professors	who	received	their	formal	training	in	mathematics,
and	they	held	the	attitude	that	rigorous	formal	proofs	and	analysis	were	the	ideal
form	of	research.	Joy	and	several	other	students	began	rebelling	by	arguing	that
creating	working	operating	systems	was	essential	experimental	research.	The
physics	departments	supported	experimentalists	and	theorists.

So	Joy	began	to	"publish"	his	code	by	sending	out	copies	to	other	researchers
who	wanted	it.	Although	many	professors	and	students	at	Berkeley	added	bits
and	pieces	to	the	software	running	on	the	DEC	Vaxes,	Joy	was	the	one	who
bundled	it	all	together	and	gave	it	the	name.	Kirk	McKusick	says	in	his	history
of	Berkeley	UNIX,	"..	.	interest	in	the	error	recovery	work	in	the	Pascal	compiler
brought	in	requests	for	copies	of	the	system.	Early	in	1977,	Joy	put	together	the
'Berkeley	Software	Distribution.'	This	first	distribution	included	the	Pascal

system,	and,	in	an	obscure	subdirectory	of	the	Pascal	source,	the	editor	vi.	Over
the	next	year,	Joy,	acting	in	the	capacity	of	the	distribution	secretary,	sent	out
about	30	free	copies	of	the	system."

Today,	Joy	tells	the	story	with	a	bit	of	bemused	distraction.	He	explains	that	he
just	copied	over	a	license	from	the	University	of	Toronto	and"whited
out""University	ofToronto"	and	replaced	it	with	"University	of	California."	He
simply	wanted	to	get	the	source	code	out	the	door.	In	the	beginning,	the	Berkeley
Software	Distribution	included	a	few	utilities,	but	by	1979	the	code	became
tightly	integrated	with	AT&T's	basic	UNIX	code.	Berkeley	gave	away	the
collection	of	software	in	BSD,	but	only	AT&T	license	holders	could	use	it.	Many
universities	were	attracted	to	the	package,	in	part	because	the	Pascal	system	was
easy	for	its	students	to	use.	The	personal	computer	world,	however,	was	focusing
on	a	simpler	language	known	as	Basic.	Bill	Gates	would	make	Microsoft	Basic
one	of	his	first	products.

Joy	says	that	he	wrote	a	letter	to	AT&T	inquiring	about	the	legal	status	of	the
source	code	from	AT&T	that	was	rolled	together	with	the	BSD	code.	After	a
year,	he	says,	"They	wrote	back	saying,	'We	take	no	position'	on	the	matter."
Kirk	McKusick,	who	later	ran	the	BSD	project	through	the	years	of	the	AT&T
lawsuit,	explained	dryly,	"Later	they	wrote	a	different	letter."

Joy	was	just	one	of	a	large	number	of	people	who	worked	heavily	on	the	BSD
project	from	1977	through	the	early	1980s.	The	work	was	low-level	and	grungy
by	today's	standards.	The	students	and	professors	scrambled	just	to	move	UNIX
to	the	new	machines	they	bought.	Often,	large	parts	of	the	guts	of	the	operating
system	needed	to	be	modified	or	upgraded	to	deal	with	a	new	type	of	disk	drive
or	file	system.	As	they	did	this	more	and	more	often,	they	began	to	develop	more
and	more	higher-level	abstractions	to	ease	the	task.	One	of	the	earliest	examples
was	Joy's	screen	editor	known	as	vi,	a	simple	package	that	could	be	used	to	edit
text	files	and	reprogram	the	system.	The	"battle"	between	Joy's	vi	and	Stallman's
Emacs	is	another	example	of	the	schism	between	MIT	and	Berkeley.	This	was
just	one	of	the	new	tools	included	in	version	2	of	BSD,	a	collection	that	was
shipped	to	75	different	people	and	institutions.

By	the	end	of	the	1970s,	Bell	Labs	and	Berkeley	began	to	split	as	AT&T	started
to	commercialize	UNIX	and	Berkeley	stuck	to	its	job	of	education.	Berkeley
professor	Bob	Fabry	was	able	to	interest	the	Pentagon's	Defense	Advanced
Research	Projects	Agency	(DARPA)	into	signing	up	to	support	more

development	at	Berkeley.	Fabry	sold	the	agency	on	a	software	package	that
would	be	usable	on	many	of	the	new	machines	being	installed	in	research	labs
throughout	the	country.	It	would	be	more	easily	portable	so	that	research	would
not	need	to	stop	every	time	a	new	computer	arrived.	The	work	on	this	project
became	versions	3	and	4	of	BSD.

During	this	time,	the	relationship	between	AT&T	and	the	universities	was
cordial.	AT&T	owned	the	commercial	market	for	UNIX	and	Berkeley	supplied
many	of	the	versions	used	in	universities.	While	the	universities	got	BSD	for
free,	they	still	needed	to	negotiate	a	license	with	AT&T,	and	companies	paid	a
fortune.	This	wasn't	too	much	of	a	problem	because	universities	are	often
terribly	myopic.	If	they	share	their	work	with	other	universities	and	professors,
they	usually	consider	their	sharing	done.	There	may	be	folks	out	there	without
university	appointments,	but	those	folks	are	usually	viewed	as	cranks	who	can
be	safely	ignored.	Occasionally,	those	cranks	write	their	own	OS	that	grows	up
to	be	Linux.	The	BSD	version	of	freedom	was	still	a	far	cry	from	Stallman's,	but
then	Stallman	hadn't	articulated	it	yet.	His	manifesto	was	still	a	few	years	off.

The	intellectual	tension	between	Stallman	and	Berkeley	grew	during	the	1980s.
While	Stallman	began	what	many	thought	was	a	quixotic	journey	to	build	a
completely	free	OS,	Berkeley	students	and	professors	continued	to	layer	their
improvements	to	UNIX	on	top	of	AT&T's	code.	The	AT&T	code	was	good,	it
was	available,	and	many	of	the	folks	at	Berkeley	had	either	directly	or	indirectly
helped	influence	it.	They	were	generally	happy	keeping	AT&T	code	at	the	core
despite	the	fact	that	all	of	the	BSD	users	needed	to	negotiate	with	AT&T.	This
process	grew	more	and	more	expensive	as	AT&T	tried	to	make	more	and	more
money	off	of	UNIX.

Of	course,	Stallman	didn't	like	the	freedom	of	the	BSD-style	license.	To	him,	it
meant	that	companies	could	run	off	with	the	hard	work	and	shared	source	code
of	another,	make	a	pile	of	money,	and	give	nothing	back.	The	companies	and
individuals	who	were	getting	the	BSD	network	release	were	getting	the
cumulative	hard	work	of	many	students	and	professors	at	Berkeley	(and	other
places)	who	donated	their	time	and	effort	to	building	a	decent	OS.	The	least
these	companies	owed	the	students	were	the	bug	fixes,	the	extensions,	and	the
enhancements	they	created	when	they	were	playing	with	the	source	code	and
gluing	it	into	their	products.

Stallman	had	a	point.	Many	of	these	companies	"shared"	by	selling	the	software

back	to	these	students	and	the	taxpayers	who	had	paid	for	their	work.	While	it	is
impossible	to	go	back	and	audit	the	motives	of	everyone	who	used	the	code,
there	have	been	many	who've	used	BSDstyle	code	for	their	personal	gain.

Bill	Joy,	for	instance,	went	to	work	at	Sun	Microsystems	in	1982	and	brought
with	him	all	the	knowledge	he	had	gained	in	developing	BSD.	Sun	was	always	a
very	BSD-centered	shop,	and	many	of	the	people	who	bought	Sun	workstations
ran	BSD.	At	that	time,	AT&T	still	controlled	much	of	the	kernel	and	many	of	the
small	extra	programs	that	made	UNIX	a	usable	system.

But	there	are	counter	arguments	as	well.	Joy	certainly	contributed	a	lot	to	the
different	versions	of	BSD.	If	anyone	deserves	to	go	off	and	get	rich	at	a	company
like	Sun,	it's	he.

Also,	the	BSD	source	code	was	freely	available	to	all	comers,	and	all	companies
started	with	the	same	advantages.	The	software	business	is	often	considered	to
be	one	of	the	most	free	marketplaces	around	because	of	the	low	barriers	to	entry.
This	means	that	companies	should	only	be	able	to	charge	for	the	value	they	add
to	the	BSD	code.	Sure,	all	of	the	Internet	was	influenced	by	the	TCP/IP	code,	but
now	Microsoft,	Apple,	IBM,	Be,	and	everyone	else	compete	on	the	quality	of
their	interface.

10.6	THE	PRICE	OF	TOTAL	FREEDOM

...............................

The	debate	between	BSD-style	freedom	and	GNU-style	freedom	is	one	of	the
greatest	in	the	free	programming	world	and	is	bound	to	continue	for	a	long	time
as	programmers	join	sides	and	experiment.

John	Gilmore	is	one	programmer	who	has	worked	with	software	developed
under	both	types	of	licenses.	He	was	employee	number	five	at	Sun
Microsystems,	a	cofounder	of	the	software	development	tool	company	Cygnus
Solutions,	and	one	of	the	board	members	of	the	Electronic	Frontier	Foundation.
His	early	work	at	Sun	gave	him	the	wealth	to	pursue	many	independent	projects,
and	he	has	spent	the	last	10	years	devoting	himself	to	making	it	easy	for	people
around	the	world	to	use	encryption	software.	He	feels	that	privacy	is	a
fundamental	right	and	an	important	crime	deterrent,	and	he	has	funded	a	number
of	different	projects	to	advance	this	right.

Gilmore	also	runs	the	cypherpunks	mailing	list	on	a	computer	in	his	house
named	Toad	Hall	near	Haight	Street	in	San	Francisco.	The	mailing	list	is	devoted
to	exploring	how	to	create	strong	encryption	tools	that	will	protect	people's
privacy	and	is	well	known	for	the	strong	libertarian	tone	of	the	deliberations.
Practically	the	whole	list	believes	(and	frequently	reiterates)	that	people	need	the
right	to	protect	their	privacy	against	both	the	government	and	private
eavesdropping.	Wired	magazine	featured	Gilmore	on	the	cover,	along	with
fellow	travelers	Eric	Hughes	and	Tim	May.

One	of	his	recent	tasks	was	creating	a	package	of	free	encryption	utilities	that
worked	at	the	lowest	level	of	the	network	operating	system.	These	tools,	known
as	Free/SWAN,	would	allow	two	computers	that	meet	on	the	Internet	to
automatically	begin	encoding	the	data	they	swap	with	some	of	the	best	and	most
secure	codes	available.	He	imagines	that	banks,	scientific	laboratories,	and	home
workers	everywhere	will	want	to	use	the	toolkit.	In	fact,	AT&T	is	currently
examining	how	to	incorporate	the	toolkit	into	products	it	is	building	to	sell	more
highspeed	services	to	workers	staying	at	home	to	avoid	the	commute.

Gilmore	decided	to	use	the	GNU	license	to	protect	the	Free/SWAN	software,	in
part	because	he	has	had	bad	experiences	in	the	past	with	totally	free	software.	He
once	wrote	a	little	program	called	PDTar	that	was	an	improvement	over	the
standard	version	of	Tar	used	on	the	Internet	to	bundle	together	a	group	of	files
into	one	big,	easy-tomanage	bag	of	bits	often	known	affectionately	as	"tarballs."
He	decided	he	wasn't	going	to	mess	around	with	Stallman's	GNU	license	or
impose	any	restrictions	on	the	source	code	at	all.	He	was	just	going	to	release	it
into	the	public	domain	and	give	everyone	total	freedom.

This	good	deed	did	not	go	unpunished,	although	the	punishment	was	relatively
minor.	He	recalls,	"I	never	made	PDTar	work	for	DOS,	but	six	or	eight	people
did.	For	years	after	the	release,	I	would	get	mail	saying,	'I've	got	this	binary	for
the	DOS	release	and	it	doesn't	work.'	They	often	didn't	even	have	the	sources
that	went	with	the	version	so	I	couldn't	help	them	if	I	tried."	Total	freedom,	it
turned	out,	brought	a	certain	amount	of	anarchy	that	made	it	difficult	for	him	to
manage	the	project.	While	the	total	freedom	may	have	encouraged	others	to
build	their	own	versions	of	PDTar,	it	didn't	force	them	to	release	the	source	code
that	went	with	their	versions	so	others	could	learn	from	or	fix	their	mistakes
Hugh	Daniel,	one	of	the	testers	for	the	Free/SWAN	project,	says	that	he	thinks
the	GNU	General	Public	License	will	help	keep	some	coherency	to	the	project.
"There's	also	a	magic	thing	with	GPL	code	that	open	source	doesn't	have,"

Daniel	said.	"For	some	reason,	projects	don't	bifurcate	in	GPL	space.	People
don't	grab	a	copy	of	the	code	and	call	it	their	own.	For	some	reason	there's	a
sense	of	community	in	GPL	code.	There	seems	to	be	one	version.	There's	one
GPL	kernel	and	there's	umpty-ump	BSD	branches."

Daniel	is	basically	correct.	The	BSD	code	has	evolved,	or	forked,	into	many
different	versions	with	names	like	FreeBSD,	OpenBSD,	and	NetBSD	while	the
Linux	UNIX	kernel	released	under	Stallman's	GPL	is	limited	to	one	fairly
coherent	package.	Still,	there	is	plenty	of	crosspollination	between	the	different
versions	of	BSD	UNIX.	Both	NetBSD	1.0	and	FreeBSD	2.0,	for	instance,
borrowed	code	from	4.4	BSD-Lite.	Also,	many	versions	of	Linux	come	with
tools	and	utilities	that	came	from	the	BSD	project.

But	Daniel's	point	is	also	clouded	with	semantics.	There	are	dozens	if	not
hundreds	of	different	Linux	distributions	available	from	different	vendors.	Many
differ	in	subtle	points,	but	some	are	markedly	different.	While	these	differences
are	often	as	great	as	the	ones	between	the	various	flavors	of	BSD,	the	groups	do
not	consider	them	psychologically	separate.	They	haven't	forked	politically	even
though	they've	split	off	their	code.

While	different	versions	may	be	good	for	some	projects,	it	may	be	a	problem	for
packages	like	Free/SWAN	that	depend	upon	interoperability.	If	competing
versions	of	Free/SWAN	emerge,	then	all	begin	to	suffer	because	the	product	was
designed	to	let	people	communicate	with	each	other.	If	the	software	can't
negotiate	secure	codes	because	of	differences,	then	it	begins	to	fail.

But	it's	not	clear	that	the	extra	freedom	is	responsible	for	the	fragmentation.	In
reality,	the	different	BSD	groups	emerged	because	they	had	different	needs.	The
NetBSD	group,	for	instance,	wanted	to	emphasize	multiplatform	support	and
interoperability.	Their	website	brags	that	the	NetBSD	release	works	well	on	21
different	hardware	platforms	and	also	points	out	that	some	of	these	hardware
platforms	themselves	are	quite	diverse.	There	are	93	different	versions	of	the
Macintosh	running	on	Motorola's	68k	chips,	including	the	very	first	Mac.
Eighty-nine	of	them	run	some	part	of	NetBSD	and	37	of	them	run	all	of	it.	That's
why	they	say	their	motto	is	"Of	course	it	runs	NetBSD."

The	OpenBSD	group,	on	the	other	hand,	is	emphasizing	security	without
compromising	portability	and	interoperability.	They	want	to	fix	all	security	bugs
immediately	and	be	the	most	secure	OS	on	the	marketplace.

There	are	also	deep	personal	differences	in	the	way	Theo	de	Raadt,	the	founder
of	OpenBSD,	started	the	project	after	the	NetBSD	group	kicked	him	out	of	their
core	group.

For	all	of	these	reasons,	it	may	be	hard	to	argue	that	the	freedoms	provided	by
the	BSD-style	license	were	largely	responsible	for	the	splintering.	The	GNU
software	users	are	just	as	free	to	make	new	versions	as	long	as	they	kick	back	the
source	code	into	free	circulation.	In	fact,	it	may	be	possible	to	argue	that	the
Macintosh	versions	of	some	of	the	GNU	code	comprise	a	splinter	group	because
it	occurred	despite	the	ill	will	Stallman	felt	for	the	Mac.

10.7	THE	SYNTHESIS	OF	"OPEN	SOURCE"

...................................

The	tension	between	the	BSD	licenses	and	the	GNU	has	always	festered	like	the
abortion	debate.	Everyone	picked	sides	and	rarely	moved	from	them.

In	1998,	a	group	of	people	in	the	free	software	community	tried	to	unify	the	two
camps	by	creating	a	new	term,	"open	source."	To	make	sure	everyone	knew	they
were	serious,	they	started	an	unincorporated	organization,	registered	a
trademark,	and	set	up	a	website	(www.opensource.org).	Anyone	who	wanted	to
label	their	project	"open	source"	would	have	to	answer	to	them	because	they
would	control	the	trademark	on	the	name.

Sam	Ockman,	a	Linux	enthusiast	and	the	founder	of	Penguin	Computing,
remembers	the	day	of	the	meeting	just	before	Netscape	announced	it	was	freeing
its	source	code.	"Eric	Raymond	came	into	town	because	of	the	Netscape	thing.
Netscape	was	going	to	free	their	software,	so	we	drove	down	to	Transmeta	and
had	a	meeting	so	we	could	advise	Netscape,"	he	said.

He	explained	that	the	group	considered	a	number	of	different	options	about	the
structure.	Some	wanted	to	choose	a	leader	now.	Others	wanted	to	emulate	an
open	source	project	and	let	a	leader	emerge	through	the	display	of	talent	and,
well,	leadership.	Others	wanted	elections.

The	definition	of	what	was	open	source	grew	out	of	the	Debian	project,	one	of
the	different	groups	that	banded	together	to	press	CDROMs	of	stable	Linux
releases.	Groups	like	these	often	get	into	debates	about	what	software	to	include
on	the	disks.	Some	wanted	to	be	very	pure	and	only	include	GPL'ed	software.	In

a	small	way,	that	would	force	others	to	contribute	back	to	the	project	because
they	wouldn't	get	their	software	distributed	by	the	group	unless	it	was	GPL'ed.
Others	wanted	less	stringent	requirements	that	might	include	quasi-commercial
projects	that	still	came	with	their	source	code.	There	were	some	cool	projects	out
there	that	weren't	protected	by	GPL,	and	it	could	be	awfully	hard	to	pass	up	the
chance	to	integrate	them	into	a	package.

Over	time,	one	of	the	leaders	of	the	Debian	group,	Bruce	Perens,	came	to	create
a	definition	of	what	was	acceptable	and	what	wasn't.	This	definition	would	be
large	enough	to	include	the	GNU	General	Public	License,	the	BSD-style
licenses,	and	a	few	others	like	MIT's	X	Consortium	license	and	the	Artistic
license.	The	X-windows	license	covers	a	graphical	windowing	interface	that
began	at	MIT	and	was	also	freely	distributed	with	BSD-like	freedom.	The
Artistic	license	applies	to	the	Perl	programming	language,	a	tool	that	is
frequently	used	to	transform	files.	The	Debian	meta-definition	would	embrace
all	of	these.

The	official	definition	of	what	was	acceptable	to	Debian	leaned	toward	more
freedom	and	fewer	restrictions	on	the	use	of	software.	Of	course,	that's	the	only
way	that	anyone	could	come	up	with	a	definition	that	included	both	GNU	and
the	much	less	restrictive	BSD.	But	this	was	also	the	intent	of	the	open	source
group.	Perens	and	Eric	Raymond	felt	that	Stallman	still	sounded	too	quasi-
communist	for	"conservative	businessmen,"	and	they	wanted	the	open	source
definition	to	avoid	insisting	upon	the	sort	of	forced	sharing	that	Stallman's	GNU
virus	provided.

Still,	the	definition	borrowed	heavily	from	Stallman's	concept	of	GNU,	and
Perens	credits	him	by	saying	that	many	of	the	Debian	guidelines	are	derived
from	the	GPL.	An	official	open	source	license	for	a	product	must	provide	the
programmer	with	source	code	that	is	human-readable.	It	can't	restrict	what
modifications	are	made	to	the	software	or	how	it	is	sold	or	given	away.

The	definition	glossed	over	the	difference	between	BSD	and	GPU	by	stating,
"The	license	must	allow	modifications	and	derived	works,	and	must	allow	them
to	be	distributed	under	the	same	terms	as	the	license	of	the	original	software."

The	definition	proved	to	be	the	model	for	more	commercial	offerings	like	the
Netscape	Public	License.	In	1998,	Netscape	started	distributing	the	source	code
to	its	popular	browser	in	hopes	of	collecting	help	from	the	Internet	and	stopping

Microsoft's	gradual	erosion	of	its	turf.	The	license	gave	users	wide	opportunities
to	make	changes	and	tinker	with	the	software,	but	it	also	allowed	Netscape	to
use	the	changes	internally	and	refuse	to	share	what	they	did	with	them.	This
special	privilege	offended	some	users	who	didn't	like	the	imbalance,	but	it	didn't
bother	many	others	who	thought	it	was	a	reasonable	compromise	for	a	chance	to
tinker	with	commercial	code.	Netscape,	of	course,	returned	some	of	the	favor	by
allowing	people	to	keep	their	modifications	private	in	much	the	same	way	that
the	BSD-style	license	provided.

In	June	1999,	the	Open	Source	Initiative	revealed	a	startling	fact.	They	were
close	to	failing	in	their	attempts	to	register	the	term	"open	source"	as	a
trademark.	The	phrase	was	too	common	to	be	registered.	Instead,	they	backed
away	and	offered	to	check	out	licenses	and	classify	them	officially	as	"OSI
Certified"	if	they	met	the	terms	of	the	OSI's	definition	of	freedom.

Some	reacted	negatively.	Richard	Stallman	decided	that	he	didn't	like	the	word
"open"	as	much	as	"free."	Open	doesn't	capture	the	essence	of	freedom.	Ockman
says,	"I	don't	think	it's	very	fair.	For	ages,	he's	always	said	that	the	term	'free
software'	is	problematic	because	people	think	of	'free	beer'	when	they	should	be
thinking	of	'free	speech.'	We	were	attempting	to	solve	that	term.	If	the	masses	are
confused,	then	corporate	America	is	confused	even	more."

The	debate	has	even	produced	more	terms.	Some	people	now	use	the	phrase
"free	source"	to	apply	to	the	general	conglomeration	of	the	GPL	and	the	open
source	world.	Using	"free	software"	implies	that	someone	is	aligned	with
Stallman's	Free	Software	Foundation.	Using	"open	source"	implies	you're
aligned	with	the	more	business-friendly	Open	Source	Initiative.	So	"free	source"
and	"open	source"	both	work	as	a	compromise.	Others	tweak	the	meaning	of	free
and	refer	to	GPL	protected	software	as	"GNUFree."

Naturally,	all	of	this	debate	about	freedom	can	reach	comic	proportions.
Programmers	are	almost	better	than	lawyers	at	finding	loopholes,	if	only	because
they	have	to	live	with	a	program	that	crashes.[^7]	Stallman,	for	instance,	applies
the	GPL	to	everything	coming	out	of	the	GNU	project	except	the	license	itself.
That	can't	be	changed,	although	it	can	be	freely	reproduced.	Some	argue	that	if	it
were	changeable,	people	would	be	able	to	insert	and	delete	terms	at	will.	Then
they	could	apply	the	changed	GPL	to	the	new	version	of	the	software	and	do
what	they	want.	Stallman's	original	intent	would	not	be	changed.	The	GPL
would	still	apply	to	all	of	the	GNU	software	and	its	descendants,	but	it	wouldn't

be	the	same	GPL.

[7]:	Lawyers	just	watch	their	clients	go	to	jail.

1.	 SOURCE

Computer	programmers	love	Star	Wars.	So	it	should	be	no	surprise	that
practically	every	single	member	of	the	free	source	community	has,	at	one	time	or
another,	rolled	out	the	phrase,	"Use	the	Source,	Luke."	It	does	a	perfect	job	of
capturing	the	mythical	faith	that	the	free	source	world	places	in	the	ability	to
access	the	source	code	to	a	program.	As	everyone	points	out,	in	the	original
version	of	Star	Wars,	the	rebel	troops	used	the	plans,	the	Source,	to	the	Death
Star	carried	in	R2D2	to	look	for	weaknesses.

The	free	source	realm	has	been	pushing	the	parallels	for	some	time	now.	When
AT&T	unveiled	their	round	logo	with	an	offset	dimple,	most	free	source	people
began	to	snicker.	The	company	that	began	the	free	software	revolution	by
pushing	its	intellectual	property	rights	and	annoying	Richard	Stallman	had
chosen	a	logo	that	looked	just	like	the	Death	Star.	Everyone	said,	"Imperialist
minds	think	alike."	Some	even	wondered	and	hoped	that	George	Lucas	would
sue	AT&T	for	some	sort	of	look-and-feel,	trademark	infringement.	Those	who
use	the	legal	intimidation	light	saber	should	die	by	the	legal	intimidation	light
saber.

Of	course,	the	free	source	folks	knew	that	only	their	loose	coalition	of	rebels
spread	out	around	the	galaxy	would	be	a	strong	match	for	the	Empire.	The
Source	was	information,	and	information	was	power.	The	Source	was	also	about
freedom,	one	of	the	best	and	most	consistent	reservoirs	of	revolutionary
inspiration	around.	The	rebels	might	not	have	teams	of	lawyers	in	imperial	star
cruisers,	but	they	hoped	to	use	the	Source	to	knit	together	a	strong,	effective,	and
more	powerful	resistance.

The	myth	of	open	access	to	free	source	code	is	a	powerful	one	that	has	made	true
believers	out	of	many	in	the	community.	The	source	code	is	a	list	of	instructions
for	the	computer	written	out	in	a	programming	lan	guage	that	is	understandable
by	humans.	Once	the	compilers	converted	the	source	code	into	the	string	of	bits
known	as	the	binary	or	object	code,	only	computers	(and	some	very	talented
humans)	could	understand	the	instructions.	I've	known	several	people	who	could

read	8080	binary	code	by	eye,	but	they're	a	bit	different	from	the	general
population.

When	companies	tried	to	keep	their	hard	work	and	research	secret	by	locking	up
the	source	code,	they	built	a	barrier	between	the	users	and	their	developers.	The
programmers	would	work	behind	secret	walls	to	write	the	source	code.	After
compilers	turned	the	Source	into	something	that	computers	could	read,	the
Source	would	be	locked	up	again.	The	purchasers	would	only	get	the	binary
code	because	that's	all	the	companies	thought	the	consumers	needed.	The	source
code	needed	to	be	kept	secret	because	someone	might	steal	the	ideas	inside	and
create	their	own	version.

Stallman	saw	this	secrecy	as	a	great	crime.	Computer	users	should	be	able	to
share	the	source	code	so	they	can	share	ways	to	make	it	better.	This	trade	should
lead	to	more	information-trading	in	a	great	feedback	loop.	Some	folks	even	used
the	word	"bloom"	to	describe	the	explosion	of	interest	and	cross-feedback.
They're	using	the	word	the	way	biologists	use	it	to	describe	the	way	algae	can
just	burst	into	existence,	overwhelming	a	region	of	the	ocean.	Clever	insights,
brilliant	bug	fixes,	and	wonderful	new	features	just	appear	out	of	nowhere	as
human	curiosity	is	amplified	by	human	generosity	in	a	grand	explosion	of
intellectual	synergy.	The	only	thing	missing	from	the	picture	is	a	bunch	of	furry
Ewoks	dancing	around	a	campfire.[^8]

[8]:	Linux	does	have	many	marketing	opportunities.	Torvalds	chose	a	penguin
named	Tux	as	the	mascot,	and	several	companies	actually	manufacture	and	sell
stuffed	penguins	to	the	Linux	realm.	The	BSD	world	has	embraced	a	cute
demon,	a	visual	pun	on	the	fact	that	BSD	UNIX	uses	the	word	"daemon"	to	refer
to	some	of	the	faceless	background	programs	in	the	OS.

11.1	THE	BISHOP	OF	THE	FREE	MARKETPLACE

.......................................

Eric	Raymond,	a	man	who	is	sort	of	the	armchair	philosopher	of	the	open	source
world,	did	a	great	job	of	summarizing	the	phenomenon	and	creating	this	myth	in
his	essay	"The	Cathedral	and	the	Bazaar."	Raymond	is	an	earnest	programmer
who	spent	some	time	working	on	projects	like	Stallman's	GNU	Emacs.	He	saw
the	advantages	of	open	source	development	early,	perhaps	because	he's	a	hard-
core	libertarian.	Government	solutions	are	cumbersome.	Empowering

individuals	by	not	restraining	them	is	great.	Raymond	comes	off	as	a	bit	more
extreme	than	other	libertarians,	in	part	because	he	doesn't	hesitate	to	defend	the
second	amendment	of	the	U.S.	Constitution	as	much	as	the	first.	Raymond	is	not
ashamed	to	support	widespread	gun	ownership	as	a	way	to	further	empower	the
individual.	He	dislikes	the	National	Rifle	Association	because	they're	too	willing
to	compromise	away	rights	that	he	feels	are	absolute.

Some	people	like	to	call	him	the	Margaret	Mead	of	the	free	source	world
because	he	spent	some	time	studying	and	characterizing	the	culture	in	much	the
same	way	that	Mead	did	when	she	wrote	Coming	of	Age	in	Samoa.	This	can	be
a	subtle	jab	because	Margaret	Mead	is	not	really	the	same	intellectual	angel	she
was	long	ago.	Derek	Freeman	and	other	anthropologists	raise	serious	questions
about	Mead's	ability	to	see	without	bias.	Mead	was	a	big	fan	of	free	love,	and
many	contend	it	was	no	accident	that	she	found	wonderful	tales	of	unchecked
sexuality	in	Samoa.	Freeman	revisited	Samoa	and	found	it	was	not	the	guilt-free
land	of	libertine	pleasures	that	Mead	described	in	her	book.	He	documented
many	examples	of	sexual	restraint	and	shame	that	Mead	apparently	missed	in	her
search	for	a	paradise.

Raymond	looked	at	open	source	development	and	found	what	he	wanted	to	find:
the	wonderful	efficiency	of	unregulated	markets.	Sure,	some	folks	loved	to	label
Richard	Stallman	a	communist,	a	description	that	has	always	annoyed	Stallman.
Raymond	looked	a	bit	deeper	and	saw	that	the	basis	of	the	free	software
movement's	success	was	the	freedom	that	gave	each	user	the	complete	power	to
change	and	improve	their	software.	Just	as	Sigmund	Freud	found	sex	at	the	root
of	everything	and	Carl	Jung	uncovered	a	battle	of	animus	and	anima,	the
libertarian	found	freedom.

Raymond's	essay	was	one	of	the	first	to	try	to	explain	why	free	source	efforts
can	succeed	and	even	prosper	without	the	financial	incentives	of	a	standard
money-based	software	company.	One	of	the	biggest	reasons	he	cited	was	that	a
programmer	could	"scratch	an	itch"	that	bothered	him.	That	is,	a	programmer
might	grow	annoyed	by	a	piece	of	software	that	limited	his	choices	or	had	an
annoying	glitch.	Instead	of	cursing	the	darkness	in	the	brain	cavity	of	the
corporate	programmer	who	created	the	problem,	the	free	source	hacker	was	able
to	use	the	Source	to	try	to	find	the	bug.

Itch-scratching	can	be	instrumental	in	solving	many	problems.	Some	bugs	in
software	are	quite	hard	to	identify	and	duplicate.	They	only	occur	in	strange

situations,	like	when	the	printer	is	out	of	paper	and	the	modem	is	overloaded	by
a	long	file	that	is	coming	over	the	Internet.	Then,	and	only	then,	the	two	buffers
may	fill	to	the	brim,	bump	into	each	other,	and	crash	the	computer.	The	rest	of
the	time,	the	program	floats	along	happily,	encountering	no	problems.

These	types	of	bugs	are	notoriously	hard	for	corporate	testing	environments	to
discover	and	characterize.	The	companies	try	to	be	diligent	by	hiring	several
young	programmers	and	placing	them	in	a	room	with	a	computer.	The	team
beats	on	the	software	all	day	long	and	develops	a	healthy	animosity	toward	the
programming	team	that	has	to	fix	the	problems	they	discover.	They	can	nab
many	simple	bugs,	but	what	happens	if	they	don't	have	a	printer	hooked	up	to
their	machine?	What	happens	if	they	aren't	constantly	printing	out	things	the	way
some	office	users	are?	The	weird	bug	goes	unnoticed	and	probably	unfixed.

The	corporate	development	model	tries	to	solve	this	limitation	by	shipping
hundreds,	thousands,	and	often	hundreds	of	thousands	of	copies	to	ambitious
users	they	called	"beta	testers."	Others	called	them	"suckers"	or	"free	volunteers"
because	once	they	finish	helping	develop	the	software,	they	get	to	pay	for	it.
Microsoft	even	charges	some	users	for	the	pleasure	of	being	beta	testers.	Many
of	the	users	are	pragmatic.	They	often	have	no	choice	but	to	participate	in	the
scheme	because	they	often	base	their	businesses	on	some	of	the	software	shipped
by	these	companies.	If	it	didn't	work,	they	would	be	out	of	a	job.

While	this	broad	distribution	of	beta	copies	is	much	more	likely	to	find	someone
who	is	printing	and	overloading	a	modem	at	the	same	time,	it	doesn't	give	the
user	the	tools	to	help	find	the	problem.	Their	only	choice	is	to	write	an	e-mail
message	to	the	company	saying	"I	was	printing	yesterday	and	your	software
crashed."	That	isn't	very	helpful	for	the	engineer,	and	it's	no	surprise	that	many
of	these	reports	are	either	ignored	or	unsolved.

Raymond	pointed	out	that	the	free	source	world	can	do	a	great	job	with	these
nasty	bugs.	He	characterized	this	with	the	phrase,	"Given	enough	eyeballs,	all
bugs	are	shallow,"	which	he	characterized	as	"Linus's	Law."	That	is,	eventually
some	programmer	would	start	printing	and	using	the	Internet	at	the	same	time.
After	the	system	crashed	a	few	times,	some	programmer	would	care	enough
about	the	problem	to	dig	into	the	free	source,	poke	around,	and	spot	the	problem.
Eventually	somebody	would	come	along	with	the	time	and	the	energy	and	the
commitment	to	diagnose	the	problem.	Raymond	named	this	"Linus's	Law"	after
Linus	Torvalds.	Raymond	is	a	great	admirer	of	Torvalds	and	thinks	that

Torvalds's	true	genius	was	organizing	an	army	to	work	on	Linux.	The	coding
itself	was	a	distant	second.

Of	course,	waiting	for	a	user	to	find	the	bugs	depended	on	there	being	someone
with	enough	time	and	commitment.	Most	users	aren't	talented	programmers,	and
most	have	day	jobs.	Raymond	and	the	rest	of	the	free	source	community
acknowledge	this	limitation,	but	point	out	that	the	right	person	often	comes
along	if	the	bug	occurs	often	enough	to	be	a	real	problem.	If	the	bug	is	serious
enough,	a	non-programmer	may	even	hire	a	programmer	to	poke	into	the	source
code.

Waiting	for	the	bug	and	the	programmer	to	find	each	other	is	like	waiting	for
Arthur	to	find	the	sword	in	the	stone.	But	Raymond	and	the	rest	of	the	free
source	community	have	even	turned	this	limitation	on	its	head	and	touted	it	as	an
advantage.	Relying	on	users	to	scratch	itches	means	that	problems	only	get
addressed	if	they	have	real	constituencies	with	a	big	enough	population	to
generate	the	one	true	believer	with	enough	time	on	his	hands.	It's	sort	of	a	free
market	in	people's	time	for	fixing	bugs.	If	the	demand	is	there,	the	solution	will
be	created.	It's	Say's	Law	recast	for	software	development:	"the	supply	of	bugs
creates	the	talent	for	fixes."

Corporate	development,	on	the	other	hand,	has	long	been	obsessed	with	adding
more	and	more	features	to	programs	to	give	people	enough	reason	to	buy	the
upgrade.	Managers	have	long	known	that	it's	better	to	put	more	time	into	adding
more	doohickeys	and	widgets	to	a	program	than	into	fixing	its	bugs.	That's	why
Microsoft	Word	can	do	so	many	different	things	with	the	headers	and	footers	of
documents	but	can't	stop	a	Word	Macro	virus	from	reproducing.	The	folks	at
Microsoft	know	that	when	the	corporate	managers	sit	down	to	decide	whether	to
spend	the	thousands	of	dollars	to	upgrade	their	machines,	they'll	need	a	set	of
new	compelling	features.	People	don't	like	to	pay	for	bug	fixes.

Of	course,	corporations	also	have	some	advantages.	Money	makes	sure	that
someone	is	actively	trying	to	solve	the	bugs	in	the	program.	The	same	free
market	vision	guarantees	that	the	companies	that	consistently	disappoint	their
customers	will	go	out	of	business.	This	developer	has	the	advantage	of	studying
the	same	source	code	day	in	and	day	out.	Eventually	he'll	learn	enough	about	the
guts	of	the	Source	to	be	much	more	effective	than	the	guy	with	the	jammed
printer	and	modem.	He	should	be	able	to	nab	the	bug	10	times	more	quickly	then
the	free	source	hobbyist	just	because	he's	an	expert	in	the	system.

Raymond	acknowledges	this	problem	but	proposes	that	the	free	source	model
can	still	be	more	effective	despite	the	inexperience	of	the	people	who	are	forced
to	scratch	an	itch.	Again	he	taps	the	world	of	libertarian	philosophy	and	suggests
that	the	free	software	world	is	like	a	bazaar	filled	with	many	different	merchants
offering	their	wares.	Corporate	development,	on	the	other	hand,	is	structured	like
the	religious	syndicates	that	built	the	medieval	cathedrals.	The	bazaars	offered
plenty	of	competition	but	no	order.	The	cathedrals	were	run	by	central	teams	of
priests	who	tapped	the	wealth	of	the	town	to	build	the	vision	of	one	architect.

The	differences	between	the	two	were	pretty	simple.	The	cathedral	team	could
produce	a	great	work	of	art	if	the	architect	was	talented,	the	funding	team	was
successful,	and	the	management	was	able	to	keep	everyone	focused	on	doing
their	jobs.	If	not,	it	never	got	that	far.	The	bazaar,	on	the	other	hand,	consisted	of
many	small	merchants	trying	to	outstrip	each	other.	The	best	cooks	ended	up
with	the	most	customers.	The	others	soon	went	out	of	business.

The	comparison	to	software	was	simple.	Corporations	gathered	the	tithes,
employed	a	central	architect	with	a	grand	vision,	managed	the	team	of
programmers,	and	shipped	a	product	every	once	and	a	bit.	The	Linux	world,
however,	let	everyone	touch	the	Source.	People	would	try	to	fix	things	or	add
new	features.	The	best	solutions	would	be	adopted	by	oth	ers	and	the	mediocre
would	fall	by	the	wayside.	Many	different	Linux	versions	would	proliferate,	but
over	time	the	marketplace	of	software	would	coalesce	around	the	best	standard
version.

"In	the	cathedral-builder	view	of	programming,	bugs	and	development	problems
are	tricky,	insidious,	deep	phenomena.	It	takes	months	of	scrutiny	by	a	dedicated
few	to	develop	confidence	that	you've	winkled	them	all	out.	Thus	the	long
release	intervals,	and	the	inevitable	disappointment	when	long-awaited	releases
are	not	perfect,"	Raymond	said.

"In	the	bazaar	view,	on	the	other	hand,	you	assume	that	bugs	are	generally
shallow	phenomena--or,	at	least,	that	they	turn	shallow	pretty	quick	when
exposed	to	a	thousand	eager	code-developers	pounding	on	every	single	new
release.	Accordingly	you	release	often	in	order	to	get	more	corrections,	and	as	a
beneficial	side	effect	you	have	less	to	lose	if	an	occasional	botch	gets	out	the
door."

11.2	THEY	PUT	A	GIANT	ARROW	ON	THE	PROBLEM

..

This	bazaar	can	be	a	powerful	influence	on	solving	problems.	Sure,	it	isn't
guided	by	a	talented	architect	and	teams	of	priests,	but	it	is	a	great	free-for-all.	It
is	quite	unlikely,	for	instance,	that	the	guy	with	the	overloaded	printer	and
modem	line	will	also	be	a	talented	programmer	with	a	grand	vision	to	solve	the
problem.	Someone	named	Arthur	only	stumbles	across	the	right	stone	with	the
right	sword	every	once	and	a	bit.	But	if	the	frustrated	user	can	do	a	good	job
characterizing	it	and	reporting	it,	then	someone	else	can	solve	it.

Dave	Hitz	was	one	of	the	programmers	who	helped	Keith	Bostic	rewrite	UNIX
so	it	could	be	free	of	AT&T's	copyright.	Today,	he	runs	Network	Appliance,	a
company	that	builds	stripped-down	file	servers	that	run	BSD	at	their	core.	He's
been	writing	file	systems	ever	since	college,	and	the	free	software	came	in	quite
handy	when	he	was	starting	his	company.	When	they	started	building	the	big
machines,	the	engineers	just	reached	into	the	pool	of	free	source	code	for
operating	systems	and	pulled	out	much	of	the	code	that	would	power	his	servers.
They	modified	the	code	heavily,	but	the	body	of	free	software	that	he	helped
create	was	a	great	starting	point.

In	his	experience,	many	people	would	find	a	bug	and	patch	it	with	a	solution	that
was	good	enough	for	them.	Some	were	just	kids	in	college.	Others	were
programmers	who	didn't	have	the	time	or	the	energy	to	read	the	Source	and
understand	the	best	way	to	fix	the	problem.	Some	fixed	the	problem	for
themselves,	but	inadvertently	created	another	problem	elsewhere.	Sorting
through	all	of	these	problems	was	hard	to	do.

But	Hitz	says,	"Even	if	they	fixed	it	entirely	the	wrong	way,	if	they	found	the
place	where	the	problem	went	away,	then	they	put	a	giant	arrow	on	the
problem."	Eventually,	enough	arrows	would	provide	someone	with	enough
information	to	solve	the	problem	correctly.	Many	of	the	new	versions	written	by
people	may	be	lost	to	time,	but	that	doesn't	mean	that	they	didn't	have	an
important	effect	on	the	evolution	of	the	Source.

"I	think	it's	rarely	the	case	that	you	get	people	who	make	a	broad	base	of	source
code	their	life,"	he	said.	"There	are	just	a	whole	bunch	of	people	who	are
dilettantes.	The	message	is,	'Don't	underestimate	the	dilettantes.'"

11.3	HOW	FREE	SOFTWARE	CAN	BE	A	BAZAAR	OR	A	CATHEDRAL

...

When	Raymond	wrote	the	essay,	he	was	just	trying	to	suss	out	the	differences
between	several	of	the	camps	in	the	free	source	world.	He	noticed	that	people
running	free	source	projects	had	different	ways	of	sharing.	He	wanted	to	explain
which	free	source	development	method	worked	better	than	others.	It	was	only
later	that	the	essay	began	to	take	on	a	more	serious	target	when	everyone	began
to	realize	that	Microsoft	was	perhaps	the	biggest	cathedral-like	development
team	around.

Raymond	said,	"I	think	that	like	everyone	else	in	the	culture	I	wandered	back
and	forth	between	the	two	modes	as	it	seemed	appropriate	because	I	didn't	have
a	theory	or	any	consciousness."

He	saw	Richard	Stallman	and	the	early	years	of	the	GNU	projects	as	an	example
of	cathedral-style	development.	These	teams	would	often	labor	for	months	if	not
years	before	sharing	their	tools	with	the	world.	Raymond	himself	said	he
behaved	the	same	way	with	some	of	the	early	tools	that	he	wrote	and	contributed
to	the	GNU	project.

Linus	Torvalds	changed	his	mind	by	increasing	the	speed	of	sharing,	which
Raymond	characterized	as	the	rule	of	"release	early	and	often,	delegate
everything	you	can,	be	open	to	the	point	of	promiscuity."	Torvalds	ran	Linux	as
openly	as	possible,	and	this	eventually	attracted	some	good	contributors.	In	the
past,	the	FSF	was	much	more	careful	about	what	it	embraced	and	brought	into
the	GNU	project.	Torvalds	took	many	things	into	his	distributions	and	they
mutated	as	often	as	daily.	Occasionally,	new	versions	came	out	twice	a	day.

Of	course,	Stallman	and	Raymond	have	had	tussles	in	the	past.	Raymond	is
careful	to	praise	the	man	and	say	he	values	his	friendship,	but	also	tempers	it	by
saying	that	Stallman	is	difficult	to	work	with.

In	Raymond's	case,	he	says	that	he	once	wanted	to	rewrite	much	of	the	Lisp	code
that	was	built	into	GNU	Emacs.	Stallman's	Emacs	allowed	any	user	to	hook	up
their	own	software	into	Emacs	by	writing	it	in	a	special	version	of	Lisp.	Some
had	written	mail	readers.	Others	had	added	automatic	comment-generating	code.
All	of	this	was	written	in	Lisp.

Raymond	says	that	in	1992,	"The	Lisp	libraries	were	in	bad	shape	in	a	number	of
ways.	They	were	poorly	documented.	There	was	a	lot	of	work	that	had	gone	on

outside	the	FSF	and	I	wanted	to	tackle	that	project."

According	to	Raymond,	Stallman	didn't	want	him	to	do	the	work	and	refused	to
build	it	into	the	distribution.	Stallman	could	do	this	because	he	controlled	the
Free	Software	Foundation	and	the	distribution	of	the	software.	Raymond	could
have	created	his	own	version,	but	refused	because	it	was	too	complicated	and
ultimately	bad	for	everyone	if	two	versions	emerged.

For	his	part,	Stallman	explains	that	he	was	glad	to	accept	parts	of	Raymond's
work,	but	he	didn't	want	to	be	forced	into	accepting	them	all.	Stallman	says,
"Actually,	I	accepted	a	substantial	amount	of	work	that	Eric	had	done.	He	had	a
number	of	ideas	I	liked,	but	he	also	had	some	ideas	I	thought	were	mistaken.	I
was	happy	to	accept	his	help,	as	long	as	I	could	judge	his	ideas	one	by	one,
accepting	some	and	declining	some.

"But	subsequently	he	asked	me	to	make	a	blanket	arrangement	in	which	he
would	take	over	the	development	of	a	large	part	of	Emacs,	operating
independently.	I	felt	I	should	continue	to	judge	his	ideas	individually,	so	I	said
no."

Raymond	mixed	this	experience	with	his	time	watching	Torvalds's	team	push	the
Linux	kernel	and	used	them	as	the	basis	for	his	essay	on	distributing	the	Source.
"Mostly	I	was	trying	to	pull	some	factors	that	I	had	observed	as	unconscious
folklore	so	people	could	take	them	out	and	reason	about	them,"	he	said.

Raymond	says,	"Somebody	pointed	out	that	there's	a	parallel	of	politics.	Rigid
political	and	social	institutions	tend	to	change	violently	if	they	change	at	all,
while	ones	with	more	play	in	them	tend	to	change	peacefully."

There	is	a	good	empirical	reason	for	the	faith	in	the	strength	of	free	source.	After
all,	a	group	of	folks	who	rarely	saw	each	other	had	assembled	a	great	pile	of
source	code	that	was	kicking	Microsoft's	butt	in	some	corners	of	the	computer
world.	Linux	servers	were	common	on	the	Internet	and	growing	more	common
every	day.	The	desktop	was	waiting	to	be	conquered.	They	had	done	this	without
stock	options,	without	corporate	jets,	without	secret	contracts,	and	without
potentially	illegal	alliances	with	computer	manufacturers.	The	success	of	the
software	from	the	GNU	and	Linux	world	was	really	quite	impressive.

Of	course,	myths	can	be	taken	too	far.	Programming	computers	is	hard	work	and
often	frustrating.	Sharing	the	source	code	doesn't	make	bugs	or	problems	go

away--it	just	makes	it	a	bit	easier	for	someone	else	to	dig	into	a	program	to	see
what's	going	wrong.	The	source	code	may	just	be	a	list	of	instructions	written	in
a	programming	language	that	is	designed	to	be	readable	by	humans,	but	that
doesn't	mean	that	it	is	easy	to	understand.	In	fact,	most	humans	won't	figure	out
most	source	code	because	programming	languages	are	designed	to	be	understood
by	other	programmers,	not	the	general	population.

To	make	matters	worse,	programmers	themselves	have	a	hard	time
understanding	source	code.	Computer	programs	are	often	quite	complicated	and
it	can	take	days,	weeks,	and	even	months	to	understand	what	a	strange	piece	of
source	code	is	telling	a	computer	to	do.	Learning	what	is	happening	in	a	program
can	be	a	complicated	job	for	even	the	best	programmers,	and	it	is	not	something
that	is	taken	lightly.

While	many	programmers	and	members	of	the	open	source	world	are	quick	to
praise	the	movement,	they	will	also	be	able	to	cite	problems	with	the	myth	of	the
Source.	It	isn't	that	the	Source	doesn't	work,	they'll	say,	it's	just	that	it	rarely
works	anywhere	near	as	well	as	the	hype	implies.	The	blooms	are	rarely	as
vigorous	and	the	free	markets	in	improvements	are	rarely	as	liquid.

Larry	McVoy,	an	avid	programmer,	proto-academic,	and	developer	of	the
BitKeeper	toolkit,	likes	to	find	fault	with	the	model.	It	isn't	that	he	doesn't	like
sharing	source	code,	it's	just	that	he	isn't	wealthy	enough	to	take	on	free	software
projects.	"We	need	to	find	a	way	for	people	to	develop	free	software	and	pay
their	mortgages	and	raise	a	family,"	he	says.

"If	you	look	closely,"	he	says,	"there	really	isn't	a	bazaar.	At	the	top	it's	always	a
one-person	cathedral.	It's	either	Linus,	Stallman,	or	someone	else."	That	is,	the
myth	of	a	bazaar	as	a	wide-open,	free-for-all	of	competition	isn't	exactly	true.
Sure,	everyone	can	download	the	source	code,	diddle	with	it,	and	make
suggestions,	but	at	the	end	of	the	day	it	matters	what	Torvalds,	Stallman,	or
someone	else	says.	There	is	always	a	great	architect	of	Chartres	lording	it	over
his	domain.

Part	of	this	problem	is	the	success	of	Raymond's	metaphor.	He	said	he	just
wanted	to	give	the	community	some	tools	to	understand	the	success	of	Linux
and	reason	about	it.	But	his	two	visions	of	a	cathedral	and	a	bazaar	had	such	a
clarity	that	people	concentrated	more	on	dividing	the	world	into	cathedrals	and
bazaars.	In	reality,	there's	a	great	deal	of	blending	in	between.	The	most	efficient

bazaars	today	are	the	suburban	malls	that	have	one	management	company
building	the	site,	leasing	the	stores,	and	creating	a	unified	experience.
Downtown	shopping	areas	often	failed	because	there	was	always	one	shop
owner	who	could	ruin	an	entire	block	by	putting	in	a	store	that	sold	pornography.
On	the	other	side,	religion	has	always	been	something	of	a	bazaar.	Martin	Luther
effectively	split	apart	Christianity	by	introducing	competition.	Even	within
denominations,	different	parishes	fight	for	the	hearts	and	souls	of	people.

The	same	blurring	holds	true	for	the	world	of	open	source	software.	The	Linux
kernel,	for	instance,	contains	many	thousands	of	lines	of	source	code.	Some	put
the	number	at	500,000.	A	few	talented	folks	like	Alan	Cox	or	Linus	Torvalds
know	all	of	it,	but	most	are	only	familiar	with	the	corners	of	it	that	they	need	to
know.	These	folks,	who	may	number	in	the	thousands,	are	far	outnumbered	by
the	millions	who	use	the	Linux	OS	daily.

It's	interesting	to	wonder	if	the	ratio	of	technically	anointed	to	blithe	users	in	the
free	source	world	is	comparable	to	the	ratio	in	Microsoft's	dominion.	After	all,
Microsoft	will	share	its	source	code	with	close	partners	after	they	sign	some
non-disclosure	forms.[^9]	While	Microsoft	is	careful	about	what	it	tells	its
partners,	it	will	reveal	information	only	when	there's	something	to	gain.	Other
companies	have	already	jumped	right	in	and	started	offering	source	code	to	all
users	who	want	to	look	at	it.

[9]:	At	this	writing,	Microsoft	has	not	released	its	source	code,	but	the	company
is	widely	known	to	be	examining	the	option	as	part	of	its	settlement	with	the
Department	of	Justice.

Answering	this	question	is	impossible	for	two	different	reasons.	First,	no	one
knows	what	Microsoft	reveals	to	its	partners	because	it	keeps	all	of	this
information	secret,	by	reflex.	Contracts	are	usually	negotiated	under	non-
disclosure,	and	the	company	has	not	been	shy	about	exploiting	the	power	that
comes	from	the	lack	of	information.

Second,	no	one	really	knows	who	reads	the	Linux	source	code	for	the	opposite
reason.	The	GNU/Linux	source	is	widely	available	and	frequently	downloaded,
but	that	doesn't	mean	it's	read	or	studied.	The	Red	Hat	CDs	come	with	one	CD
full	of	pre-compiled	binaries	and	the	second	full	of	source	code.	Who	knows
whoever	pops	the	second	CDROM	in	their	computer?	Everyone	is	free	to	do	so
in	the	privacy	of	their	own	cubicle,	so	no	records	are	kept.

If	I	were	to	bet,	I	would	guess	that	the	ratios	of	cognoscenti	to	uninformed	users
in	the	Linux	and	Microsoft	worlds	are	pretty	close.	Reading	the	Source	just	takes
too	much	time	and	too	much	effort	for	many	in	the	Linux	world	to	take
advantage	of	the	huge	river	of	information	available	to	them.

If	this	is	true	or	at	least	close	to	true,	then	why	has	the	free	source	world	been
able	to	move	so	much	more	quickly	than	the	Microsoft	world?	The	answer	isn't
that	everyone	in	the	free	source	world	is	using	the	Source,	it's	that	everyone	is
free	to	use	it.	When	one	person	needs	to	ask	a	question	or	scratch	an	itch,	the
Source	is	available	with	no	questions	asked	and	no	lawyers	consulted.	Even	at
3:00	A.M.,	a	person	can	read	the	Source.	At	Microsoft	and	other	corporations,
they	often	need	to	wait	for	the	person	running	that	division	or	section	to	give
them	permission	to	access	the	source	code.

There	are	other	advantages.	The	free	source	world	spends	a	large	amount	of	time
keeping	the	source	code	clean	and	accessible.	A	programmer	who	tries	to	get
away	with	sloppy	workmanship	and	bad	documentation	will	pay	for	it	later	as
others	come	along	and	ask	thousands	of	questions.

Corporate	developers,	on	the	other	hand,	have	layers	of	secrecy	and	bureaucracy
to	isolate	them	from	questions	and	comments.	It	is	often	hard	to	find	the	right
programmer	in	the	rabbit	warren	of	cubicles	who	has	the	source	code	in	the	first
place.	One	Microsoft	programmer	was	quoted	as	saying,	"A	developer	at
Microsoft	working	on	the	OS	can't	scratch	an	itch	he's	got	with	Excel,	neither
can	the	Excel	developer	scratch	his	itch	with	the	OS--it	would	take	him	months
to	figure	out	how	to	build	and	debug	and	install,	and	he	probably	couldn't	get
proper	source	access	anyway."

This	problem	is	endemic	to	corporations.	The	customers	are	buying	the	binary
version,	not	the	source	code,	so	there	is	no	reason	to	dress	up	the	backstage
wings	of	the	theater.	After	some	time,	though,	people	change	cubicles,	move	to
other	corporations,	and	information	disappears.	While	companies	try	to	keep
source	code	databases	to	synchronize	development,	the	efforts	often	fall	apart.
After	Apple	canceled	development	of	their	Newton	handheld,	many	Newton
users	were	livid.	They	had	based	big	projects	on	the	platform	and	they	didn't
want	to	restart	their	work.	Many	asked	whether	Apple	could	simply	give	away
the	OS's	source	code	instead	of	leaving	it	to	rot	on	some	hard	disk.	Apple
dodged	these	requests,	and	this	made	some	people	even	more	cynical.	One
outside	developer	speculated,	"It	probably	would	not	be	possible	to	re-create	the

OS.	The	developers	are	all	gone.	All	of	them	went	to	Palm,	and	they	probably
couldn't	just	put	it	back	together	again	if	they	wanted	to."

Of	course,	corporations	try	to	fight	this	rot	by	getting	their	programmers	to	do	a
good	job	at	the	beginning	and	write	plenty	of	documentation.	In	practice,	this
slips	a	bit	because	it	is	not	rewarded	by	the	culture	of	secrecy.	I	know	one
programmer	who	worked	for	a	project	at	MIT.	The	boss	thought	he	was	being
clever	by	requiring	comments	on	each	procedure	and	actually	enforcing	it	with
an	automated	text-scanning	robot	that	would	look	over	the	source	code	and
count	the	comments.	My	friend	turned	around	and	hooked	up	one	version	of	the
popular	artificial	intelligence	chatterbots	like	Eliza	and	funneled	the	responses
into	the	comment	field.	Then	everyone	was	happy.	The	chatterbot	filled	the
comment	field,	the	automated	comment	police	found	something	vaguely
intelligent,	and	the	programmer	got	to	spend	his	free	time	doing	other	things.
The	boss	never	discovered	the	problem.

Programmers	are	the	same	the	world	over,	and	joining	the	free	source	world
doesn't	make	them	better	people	or	destroy	their	impudence.	But	it	does	penalize
them	if	others	come	along	and	try	to	use	their	code.	If	it's	inscrutable,	sloppy,	or
hard	to	understand,	then	others	will	either	ignore	it	or	pummel	them	with
questions.	That	is	a	strong	incentive	to	do	it	right.

11.4	OPEN	SOURCE	AND	LIGHTBULBS

...............................

The	limitations	to	the	power	of	open	source	might	be	summarized	in	the	answer
to	the	question	"How	many	open	source	developers	does	it	take	to	change	a
lightbulb?"	The	answer	is:	17.	Seventeen	to	argue	about	the	license;	17	to	argue
about	the	brain-deadedness	of	the	lightbulb	architecture;	17	to	argue	about	a	new
model	that	encompasses	all	models	of	illumination	and	makes	it	simple	to
replace	candles,	campfires,	pilot	lights,	and	skylights	with	the	same	easy-to-
extend	mechanism;	17	to	speculate	about	the	secretive	industrial	conspiracy	that
ensures	that	lightbulbs	will	burn	out	frequently;	1	to	finally	change	the	bulb;	and
16	who	decide	that	this	solution	is	good	enough	for	the	time	being.

The	open	source	development	model	is	a	great	way	for	very	creative	people	to
produce	fascinating	software	that	breaks	paradigms	and	establishes	new
standards	for	excellence.	It	may	not	be	the	best	way,	however,	to	finish	boring

jobs	like	fine-tuning	a	graphical	interface,	or	making	sure	that	the	scheduling
software	used	by	executives	is	as	bulletproof	as	possible.

While	the	open	development	model	has	successfully	tackled	the	problem	of
creating	some	great	tools,	of	building	a	strong	OS,	and	of	building	very	flexible
appliance	applications	like	web	browsers,	it	is	a	long	way	from	winning	the
battle	for	the	desktop.	Some	free	source	people	say	the	desktop	applications	for
average	users	are	just	around	the	corner	and	the	next	stop	on	the	Free	Software
Express.	Others	aren't	so	sure.

David	Henkel-Wallace	is	one	of	the	founders	of	the	free	software	company
Cygnus.	This	company	built	its	success	around	supporting	the	development	tools
created	by	Stallman's	Free	Software	Foundation.	They	would	sign	contracts	with
companies	to	answer	any	questions	they	had	about	using	the	free	software	tools.
At	first	companies	would	balk	at	paying	for	support	until	they	realized	that	it
was	cheaper	than	hiring	in-house	technical	staff	to	do	the	work.	John	Gilmore,
one	of	the	cofounders,	liked	to	say,	"We	make	free	software	affordable."

The	company	grew	by	helping	chip	manufacturers	tune	the	FSF	compiler,	GCC,
for	their	chip.	This	was	often	a	difficult	and	arduous	task,	but	it	was	very
valuable	to	the	chip	manufacturer	because	potential	customers	knew	they	could
get	a	good	compiler	to	produce	software	for	the	chip.	While	Intel	continued	to
dominate	the	desktop,	the	market	for	embedded	chips	to	go	into	products	like
stoves,	microwave	ovens,	VCRs,	or	other	smart	boxes	boomed	as	manufacturers
rolled	out	new	chips	to	make	it	cheaper	and	easier	to	add	smart	features	to
formerly	dumb	boxes.	The	engineers	at	the	companies	were	often	thrilled	to
discover	that	they	could	continue	to	use	GCC	to	write	software	for	a	new	chip,
and	this	made	it	easier	to	sell	the	chip.

Cygnus	always	distributed	to	the	Source	their	modifications	to	GCC	as	the	GNU
General	Public	License	demanded.	This	wasn't	a	big	deal	because	the	chip
manufacturers	wanted	the	software	to	be	free	and	easy	for	everyone	to	use.	This
made	Cygnus	one	of	the	clearing-houses	for	much	of	the	information	on	how
GCC	worked	and	how	to	make	it	faster.

Henkel-Wallace	is	quick	to	praise	the	power	of	publicly	available	source	code
for	Cygnus's	customers.	They	were	all	programmers,	after	all.	If	they	saw
something	they	didn't	like	with	GCC,	they	knew	how	to	poke	around	on	the
insides	and	fix	it.	That	was	their	job.

"[GCC]	is	a	compiler	tool	and	it	was	used	by	developers	so	they	were	smart
enough.	When	something	bothered	someone,	we	fixed	it.	There	was	a	very	tight
coupling,"	he	said.

He	openly	wonders,	though,	whether	the	average	word	processor	or	basic	tool
user	will	be	able	to	do	anything.	He	says,	"The	downside	is	that	it's	hard	to
transfer	that	knowledge	with	a	user	who	isn't	a	developer.	Let's	say	Quicken	has
a	special	feature	for	lawyers.	You	need	to	have	a	more	formal	model	because	the
lawyers	aren't	developers.	(We're	fortunate	in	that	regard.)"

That	is,	lawyers	aren't	schooled	enough	in	the	guts	of	computer	development	to
complain	in	the	right	way.	A	programmer	could	say,	"GCC	is	optimizing	away
too	much	dead	code	that	isn't	really	dead."	Other	folks	in	the	GCC	community
would	know	what	is	going	on	and	be	able	to	fix	it.	A	lawyer	might	just	say,
"Quicken	screwed	up	my	billing	and	had	me	billing	twenty-six	hours	in	a	day."
This	wouldn't	pinpoint	the	problem	enough	for	people	to	solve	it.	The	lawyer
doesn't	understand	the	inside	of	the	software	like	the	programmer.

In	situations	like	this,	Henkel-Wallace	believes	that	a	corporate-style	team	may
be	the	only	one	that	can	study	the	problems	thoroughly	enough	to	find	solutions.
Intuit,	the	manufacturer	of	Quicken,	is	well	known	for	videotaping	many
standard	users	who	use	their	product	for	the	first	time.	This	allows	them	to
pinpoint	rough	spots	in	the	program	and	identify	places	where	it	could	be
improved.	This	relentless	smoothing	and	polishing	has	made	the	product	one	of
the	best-known	and	widely	used	tools	on	desktops.	It	isn't	clear	that	non-
programmers	could	have	accomplished	the	same	quality	by	working	together
with	the	Source	at	their	disposal.

11.5	THE	SOURCE	AND	THE	LANGUAGE	THAT	WE	SPEAK

..

There	are	deeper,	more	philosophical	currents	to	the	open	source	world.	The
personal	computer	industry	is	only	a	few	decades	old.	While	it	has	advanced
rapidly	and	solved	many	problems,	there	is	still	very	little	understanding	of	the
field	and	what	it	takes	to	make	a	computer	easy	to	use.	This	has	been	the	great
struggle,	and	the	free	source	world	may	be	an	essential	part	of	this	trip.

Tim	O'Reilly,	the	publisher	of	many	books	and	a	vocal	proponent	of	the	open
source	world,	says,	"We've	gone	through	this	period	of	thinking	of	programs	as

artifacts.	A	binary	object	is	a	thing.	Open	source	is	part	of	thinking	of	computers
as	a	process."	In	other	words,	we've	done	a	good	job	of	creating	computers	you
can	buy	off	the	shelf	and	software	that	can	be	bought	in	shrink-wrapped	boxes,
but	we	haven't	done	a	good	job	of	making	it	possible	for	people	to	talk	to	the
machines.

To	a	large	extent,	the	process	has	been	a	search	for	a	good	language	to	use	to
communicate	with	the	computer.	Most	of	the	recent	development	followed	the
work	at	Xerox	PARC	that	created	some	of	the	first	graphical	user	interfaces.
Apple	followed	their	lead	and	Microsoft	followed	Apple.	Each	bought	into	the
notion	that	creating	a	neat	picture	representing	the	files	on	a	screen	would	make
a	neat	metaphor	that	could	make	it	easier	for	people	to	interact	with	the
computers.	Dragging	a	file	to	the	trash	was	somehow	easier	for	people	to	do	than
typing	a	cryptic	command	like	"rm."

In	the	1980s,	that	sort	of	graphical	thinking	was	considered	brilliant.	Pictures
were	prettier	than	words,	so	it	was	easy	to	look	at	the	clean,	pretty	Macintosh
screen	and	think	it	was	easier	to	use	just	because	it	was	easier	to	look	at.

But	the	pretty	features	merely	hid	a	massive	amount	of	complexity,	and	it	was
still	hard	to	work	with	the	machines.	Don	Norman,	a	human/computer	interface
engineer	at	Apple,	once	wrote	a	fascinating	discussion	of	the	company's	design
of	their	computer's	on-off	switch.	He	pointed	out	that	the	switch	couldn't	be	a
simple	power	switch	that	could	cut	the	power	on	and	off	because	the	computer
needed	to	orchestrate	the	start-up	and	shutdown	procedure.	It	needed	to	close	up
files,	store	data	safely,	and	make	sure	everything	was	ready	to	start	up	again.

The	design	of	the	power	switch	was	made	even	more	complicated	by	the	fact
that	it	was	supposed	to	work	even	when	the	computer	crashed.	That	is,	if	bad
programming	jumbles	the	memory	and	screws	up	the	central	processor,	the
power	switch	is	still	supposed	to	shut	down	the	machine.	Of	course,	the
computer	couldn't	even	add	two	numbers	together	after	it	crashed,	so	it	couldn't
even	begin	to	move	through	all	the	clerical	work	necessary	to	shut	down	the
machine.	The	Macintosh	on	which	I	wrote	this	book	can	crash	so	badly	that	the
power	switch	doesn't	work,	and	I	can	only	reset	it	by	sticking	a	paper	clip	into	a
hidden	hole.

Norman's	work	shows	how	hard	it	can	be	to	come	up	with	a	simple	language	that
allows	humans	and	computers	to	communicate	about	a	task	that	used	to	be

solved	with	a	two-position	light	switch.	This	problem	can	be	seen	throughout	the
industry.	One	computer	tutor	told	me,	"I	am	so	tired	of	telling	people	to	shut
down	their	computers	by	pushing	the	'Start'	button."	Microsoft	Windows	places
all	of	the	features	on	a	menu	tree	that	grows	out	of	one	button	labeled	"Start."
This	may	have	been	a	great	way	to	capture	the	potential	to	do	new	things	that
they	felt	they	were	selling,	but	it	continues	to	be	confusing	to	all	new	users	of
the	machines.	Why	should	they	push	start	to	stop	it?

The	quest	for	this	Source-level	control	can	take	many	strange	turns.	By	the
middle	of	the	1980s,	programmers	at	Apple	realized	that	they	had	gone	a	bit	too
far	when	they	simplified	the	Mac's	interface.	The	visual	language	of	pointing
and	clicking	at	icons	may	have	been	great	for	new	users,	but	it	was	beginning	to
thwart	sophisticated	users	who	wanted	to	automate	what	they	did.	Many
graphics	designers	would	find	themselves	repeatedly	doing	the	same	steps	to
image	files,	and	it	was	boring.	They	wondered,	why	couldn't	the	computer	just
repeat	all	their	instructions	and	save	them	all	that	pointing	and	clicking?

In	a	sense,	the	sophisticated	Mac	users	were	looking	for	the	Source.	They
wanted	to	be	able	to	write	and	modify	simple	programs	that	controlled	their
software.	The	problem	was	that	the	graphical	display	on	the	Mac	wasn't	really
suited	to	the	task.	How	do	you	describe	moving	the	mouse	and	clicking	on	a
button?	How	do	you	come	up	with	a	language	that	means	"cut	out	this	sample
and	paste	it	over	here"?	The	actions	were	so	visual	that	there	weren't	any	words
or	language	to	describe	them.

This	problem	confounded	Apple	for	the	next	10	years,	and	the	company	is
slowly	finishing	its	solution,	known	as	AppleScript.	The	task	has	not	been
simple,	but	it	has	been	rewarding	for	many	who	use	their	Macintoshes	as
important	chains	in	data	production	lines.	Apple	included	instructions	for
moving	icons	to	locations,	uploading	files,	changing	the	color	of	icons,	and
starting	up	programs	with	others.

The	nicest	extension	was	a	trick	that	made	the	AppleScript	"recordable."	That	is,
you	could	turn	on	a	recorder	before	stepping	through	the	different	jobs.	The	Mac
would	keep	track	of	your	actions	and	generate	a	program	that	would	allow	you
to	repeat	what	you	were	doing.	Still,	the	results	were	far	from	simple	to
understand	or	use.	Here's	a	simple	snippet	of	AppleScript	code	that	will	select	all
files	in	one	directory	with	the	word	"Speckle"	in	their	title	and	open	them	up
with	another	application:

This	Source	can	then	be	run	again	and	again	to	finish	a	task.	Making	this	tool
available	to	users	has	been	a	challenge	for	Apple	because	it	forces	them	to	make
programming	easier.	Many	people	learn	AppleScript	by	turning	on	the	recording
feature	and	watching	what	happens	when	they	do	what	they	would	normally	do.
Then	they	learn	how	to	insert	a	few	more	commands	to	accomplish	the	task
successfully.	In	the	end,	they	become	programmers	manipulating	the	Source
without	realizing	it.

O'Reilly	and	others	believe	that	the	open	source	effort	is	just	an	extension	of	this
need.	As	computers	become	more	and	more	complex,	the	developers	need	to
make	the	internal	workings	more	and	more	open	to	users.	This	is	the	only	way
users	can	solve	their	problems	and	use	the	computers	effectively.

"The	cutting	edge	of	the	computer	industry	is	in	infoware.	There's	not	all	that
much	juice	in	the	kind	of	apps	we	wrote	in	the	eighties	and	nineties.	As	we	get
speech	recognition,	we'll	go	even	more	in	the	direction	of	open	source,"	he	says.

"There	are	more	and	more	recipes	that	are	written	down.	These	are	going	to
migrate	into	lower	and	lower	layers	of	software	and	the	computer	is	going	to	get
a	bigger	and	bigger	vocabulary."

That	is,	more	and	more	of	the	Source	is	going	to	need	to	become	transparent	to
the	users.	It's	not	just	a	political	battle	of	Microsoft	versus	the	world.	It's	not	just
a	programmer's	struggle	to	poke	a	nose	into	every	corner	of	a	device.	It's	about
usability.	More	and	more	people	need	to	write	programs	to	teach	computers	to
do	what	they	need	to	do.	Access	to	the	Source	is	the	only	way	to	accomplish	it.

In	other	words,	computers	are	becoming	a	bigger	and	bigger	part	of	our	lives.
Their	language	is	becoming	more	readily	understandable	by	humans,	and
humans	are	doing	a	better	job	of	speaking	the	language	of	computers.	We're
converging.	The	more	we	do	so,	the	more	important	the	Source	will	be.	There's
nothing	that	Microsoft	or	corporate	America	can	do	about	this.	They're	going	to
have	to	go	along.	They're	going	to	have	to	give	us	access	to	the	Source.

1.	 PEOPLE

When	I	was	in	college,	a	friend	of	mine	in	a	singing	group	would	often	tweak	his
audience	by	making	them	recite	Steve	Martin's	"Individualist's	Creed"	in	unison.
Everyone	would	proclaim	that	they	were	different,	unique,	and	wonderfully

eccentric	individuals	together	with	everyone	else	in	the	audience.	The	gag
played	well	because	all	the	individualists	were	also	deeply	committed	to	living	a
life	filled	with	irony.

The	free	source	world	is	sort	of	a	Club	Med	for	these	kinds	of	individualists.
Richard	Stallman	managed	to	organize	a	group	of	highly	employable	people	and
get	them	to	donate	their	$50+-per-hour	time	to	a	movement	by	promising
complete	freedom.	Everyone	who	showed	up	valued	freedom	much	more	than
the	money	they	could	be	making	working	for	big	companies.	It's	not	a	bit
surprising	that	all	of	the	free	thinkers	are	also	coming	up	with	the	same	answers
to	life.	Great	minds	think	alike,	right?

This	large	collection	of	dedicated	individualists	is	predisposed	to	moments	of
easy	irony.	Black	is	by	far	their	favorite	color.	Long	hair	and	beards	are
common.	T-shirts	and	shorts	are	the	rule	when	it	gets	warm,	and	T-shirts	and
jeans	dominate	when	the	weather	turns	cold.	No	one	wears	suits	or	anything	so
traditional.	That	would	be	silly	because	they're	not	as	comfortable	as	T-shirts	and
jeans.	Fitting	in	with	the	free	thinkers	isn't	hard.

The	group	is	not	particularly	republican	or	democrat,	but	libertarian	politics	are
easily	understood	and	widely	supported.	Gun	control	is	usually	considered	to	be
wrong,	if	only	because	the	federal	government	will	move	on	to	controlling
something	else	when	they're	finished	with	guns.	[^10]	Taxes	are	bad,	and	some
in	the	group	like	to	dream	of	when	they'll	be	driven	away	by	the	free-flowing,
frictionless	economy	of	the	Internet.	Folks	like	to	say	things	like	"Governments
are	just	speed	bumps	on	the	information	superhighway."

[10]:	In	fact,	the	federal	government	already	considers	encryption	software	to	be
a	munition	and	often	tries	to	regulate	it	as	such.

The	first	amendment	is	very	popular	and	many	are	sure	that	practically
everything	they	do	with	a	computer	is	a	form	of	speech	or	expression.	The
government	shouldn't	have	the	right	to	control	a	website's	content	because	they'll
surely	come	to	abuse	that	power	in	the	future.	Some	even	rage	against	private
plans	to	rate	websites	for	their	content	because	they're	certain	that	these	tools
will	eventually	be	controlled	by	those	in	power.	To	the	most	extreme,	merely
creating	a	list	of	sites	with	information	unsuitable	for	kids	is	setting	up	the
infrastructure	for	the	future	Nazis	to	start	burning	websites.

Virtually	everyone	believes	that	strong	codes	and	cryptography	are	essential	for
protecting	a	person's	privacy	online.	The	U.S.	government's	attempt	to	control
the	technology	by	regulating	its	export	is	widely	seen	as	a	silly	example	of	how
governments	are	trying	to	grab	power	at	the	expense	of	their	citizens.	The
criminals	already	have	the	secret	codes;	why	shouldn't	the	honest	people	be	able
to	protect	their	data?

Pornography	or	references	to	sex	in	the	discussions	are	rare,	if	only	because	the
world	of	the	libido	is	off	the	main	topic.	It's	not	that	sex	isn't	on	the	minds	of	the
free	software	community,	it's	just	that	the	images	are	so	freely	available	that
they're	uninteresting.	Anyone	can	go	to	www.playboy.com,	but	not	everyone	can
write	a	recursively	descending	code	optimizer.	People	also	rarely	swear.	While
four-letter	words	are	common	on	Wall	Street	and	other	highly	charged
environments,	they're	rare	in	the	technology	world.

Much	of	the	community	are	boys	and	men,	or	perhaps	more	correctly	"guys."
While	there	are	some	older	programmers	who	continue	to	dig	the	excitement	and
tussle	of	the	free	source	world,	many	are	high	school	and	college	guys	with
plenty	of	extra	time	on	their	hands.	Many	of	them	are	too	smart	for	school,	and
writing	neat	software	is	a	challenge	for	them.	Older	people	usually	get	bogged
down	with	a	job	and	mortgage	payments.	It's	hard	for	them	to	take	advantage	of
the	freedom	that	comes	with	the	source	code.	Still,	the	older	ones	who	survive
are	often	the	best.	They	have	both	deep	knowledge	and	experience.

The	average	population,	however,	is	aging	quickly.	As	the	software	becomes
better,	it	is	easier	for	working	stiffs	to	bring	it	into	the	corporate	environments.
Many	folks	brag	about	sneaking	Linux	into	their	office	and	replacing	Microsoft
on	some	hidden	server.	As	more	and	more	users	find	a	way	to	make	money	with
the	free	software,	more	and	more	older	people	(i.e.,	over	25)	are	able	to	devote
some	time	to	the	revolution.

I	suppose	I	would	like	to	report	that	there's	a	healthy	contingent	of	women	taking
part	in	the	free	source	world,	but	I	can't.	It	would	be	nice	to	isolate	the	free
software	community	from	the	criticism	that	usually	finds	any	group	of	men.	By
some	definition	or	legal	reasoning,	these	guys	must	be	practicing	some	de	facto
discrimination.	Somebody	will	probably	try	to	sue	someone	someday.	Still,	the
women	are	scarce	and	it's	impossible	to	use	many	of	the	standard	explanations.
The	software	is,	after	all,	free.	It	runs	well	on	machines	that	are	several
generations	old	and	available	from	corporate	scrap	heaps	for	several	hundred

dollars.	Torvalds	started	writing	Linux	because	he	couldn't	afford	a	real	version
of	UNIX.	Lack	of	money	or	the	parsimony	of	evil,	gender-nasty	parents	who
refuse	to	buy	their	daughters	a	computer	can	hardly	be	blamed.

In	fact,	many	of	the	people	online	don't	even	know	the	gender	of	the	person	on
the	other	end.	Oblique	nicknames	like	"303,"	"nomad,"	"CmdrTaco,"	or
"Hemos"	are	common.	No	one	knows	if	you're	a	boy	or	a	girl	online.	It's	almost
like	the	ideal	of	a	gender-free	existence	proposed	by	the	unisex	dreamers	who
wrote	such	stuff	as	"Free	to	Be	You	and	Me,"	trying	to	convince	children	that
they	were	free	to	pursue	any	dream	they	wanted.	Despite	the	prevalence	of	these
gender-free	visions,	the	folks	who	ended	up	dreaming	of	a	world	where	all	the
software	was	free	turned	out	to	be	almost	entirely	men.

Most	of	the	men	would	like	to	have	a	few	more	women	show	up.	They	need
dates	as	much	as	any	guy.	If	anything,	the	crown	of	Evil	Discriminator	might	be
placed	on	the	heads	of	the	girls	who	scorn	the	guys	who	are	geeks,	dweebs,	and
nerds.	A	girl	couldn't	find	a	better	ratio	of	men	if	she	tried.

This	may	change	in	the	future	if	organizations	like	LinuxChix
(www.linuxchix.org)	have	their	way.	They	run	a	site	devoted	to	celebrating
women	who	enjoy	the	open	source	world,	and	they've	been	trying	to	start	up
chapters	around	the	world.	The	site	gives	members	a	chance	to	post	their	names
and	biographical	details.	Of	course,	several	of	the	members	are	men	and	one	is	a
man	turning	into	a	woman.	The	member	writes,	"I'm	transsexual	(male-to-
female,	pre-op),	and	at	the	moment	still	legally	married	to	my	wife,	which	means
that	if	we	stay	together	we'll	eventually	have	a	legal	same-sex	marriage."

Still,	there's	not	much	point	in	digging	into	this	too	deeply	because	the	free
source	world	rarely	debates	this	topic.	Everyone	is	free	to	use	the	software	and
contribute	what	they	want.	If	the	women	want	to	come,	they	can.	If	they	don't,
they	don't	have	to	do	so	to	fulfill	some	mandate	from	society.	No	one	is	sitting
around	debating	whether	having	it	all	as	a	woman	includes	having	all	of	the
source	code.	It's	all	about	freedom	to	use	software,	not	dating,	mating,	or
debating	sexual	roles	in	society.

Racial	politics,	however,	are	more	complicated.	Much	of	the	Linux	community
is	spread	out	throughout	the	globe.	While	many	members	come	from	the	United
States,	major	contributors	can	be	found	in	most	countries.	Linus	Torvalds,	of
course,	came	from	Finland,	one	of	the	more	technically	advanced	countries	in

the	world.	Miguel	de	Icaza,	the	lead	developer	of	the	GNOME	desktop,	comes
from	Mexico,	a	country	perceived	as	technically	underdeveloped	by	many	in	the
United	States.

Jon	Hall,	often	called	maddog,	is	one	of	the	first	members	of	corporate	America
to	recognize	that	neat	things	were	going	on	throughout	the	world	of	open	source
software.	He	met	Torvalds	at	a	conference	and	shipped	him	a	Digital	computer
built	around	the	Alpha	chip	when	he	found	out	that	Torvalds	wanted	to
experiment	with	porting	his	software	to	a	64-bit	architecture.	Hall	loves	to
speculate	about	the	spread	of	free	software	throughout	the	globe	and	says,	"Who
knows	where	the	next	great	mind	will	come	from?	It	could	be	Spain,	Brazil,
India,	Singapore,	or	dare	I	say	Finland?"

In	general,	the	free	source	revolution	is	worldwide	and	rarely	encumbered	by
racial	and	national	barricades.	Europe	is	just	as	filled	with	Linux	developers	as
America,	and	the	Third	World	is	rapidly	skipping	over	costly	Microsoft	and	into
inexpensive	Linux.	Interest	in	Linux	is	booming	in	China	and	India.	English	is,
of	course,	the	default	language,	but	other	languages	continue	to	live	thanks	to
automatic	translation	mechanisms	like	Babelfish.

This	border-free	existence	can	only	help	the	spread	of	free	source	software.
Many	countries,	claiming	national	pride,	would	rather	use	software	developed	by
local	people.	Many	countries	explicitly	distrust	software	coming	from	the	United
States	because	it	is	well	known	that	the	U.S.	government	tries	to	restrict	security
software	like	encryption	at	the	request	of	its	intelligence-gathering	agencies.	In
November	1999,	the	German	government's	Federal	Ministry	of	Finance	and
Technology	announced	a	grant	for	the	GNU	Privacy	Guard	project.	Why	would
a	country	want	to	send	all	of	its	money	to	Redmond,	Washington,	when	it	could
bolster	a	local	group	of	hackers	by	embracing	a	free	OS?	For	everyone	but	the
United	States,	installing	a	free	OS	may	even	be	a	patriotic	gesture.

12.1	ICONS

..........

The	archetypes	are	often	defined	by	prominent	people,	and	no	one	is	more
central	to	the	free	source	world	than	Richard	Stallman.	Some	follow	the	man	like
a	disciple,	others	say	that	his	strong	views	color	the	movement	and	scare	away
normal	people.	Everyone	goes	out	of	their	way	to	praise	the	man	and	tell	you

how	much	they	respect	what	he's	done.	Almost	everyone	will	turn	around	and
follow	the	compliment	with	a	veiled	complaint	like,	"He	can	be	difficult	to	work
with."	Stallman	is	known	for	being	a	very	unreasonable	man	in	the	sense	that
George	Bernard	Shaw	used	the	word	when	he	said,	"The	Reasonable	man	adapts
to	nature.	The	unreasonable	man	seeks	to	adapt	nature	to	himself.	Therefore	it	is
only	through	the	actions	of	unreasonable	men	that	civilization	advances."	The
reasonable	man	would	still	be	waiting	on	hold	as	the	tech	support	folks	in
MegaSoft	played	with	their	Nerf	footballs	and	joked	about	the	weenies	who
needed	help	using	their	proprietary	software.

I	often	think	that	only	someone	as	obsessed	and	brilliant	as	Stallman	could	have
dreamed	up	the	GNU	Public	License.	Only	he	could	have	realized	that	it	was
possible	to	insist	that	everyone	give	away	the	source	code	and	allow	them	to
charge	for	it	at	the	same	time	if	they	want.	Most	of	us	would	have	locked	our
brains	if	we	found	ourselves	with	a	dream	of	a	world	of	unencumbered	source
code	but	hobbled	by	the	reality	that	we	needed	money	to	live.	Stallman	found
himself	in	that	place	in	the	early	days	of	the	Free	Software	Foundation	and	then
found	a	way	to	squeeze	his	way	out	of	the	dilemma	by	charging	for	CD-ROMs
and	printed	manuals.	The	fact	that	others	could	still	freely	copy	the	information
they	got	meant	that	he	wasn't	compromising	his	core	dream.

If	Stallman	is	a	product	of	MIT,	then	one	opposite	of	him	is	the	group	of	hackers
that	emerged	from	Berkeley	and	produced	the	other	free	software	known	as
FreeBSD,	NetBSD,	and	OpenBSD.	Berkeley's	computer	science	department
always	had	a	tight	bond	with	AT&T	and	Sun	and	shared	much	of	the	early	UNIX
code	with	both.

While	there	were	many	individuals	at	Berkeley	who	are	well	known	among
developers	and	hackers,	no	one	stands	out	like	Richard	Stallman.	This	is	because
Stallman	is	such	a	strong	iconoclast,	not	because	Berkeley	is	the	home	of	ne'er-
do-wells	who	don't	measure	up.	In	fact,	the	pragmatism	of	some	of	the	leaders	to
emerge	from	the	university	is	almost	as	great	as	Stallman's	idealism,	and	this
pragmatism	is	one	of	the	virtues	celebrated	by	Berkeley's	circle	of	coders.	For
instance,	Bill	Joy	helped	develop	much	of	the	early	versions	of	the	BSD	before
he	went	off	to	take	a	strong	leadership	role	at	Sun	Microsystems.

Sun	has	a	contentious	relationship	with	the	free	software	world.	It's	far	from	a
free	software	company	like	Red	Hat,	but	it	has	contributed	a	fair	number	of	lines
of	software	to	the	open	source	community.	Still,	Sun	guards	its	intellectual

property	rights	to	some	packages	fiercely	and	refuses	to	distribute	the	source
with	an	official	open	source	license.	Instead,	it	calls	their	approach	the
"community	source	license"	and	insists	that	it's	good	enough	for	almost
everyone.	Users	can	read	the	source	code,	but	they	can't	run	off	with	it	and	start
their	own	distribution.

Many	others	from	Berkeley	followed	Joy's	path	to	Sun.	John	Ousterhout	left	his
position	as	a	professor	at	Berkeley	in	1994	to	move	to	Sun.	Ousterhout	was
known	for	developing	a	fairly	simple	but	powerful	scripting	tool	known	as
TCL/Tk.	One	part	of	it,	the	Tool	Control	Language	(TCL),	was	a	straightforward
English-like	language	that	made	it	pretty	easy	for	people	to	knit	together
different	modules	of	code.	The	user	didn't	have	to	be	a	great	programmer	to
work	with	the	code	because	the	language	was	designed	to	be	straightforward.
There	were	no	complicated	data	structures	or	pointers.	Everything	was	a	string
of	ASCII	text.

The	second	part,	the	Tool	kit	(Tk),	contained	a	variety	of	visual	widgets	that
could	be	used	to	get	input	for	and	output	from	a	program.	The	simplest	ones
were	buttons,	sliders,	or	menus,	but	many	people	wrote	complicated	ones	that
served	their	particular	needs.

The	TCL/Tk	project	at	Berkeley	attracted	a	great	deal	of	attention	from	the	Net.
Ousterhout,	like	most	academics,	freely	distributed	his	code	and	did	a	good	job
helping	others	use	the	software.	He	and	his	students	rewrote	and	extended	the
code	a	number	of	times,	and	this	constant	support	helped	create	even	more	fans.
The	software	scratched	an	itch	for	many	academics	who	were	smart	enough	to
program	the	machines	in	their	lab,	but	burdened	by	more	important	jobs	like
actually	doing	the	research	they	set	out	to	do.	TCL/Tk	picked	up	a	wide
following	because	it	was	easy	for	people	to	learn	a	small	amount	quickly.
Languages	like	C	required	a	semester	or	more	to	master.	TCL	could	be	picked	up
in	an	afternoon.

Many	see	the	pragmatism	of	the	BSD-style	license	as	a	way	for	the	Berkeley
hackers	to	ease	their	trip	into	corporate	software	production.	The	folks	would
develop	the	way-out,	unproven	ideas	using	public	money	before	releasing	it	with
the	BSD	license.	Then	companies	like	Sun	would	start	to	resell	it.

The	supporters	of	the	BSD	licenses,	of	course,	don't	see	corporate	development
as	a	bad	thing.	They	just	see	it	as	a	way	for	people	to	pay	for	the	extra	bells	and

whistles	that	a	dedicated,	market-driven	team	can	add	to	software.

Ousterhout's	decision	to	move	to	Sun	worried	many	people	because	they	thought
it	might	lead	to	a	commercialization	of	the	language.	Ousterhout	answered	these
with	an	e-mail	message	that	said	TCL/Tk	would	remain	free,	but	Sun	would	try
to	make	some	money	on	the	project	by	selling	development	tools.

"Future	enhancements	made	toTcl	andTk	by	my	group	at	Sun,	including	the
ports	to	Macs	and	PCs,	will	be	made	freely	available	to	anyone	to	use	for	any
purpose.	My	view,	and	that	of	the	people	I	report	to	at	Sun,	is	that	it	wouldn't
work	for	Sun	to	try	to	takeTcl	andTk	proprietary	anyway:	someone	(probably
me,	in	a	new	job)	would	just	pick	up	the	last	free	release	and	start	an
independent	development	path.	This	would	be	a	terrible	thing	for	everyone	since
it	would	result	in	incompatible	versions.

"Of	course,	Sun	does	need	to	make	money	from	the	work	of	my	team	or	else
they	won't	be	able	to	continue	to	support	us.	Our	current	plan	is	to	charge	for
development	tools	and	interesting	extensions	and	applications.	Balancing	the
public	and	the	profitable	will	be	an	ongoing	challenge	for	us,	but	it	is	very
important	both	to	me	and	to	Sun	to	keep	the	support	of	the	existing	Tcl
community,"	he	wrote.

In	some	respects,	Ousterhout's	pragmatism	was	entirely	different	from
Stallman's.	He	openly	acknowledged	the	need	to	make	money	and	also	admitted
that	Sun	was	leaving	TCL/Tk	free	because	it	might	be	practically	impossible	to
make	it	proprietary.	The	depth	of	interest	in	the	community	made	it	likely	that	a
free	version	would	continue	to	evolve.	Stallman	would	never	cut	such	a	deal
with	a	company	shipping	proprietary	software.

In	other	respects,	many	of	the	differences	are	only	at	the	level	of	rhetoric.
Ousterhout	worked	on	producing	a	compromise	that	would	leave	TCL/Tk	free
while	the	sales	of	development	tools	paid	the	bills.	Stallman	did	the	same	thing
when	he	figured	out	a	way	to	charge	people	for	CD-ROMs	and	manuals.
Ousterhout's	work	at	Sun	was	spun	off	into	a	company	called	Scriptics	that	is
surprisingly	like	many	of	the	other	free	software	vendors.	The	core	of	the
product,	TCL/Tk	8.1	at	this	time,	is	governed	by	a	BSD-style	license.	The	source
code	can	be	downloaded	from	the	site.	The	company	itself,	on	the	other	hand,
sells	a	more	enhanced	product	known	as	TCLPro.

In	many	ways,	the	real	opposite	to	Richard	Stallman	is	not	Bill	Joy	or	John
Ousterhout,	it's	Linus	Benedict	Torvalds.	While	Stallman,	Joy,	and	Ousterhout
are	products	of	the	U.S.	academic	system,	Torvalds	is	very	much	an	outsider
who	found	himself	trying	to	program	in	Europe	without	access	to	a	decent	OS.
While	the	folks	at	Berkeley,	MIT,	and	many	U.S.	universities	were	able	to	get
access	to	UNIX	thanks	to	carefully	constructed	licenses	produced	by	the	OS's
then-owner,	AT&T,	students	in	Finland	like	Torvalds	were	frozen	out.

"I	didn't	have	many	alternatives.	I	had	the	commercial	alternative	[UNIX],	which
was	way	too	expensive.	It	was	really	out	of	reach	for	a	normal	human	being,	and
not	only	out	of	reach	in	a	monetary	sense,	but	because	years	ago	commercial
UNIX	vendors	weren't	interested	in	selling	to	individuals.	They	were	interested
in	selling	to	large	corporations	and	banks.	So	for	a	normal	person,	there	was	no
choice,"	he	told	VAR	Business.

When	Linux	began	to	take	off,	Torvalds	moved	to	Silicon	Valley	and	took	a	job
with	the	supersecret	research	firm	Transmeta.	At	Comdex	in	November	1999,
Torvalds	announced	that	Transmeta	was	working	on	a	low-power	computing
chip	with	the	nickname	"Crusoe."

There	are,	of	course,	some	conspiracy	theories.	Transmeta	is	funded	by	a	number
of	big	investors	including	Microsoft	cofounder	Paul	Allen.	The	fact	that	they
chose	to	employ	Torvalds	may	be	part	of	a	plan,	some	think,	to	distract	him	from
Linux	development.	After	all,	version	2.2	of	the	kernel	took	longer	than	many
expected,	although	it	may	have	been	because	its	goals	were	too	ambitious.	When
Microsoft	needed	a	coherent	threat	to	offer	up	to	the	Department	of	Justice,
Transmeta	courteously	made	Torvalds	available	to	the	world.	Few	seriously
believe	this	theory,	but	it	is	constantly	whispered	as	a	nervous	joke.

12.2	FLAMES

...........

The	fights	and	flamefests	of	the	Internet	are	legendary,	and	the	open	source
world	is	one	of	the	most	contentious	corners	of	the	Net.	People	frequently	use
strong	words	like	"brain	dead,"	"loser,"	"lame,"	"gross,"	and	"stoooopid"	to
describe	one	another's	ideas.	If	words	are	the	only	way	to	communicate,	then	the
battle	for	mindshare	means	that	those	who	wield	the	best	words	win.

In	fact,	most	of	the	best	hackers	and	members	of	the	free	source	world	are	also

great	writers.	Spending	days,	weeks,	months,	and	years	of	your	life
communicating	by	e-mail	and	newsgroups	teaches	people	how	to	write	well	and
get	to	the	point	quickly.	The	Internet	is	very	textual,	and	the	hard-core	computer
programmers	have	plenty	of	experience	spitting	out	text.	As	every	programmer
knows,	you're	supposed	to	send	e-mail	to	the	person	next	to	you	if	you	want	to
schedule	lunch.	That	person	might	be	in	the	middle	of	something.

Of	course,	there's	a	danger	to	making	a	sweeping	generalization	implying	that
the	free	source	world	is	filled	with	great	writers.	The	fact	is	that	we	might	not
have	heard	from	the	not-so-great	writers	who	sit	lurking	on	the	Net.	While	some
of	the	students	who	led	the	revolutions	of	1968	were	quite	articulate,	many	of
the	tie-dyed	masses	were	also	in	the	picture.	You	couldn't	miss	them.	On	the
Internet,	the	silent	person	is	invisible.

Some	argue	that	the	free	software	world	has	burgeoned	because	the	silent	folks
embraced	the	freely	available	source	code.	Anyone	could	download	the	source
code	and	play	with	it	without	asking	permission	or	spending	money.	That	meant
that	13-year-old	kids	could	start	using	the	software	without	asking	their	parents
for	money.	SCO	Unix	and	Windows	NT	cost	big	bucks.

This	freedom	also	extended	to	programmers	at	work.	In	many	companies,	the
computer	managers	are	doctrinaire	and	officious.	They	often	quickly	develop
knee-jerk	reactions	to	technologies	and	use	these	stereotypes	to	make	technical
decisions.	Free	software	like	Linux	was	frequently	rejected	out	of	hand	by	the
gatekeepers,	who	thought	something	must	be	wrong	with	the	software	if	no	one
was	charging	for	it.	These	attitudes	couldn't	stop	the	engineers	who	wanted	to
experiment	with	the	free	software,	however,	because	it	had	no	purchase	order
that	needed	approval.

The	invisible-man	quality	is	an	important	part	of	the	free	software	world.	While
I've	described	the	bodies	and	faces	of	some	of	the	betterknown	free	source	poster
boys,	it	is	impossible	to	say	much	about	many	of	the	others.	The	community	is
spread	out	over	the	Internet	throughout	the	world.	Many	people	who	work
closely	on	projects	never	meet	each	other.	The	physical	world	with	all	of	its
ways	of	encoding	a	position	in	a	hierarchy	are	gone.	No	one	can	tell	how	rich
you	are	by	your	shoes.	The	color	of	your	skin	doesn't	register.	It's	all	about
technology	and	technological	ideas.

In	fact,	there	is	a	certain	degree	of	Emily	Dickinson	in	the	world.	Just	as	that

soul	selected	her	own	society	and	shut	the	door	on	the	rest	of	the	world,	the	free
software	world	frequently	splits	and	resplits	into	smaller	groups.	While	there	is
some	cross-pollination,	many	are	happy	to	live	in	their	own	corners.	OpenBSD,
FreeBSD,	and	NetBSD	are	more	separate	countries	than	partners	in	crime.	They
evolve	on	their	own,	occasionally	stealing	ideas	and	source	code	to	bridge	the
gap.

Many	writers	have	described	some	of	their	problems	with	making	hay	of	the
Silicon	Valley	world.	Screenwriters	and	television	producers	often	start	up
projects	to	tap	into	the	rich	texture	of	nerdlands	only	to	discover	that	there's
nothing	that	compelling	to	film.	It's	just	miles	and	miles	of	steel-frame	buildings
holding	acres	and	acres	of	cubicles.	Sure,	there	are	some	Ping-Pong	tables	and
pinball	machines,	but	the	work	is	all	in	the	mind.	Eyes	want	physical	action,	and
all	of	the	excitement	in	a	free	source	world	is	in	the	ideas.

But	people	are	people.	While	there's	no	easy	way	to	use	the	old	standbys	of	race
or	clothes	to	discriminate,	the	technical	world	still	develops	ways	to	classify	its
members	and	place	them	in	camps.	The	free	software	world	has	its	own	ways	to
distinguish	between	these	camps.

The	biggest	distinction	may	be	between	folks	who	favor	the	GPL	and	those	who
use	the	BSD-style	license	to	protect	their	software.	This	is	probably	the	biggest
decision	a	free	software	creator	must	make	because	it	controls	whether	others
will	be	able	to	build	commercial	versions	of	the	software	without	contributing
the	new	code	back	to	the	project.

People	who	embrace	the	GPL	are	more	likely	to	embrace	Richard	Stallman,	or	at
least	less	likely	to	curse	him	in	public.	They	tend	to	be	iconoclastic	and
individualistic.	GPL	projects	tend	to	be	more	cultish	and	driven	by	a	weird
mixture	of	personality	and	ain't-it-cool	hysteria.

The	people	on	the	side	of	BSD-style	license,	on	the	other	hand,	seem	pragmatic,
organized,	and	focused.	There	are	three	major	free	versions	of	BSD	UNIX	alone,
and	they're	notable	because	they	each	have	centrally	administered	collections	of
files.	The	GPL-protected	Linux	can	be	purchased	from	at	least	six	major	groups
that	bundle	it	together,	and	each	of	them	includes	packages	and	pieces	of
software	they	find	all	over	the	Net.

The	BSD-license	folks	are	also	less	cultish.	The	big	poster	boys,	Torvalds	and

Stallman,	are	both	GPL	men.	The	free	versions	of	BSD,	which	helped	give
Linux	much	of	its	foundation,	are	largely	ignored	by	the	press	for	all	the	wrong
reasons.	The	BSD	teams	appear	to	be	fragmented	because	they	are	all	separate
political	organizations	who	have	no	formal	ties.	There	are	many	contributors,
which	means	that	BSD	has	no	major	charismatic	leader	with	a	story	as
compelling	as	that	of	Linus	Torvalds.

Many	contributors	could	wear	this	mantle	and	many	have	created	just	as	much
code.	But	life,	or	at	least	the	media's	description	of	it,	is	far	from	fair.

The	flagship	of	the	BSD	world	may	be	the	Apache	web	server	group,	which
contributed	greatly	to	the	success	of	the	platform.	This	core	team	has	no	person
who	stands	out	as	a	leader.	Most	of	the	people	on	the	team	are	fully	employed	in
the	web	business,	and	several	members	of	the	team	said	that	the	Apache	team
was	just	a	good	way	for	the	people	to	advance	their	day	jobs.	It	wasn't	a	crusade
for	them	to	free	source	code	from	jail.

The	Apache	web	server	is	protected	by	a	BSD-style	license	that	permits
commercial	reuse	of	the	software	without	sharing	the	source	code.	It	is	a
separate	program,	however,	and	many	Linux	users	run	the	software	on	Linux
boxes.	Of	course,	this	devotion	to	business	and	relatively	quiet	disposition	isn't
always	true.	Theo	de	Raadt,	the	leader	of	the	OpenBSD	faction,	is	fond	of
making	bold	proclamations.	In	his	interview	with	me,	he	dismissed	the	Free
Software	Foundation	as	terribly	misnamed	because	you	weren't	truly	free	to	do
whatever	you	wanted	with	the	software.

In	fact,	it's	easy	to	take	these	stereotypes	too	far.	Yes,	GPL	folks	can	be
aggressive,	outspoken,	quick-thinking,	driven,	and	tempestuous.	Sure,	BSD	folks
are	organized,	thorough,	mainstream,	dedicated,	and	precise.	But	there	are
always	exceptions	to	these	rules,	and	the	people	in	each	camp	will	be	quick	to
spot	them.

Someone	might	point	out	that	Alan	Cox,	one	of	the	steadfast	keepers	of	the
GPL-protected	Linux	kernels,	is	not	particularly	flashy	nor	given	to	writing	long
manifestos	on	the	Net.	Others	might	say	that	Brian	Behlendorf	has	been	a	great
defender	of	the	Apache	project.	He	certainly	hasn't	avoided	defending	the	BSD
license,	although	not	in	the	way	that	Stallman	might	have	liked.	He	was,	after
all,	one	of	the	members	of	the	Apache	team	who	helped	convince	IBM	that	they
could	use	the	Apache	web	server	without	danger.

After	BSD	versus	GPL,	the	next	greatest	fault	line	is	the	choice	of	editor.	Some
use	the	relatively	simple	vi,	which	came	out	of	Berkeley	and	the	early	versions
of	BSD.	Others	cleave	to	Stallman's	Emacs,	which	is	far	more	baroque	and
extreme.	The	vi	camp	loves	the	simplicity.	The	Emacs	fans	brag	about	how
they've	programmed	their	version	of	Emacs	to	break	into	the	White	House,	snag
secret	pictures	of	people	in	compromising	positions,	route	them	through	an
anonymous	remailer,	and	negotiate	for	a	big	tax	refund	all	with	one	complicated
control-meta-trans	keystroke.

While	this	war	is	well	known,	it	has	little	practical	significance.	People	can
choose	for	themselves,	and	their	choices	have	no	effect	on	others.	GPL	or	BSD
can	affect	millions;	vi	versus	Emacs	makes	no	big	difference.	It's	just	one	of	the
endless	gag	controversies	in	the	universe.	If	Entertainment	Tonight	were
covering	the	free	software	world,	they	would	spend	hours	cataloging	which	stars
used	vi	and	which	used	Emacs.	Did	Shirley	MacLaine	use	vi	or	Emacs	or	even
wordstar	in	a	previous	life?

Some	of	the	other	fault	lines	aren't	so	crisp,	but	end	up	being	very	important.
The	amount	of	order	or	lack	of	order	is	an	important	point	of	distinction	for
many	free	source	people,	and	there	is	a	wide	spectrum	of	choices	available.
While	the	fact	that	all	of	the	source	code	is	freely	redistributable	makes	the
realm	crazy,	many	groups	try	to	control	it	with	varying	amounts	of	order.	Some
groups	are	fanatically	organized.	Others	are	more	anarchic.	Each	has	a	particular
temperament.

The	three	BSD	projects	are	well	known	for	keeping	control	of	all	the	source
code	for	all	the	software	in	the	distribution.	They're	very	centrally	managed	and
brag	about	keeping	all	the	source	code	together	in	one	build	tree.	The	Linux
distributions,	on	the	other	hand,	include	software	from	many	different	sources.
Some	include	the	KDE	desktop.	Others	choose	GNOME.	Many	include	both.

Some	of	the	groups	have	carefully	delineated	jobs.	The	Debian	group	elects	a
president	and	puts	individuals	in	charge	of	particular	sections	of	the	distribution.
Or	perhaps	more	correctly,	the	individuals	nominate	themselves	for	jobs	they	can
accomplish.	The	group	is	as	close	to	a	government	as	exists	in	the	open	software
world.	Many	of	the	Open	Source	Initiative	guidelines	on	what	fits	the	definition
of	"open	source"	evolved	from	the	earlier	rules	drafted	by	the	Debian	group	to
help	define	what	could	and	couldn't	be	included	in	an	official	Debian
distribution.	The	OpenBSD	group,	on	the	other	hand,	opens	up	much	of	the

source	tree	to	everyone	on	the	team.	Anyone	can	make	changes.	Core	areas,	on
the	other	hand,	are	still	controlled	by	leaders.

Some	groups	have	become	very	effective	marketing	forces.	Red	Hat	is	a	well-
run	company	that	has	marketing	teams	selling	people	on	upgrading	their
software	as	well	as	engineering	teams	with	a	job	of	writing	improved	code	to
include	in	future	versions.	Red	Hat	packages	their	distribution	in	boxes	that	are
sold	through	normal	sales	channels	like	bookstores	and	catalogs.	They	have	a
big	presence	at	trade	shows	like	LinuxExpo,	in	part	because	they	help	organize
them.

Other	groups	like	Slackware	only	recently	opened	up	a	website.	OpenBSD	sells
copies	to	help	pay	for	its	Internet	bills,	not	to	expand	its	marketing	force.	Some
distributions	are	only	available	online.

In	many	cases,	there	is	no	clear	spectrum	defined	between	order	and	anarchy.
The	groups	just	have	their	own	brands	of	order.	OpenBSD	brags	about	stopping
security	leaks	and	going	two	years	without	a	rootlevel	intrusion,	but	some	of	its
artwork	is	a	bit	scruffy.	Red	Hat,	on	the	other	hand,	has	been	carefully	working
to	make	Linux	easy	for	everyone	to	use,	but	they're	not	as	focused	on	security
details.

Of	course,	this	amount	of	order	is	always	a	bit	of	a	relative	term.	None	of	these
groups	have	strong	lines	of	control.	All	of	them	depend	upon	the	contributions	of
people.	Problems	only	get	solved	if	someone	cares	enough	to	do	it.

This	disorder	is	changing	a	bit	now	that	serious	companies	like	Red	Hat	and	VA
Linux	are	entering	the	arena.	These	companies	pay	fulltime	programmers	to
ensure	that	their	products	are	bug	free	and	easy	to	use.	If	their	management	does
a	good	job,	the	open	source	software	world	may	grow	more	ordered	and	actually
anticipate	more	problems	instead	of	waiting	for	the	right	person	to	come	along
with	the	time	and	the	inclination	to	solve	them.

These	are	just	a	few	of	the	major	fault	lines.	Practically	every	project	comes	with
major	technical	distinctions	that	split	the	community.	Is	Java	a	good	language	or
another	attempt	at	corporate	control?	How	should	the	basic	Apache	web	server
handle	credit	cards?	What	is	the	best	way	to	handle	64-bit	processors?	There	are
thousands	of	differences,	hundreds	of	fault	lines,	scores	of	architectural
arguments,	and	dozens	of	licenses.	But	at	least	all	of	the	individuals	agree	upon

one	thing:	reading	the	source	code	is	essential.

1.	 POLITICS

One	of	the	great	questions	about	the	free	source	movement	is	its	politics.	The
world	loves	to	divide	every	issue	into	two	sides	and	then	start	picking	teams.
You're	either	part	of	the	problem	or	part	of	the	solution.	You're	either	for	us	or
against	us.	You're	either	on	the	red	team	or	the	blue	team.

The	notion	of	giving	software	and	source	code	away	isn't	really	a	radical
concept.	People	give	stuff	away	all	the	time.	But	when	the	process	actually	starts
to	work	and	folks	start	joining	up,	the	stakes	change.	Suddenly	it's	not	about
random	acts	of	kindness	and	isolated	instances	of	charity--it's	now	a	movement
with	emotional	inertia	and	political	heft.	When	things	start	working,	people	want
to	know	what	this	group	is	going	to	do	and	how	its	actions	are	going	to	affect
them.	They	want	to	know	who	gets	the	credit	and	who	gets	the	blame.

The	questions	about	the	politics	of	the	free	source	world	usually	boil	down	to	a
simple	dilemma:	some	think	it's	a	communist	utopia	and	others	think	it's	a	free
market	nirvana.	Normally,	the	two	ideas	sit	on	the	opposite	ends	of	the	spectrum
looking	at	each	other	with	contempt	and	disdain.	In	the	strange	world	of
software,	ideas	aren't	so	easy	to	place.	Anyone	can	duplicate	software	as	many
times	as	they	want	and	it's	still	useful.	The	communist	notion	of	sharing	equally
is	much	easier	to	achieve	in	this	realm	than	in	the	world	of,	say,	grain,	which
requires	hard	work	in	the	sun	to	make	it	grow.	On	the	other	hand,	the	ease	of
exchange	also	means	that	people	are	able	to	swap	and	trade	versions	of	software
with	little	overhead	or	restriction.	The	well-greased	marketplace	in	the	free
marketer's	dreams	is	also	easy	to	create.	The	act	of	giving	a	disk	to	a	friend
could	either	be	a	bona	fide	example	of	universal	brotherhood	or	the	vigorously
competitive	act	of	trying	to	win	the	hearts	and	minds	of	a	software	consumer.
Take	your	pick.

The	nature	of	software	also	mitigates	many	of	the	problems	that	naturally	occur
in	each	of	these	worlds.	There	is	no	scarcity,	so	there	is	no	reason	why	sharing
has	to	be	so	complicated	or	orchestrated	from	the	central	planning	committees	of
the	Soviets.	People	just	give.	On	the	other	hand,	the	lack	of	scarcity	also	limits
the	differences	between	the	rich	and	the	poor.	There's	no	reason	why	everyone
can't	have	the	same	software	as	the	rich	because	it's	so	easy	to	duplicate.	Folks

who	are	into	economic	competition	for	the	ego	gratification	of	having	a	bigger
sport	utility	vehicle	than	everyone	else	on	the	street	are	going	to	be	disappointed.

To	some	extent,	the	politics	of	the	free	source	movement	are	such	a	conundrum
that	people	simply	project	their	wishes	onto	it.	John	Gilmore	told	me	over
dinner,	"Well,	it	depends.	Eric	Raymond	is	sort	of	a	libertarian	but	Richard
Stallman	is	sort	of	a	communist.	I	guess	it's	both."	The	freedom	makes	it
possible	for	people	to	mold	the	movement	to	be	what	they	want.

Raymond	has	no	problem	seeing	his	libertarian	dreams	acted	out	in	the	free
software	community.	He	looked	at	the	various	groups	creating	their	own
versions	of	free	source	code	and	saw	a	big	bazaar	where	merchants	competed	to
provide	the	best	solutions	to	computer	users	everywhere.	People	wrote	neat	stuff
and	worked	hard	to	make	sure	that	others	were	happy.	It	was	competition	at	its
finest,	and	there	was	no	money	or	costs	of	exchange	to	get	in	the	way.

Most	people	quickly	become	keenly	aware	of	this	competition.	Each	of	the
different	teams	creating	distributions	flags	theirs	as	the	best,	the	most	up-to-date,
the	easiest	to	install,	and	the	most	plush.	The	licenses	mean	that	each	group	is
free	to	grab	stuff	from	the	other,	and	this	ensures	that	no	one	builds	an
unstoppable	lead	like	Microsoft	did	in	the	proprietary	OS	world.	Sure,	Red	Hat
has	a	large	chunk	of	the	mindshare	and	people	think	their	brand	name	is
synonymous	with	Linux,	but	anyone	can	grab	their	latest	distribution	and	start
making	improvements	on	it.	It	takes	little	time	at	all.

Stallman	and	his	supposed	communist	impulse	is	a	bit	harder	to	characterize.	He
has	made	his	peace	with	money	and	he's	quick	to	insist	that	he's	not	a	communist
or	an	enemy	of	the	capitalist	state.	He's	perfectly	happy	when	people	charge	for
their	work	as	programmers	and	he	often	does	the	same.	But	it's	easy	to	see	why
people	start	to	think	he's	something	of	a	communist.	One	of	his	essays,	which	he
insists	is	not	strictly	communist,	is	entitled	"Why	Software	Should	Not	Have
Owners."

Some	of	his	basic	instincts	sure	look	Marxist.	The	source	code	to	a	program
often	acts	like	the	means	of	production,	and	this	is	why	the	capitalists	running
the	businesses	try	to	control	it.	Stallman	wanted	to	place	these	means	of
production	in	the	hands	of	everyone	so	people	could	be	free	to	do	what	they
wanted.	While	Stallman	didn't	rail	against	the	effects	of	money,	he	rejected	the
principle	that	intellectual	capital,	the	source	code,	should	be	controlled.

Stallman	stops	well	short	of	giving	everything	away	to	everyone.	Copyrighting
books	is	okay,	he	says,	because	it	"restricts	only	the	mass	producers	of	copies.	It
did	not	take	freedom	away	from	readers	of	books.	An	ordinary	reader,	who	did
not	own	a	printing	press,	could	copy	books	only	with	pen	and	ink,	and	few
readers	were	sued	for	that."	In	other	words,	the	copyright	rules	in	the	age	of
printing	only	restricted	the	guy	across	town	with	a	printing	press	who	was	trying
to	steal	someone	else's	business.	The	emergence	of	the	computer,	however,
changes	everything.	When	people	can	copy	freely,	the	shackles	bind	everyone.

Communism,	of	course,	is	the	big	loser	of	the	20th	century,	and	so	it's	not
surprising	that	Stallman	tries	to	put	some	distance	between	the	Soviet	and	the
GNU	empires.	He	notes	puckishly	that	the	draconian	effects	of	the	copyright
laws	in	America	are	sort	of	similar	to	life	in	the	Soviet	Union,	"where	every
copying	machine	had	a	guard	to	prevent	forbidden	copying,	and	where
individuals	had	to	copy	information	secretly	and	pass	it	from	hand	to	hand	as
samizdat."	He	notes,	however,	that	"There	is	of	course	a	difference:	the	motive
for	information	control	in	the	Soviet	Union	was	political;	in	the	U.S.	the	motive
is	profit.	But	it	is	the	actions	that	affect	us,	not	the	motive.	Any	attempt	to	block
the	sharing	of	information,	no	matter	why,	leads	to	the	same	methods	and	the
same	harshness."

Stallman	has	a	point.	The	copyright	rules	restrict	the	ability	of	people	to	add,
improve	upon,	or	engage	other	people's	work.	The	fair	use	rules	that	let	a	text
author	quote	sections	for	comment	don't	really	work	in	the	software	world,
where	it's	pretty	hard	to	copy	anything	but	100	percent	of	some	source	code.	For
programmers,	the	rules	on	source	code	can	be	pretty	Soviet-like	in	practice.

He's	also	correct	that	some	companies	would	think	nothing	of	locking	up	the
world.	A	consortium	of	megalithic	content	companies	like	Disney	and	the	other
studios	got	the	U.S.	Congress	to	pass	a	law	restricting	tools	for	making	copies.
Ostensibly	it	only	applied	to	computer	programs	and	other	software	used	to
pirate	movies	or	other	software,	but	the	effect	could	be	chilling	on	the
marketplace.	The	home	video	enthusiast	who	loves	to	edit	the	tapes	of	his	child's
birthday	party	needs	many	of	the	same	functions	as	the	content	pirate.	Cutting
and	pasting	is	cutting	and	pasting.	The	rules	are	already	getting	a	bit	more
Soviet-like	in	America.

But	Stallman	is	right	to	distance	himself	from	Soviet-style	communism	because
there	are	few	similarities.	There's	little	central	control	in	Stallman's	empire.	All

Stallman	can	do	to	enforce	the	GNU	General	Public	License	is	sue	someone	in
court.	He,	like	the	Pope,	has	no	great	armies	ready	to	keep	people	in	line.	None
of	the	Linux	companies	have	much	power	to	force	people	to	do	anything.	The
GNU	General	Public	License	is	like	a	vast	disarmament	treaty.	Everyone	is	free
to	do	what	they	want	with	the	software,	and	there	are	no	legal	cudgels	to	stop
them.	The	only	way	to	violate	the	license	is	to	publish	the	software	and	not
release	the	source	code.

Many	people	who	approach	the	free	software	world	for	the	first	time	see	only
communism.	Bob	Metcalfe,	an	entrepreneur,	has	proved	himself	several	times
over	by	starting	companies	like	3Com	and	inventing	the	Ethernet.	Yet	he	looked
at	the	free	software	world	and	condemned	it	with	a	derisive	essay	entitled
"Linux's	60's	technology,	open-sores	ideology	won't	beat	W2K,	but	what	will?"

Using	the	term	"open	sores"	may	be	clever,	but	it	belies	a	lack	of	understanding
of	some	of	the	basic	tenets.	The	bugs	and	problems	in	the	software	are	open	for
everyone	to	see.	Ideally,	someone	will	fix	them.	Does	he	prefer	the	closed	world
of	proprietary	software	where	the	bugs	just	magically	appear?	Does	he	prefer	a
hidden	cancer	to	melanoma?

The	essay	makes	more	confounding	points	equating	Richard	Stallman	to	Karl
Marx	for	his	writing	and	Linus	Torvalds	to	Vladimir	Lenin	because	of	his	aim	to
dominate	the	software	world	with	his	OS.	For	grins,	he	compares	Eric	Raymond
to	"Trotsky	waiting	for	The	People's	ice	pick"	for	no	clear	reason.	Before	this
gets	out	of	hand,	he	backpedals	a	bit	and	claims,	"OK,	communism	is	too	harsh
on	Linux.	Lenin	too	harsh	on	Torvalds	[sic]."Then	he	sets	off	comparing	the
world	of	open	source	to	the	tree-hugging,	back-to-the-earth	movement.

Of	course,	it's	easy	to	see	how	the	open	source	world	is	much	different	from	the
Soviet-style	world	of	communism.	That	experiment	failed	because	it	placed	the
good	of	the	many	above	the	freedom	of	the	individual.	It	was	a	dictatorship	that
did	not	shirk	from	state-sponsored	terrorism	or	pervasive	spying.	It	was	no
surprise,	for	instance,	to	discover	that	East	German	athletes	were	doped	with
performance-enhancing	drugs	without	their	knowledge.	It	was	for	the	glory	of
Lenin	or	Marx	or	Stalin,	or	whoever	held	the	reins.	Does	the	country	need
someone	to	live	in	Siberia	to	mine	for	minerals?	Does	the	country	need	land	for
vast	collective	farms?	The	state	makes	the	call	and	people	go.

The	Soviet	Union	didn't	really	fail	because	it	clung	too	deeply	to	the	notion	that

no	one	should	own	property.	It	failed	when	it	tried	to	enforce	this	by	denying
people	the	fruits	of	their	labor.	If	someone	wanted	to	build	something	neat,
useful,	or	inventive,	they	had	better	do	it	for	the	glory	of	the	Soviet	state.	That
turned	the	place	into	a	big	cesspool	of	inactivity	because	everyone's	hard	work
was	immediately	stolen	away	from	them.

The	free	software	world	is	quite	different	from	that	world.	The	GPL	and	the
BSD	licenses	don't	strip	away	someone's	freedom	and	subjugate	them	to	the
state,	it	gives	them	the	source	code	and	a	compiler	to	use	with	it.	Yes,	the	GPL
does	restrict	the	freedom	of	people	to	take	the	free	source	code	and	sell	their
own	proprietary	additions,	but	this	isn't	the	same	as	moving	them	to	Siberia.

The	Free	Software	State	doesn't	steal	the	fruits	of	someone's	labor	away	from
them.	Once	you	develop	the	code,	you	can	still	use	it.	The	GPL	doesn't	mean
that	only	Torvalds	can	sit	around	his	dacha	and	compile	the	code.	You	get	to	use
it,	too.	In	fact,	one	of	the	reasons	that	people	cite	for	contributing	to	GPL
projects	is	the	legal	assurance	that	the	enhancements	will	never	be	taken	away
from	them.	The	source	will	always	remain	open	and	accessible.

Metcalfe's	point	is	that	communism	didn't	work,	so	the	free	software	world	will
fail,	too.	He	makes	his	point	a	bit	clearer	when	he	starts	comparing	the	free
software	folks	to	tree-hugging	environmentalists.

"How	about	Linux	as	organic	software	grown	in	utopia	by	spiritualists?"	he
wonders.	"If	North	America	actually	went	back	to	the	earth,	close	to	250	million
people	would	die	of	starvation	before	you	could	say	agribusiness.	When	they
bring	organic	fruit	to	market,	you	pay	extra	for	small	apples	with	open	sores--the
Open	Sores	Movement."

The	problem	with	this	analogy	is	that	no	one	is	starving	with	open	source
software.	Data	is	not	a	physical	good.	Pesticides	and	fertilizers	can	boost	crop
yields,	but	that	doesn't	matter	with	software.	If	anything,	free	software	ends	up	in
even	more	people's	hands	than	proprietary	software.	Everyone	in	the	free
software	world	has	a	copy	of	the	image	editing	tool,	GIMP,	but	only	the	richest
Americans	have	a	copy	of	the	very	expensive	Adobe	Photoshop.

Of	course,	he	has	half	a	point	about	the	polish	of	open	source	code.	The
programmers	often	spend	more	time	adding	neat	features	they	like	instead	of
making	the	code	as	accessible	as	possible.	The	tools	are	often	designed	for

programmers	by	programmers.	There	isn't	much	of	a	quality	assurance	and
human	factors	team	trying	to	get	them	to	engineer	it	so	the	other	95	percent	of
humanity	can	use	it.

But	this	problem	is	going	away.	Companies	like	Red	Hat	and	Caldera	have	a
profit	motive	in	making	the	software	accessible	to	all.	The	tools	look	nicer,	and
they	are	often	just	as	presentable	as	the	tools	from	the	proprietary	firms.	The
programmers	are	also	getting	more	sensitive	to	these	problems.	In	the	past,	the
free	software	world	was	sort	of	an	alternative	Eden	where	programmers	went	to
escape	from	the	rest	of	programmatically	challenged	society.	Now	the	world	is
open	to	free	software	and	the	programmers	are	more	open	to	taking	everyone's
needs	into	account.

The	problem	with	all	of	Metcalfe's	analogies	is	that	he	assumes	the	same	rules
that	control	the	world	of	physical	goods	also	govern	the	world	of	ideas.	The
software	industry	likes	to	pretend	that	this	isn't	true	by	packaging	the	software	in
big,	empty	boxes	that	look	good	on	shelves.	Swapping	ideas	is	easy	and	costs
little.	Of	course,	the	Soviet	Union	worried	about	the	swapping	of	ideas	and	tried
to	control	the	press	and	all	forms	of	expression.	The	free	software	movement	is
the	exact	opposite	of	this.

In	fact,	it	is	much	easier	to	see	the	free	software	world	as	the	libertarian	ideal	of
strong	competition	and	personal	freedom	if	you	remember	that	it	exists	in	the
realm	of	ideas.	The	landscape	is	similar	to	universities,	which	usually	boast	that
they're	just	big	melting	pots	where	the	marketplace	of	ideas	stays	open	all	night.
The	best	ideas	gradually	push	out	the	worst	ones	and	society	gradually	moves
toward	a	total	understanding	of	the	world.

Perhaps	it's	just	not	fair	to	characterize	the	politics	of	the	open	source	or	free
software	world	at	all.	Terms	like	communism,	libertarianism,	liberalism,	and
Marxism	all	come	from	an	age	when	large	portions	of	society	did	not	have	easy
access	to	ample	supplies	of	food	and	housing.

Data	and	information	are	not	limited	goods	that	can	only	be	consumed	by	a
limited	group.	One	person	or	one	million	people	can	read	a	computer	file	and	the
marginal	costs	aren't	very	different.	Sharing	is	cheap,	so	it	makes	sense	to	use	it
to	all	of	its	advantages.	We're	just	learning	how	to	use	the	low	cost	of
widespread	cooperation.

Perhaps	it's	better	to	concentrate	on	the	real	political	battles	that	rage	inside	the
open	source	code	community.	It	may	be	better	to	see	the	battle	as	one	of	GPL
versus	BSD	instead	of	communist	versus	libertarian.	The	license	debate	is	tuned
to	the	Internet	world.	It	sets	out	the	debate	in	terms	the	computer	user	can
understand.

1.	 CHARITY

The	open	source	movement	is	filled	with	people	who	analyze	software,	look	for
bugs,	and	search	for	fixes.	These	quiet	workhorses	are	the	foundation	of	the
movement's	success.	One	member	of	this	army	is	David	Baron,	an
undergraduate	student	who	started	out	at	Harvard	in	the	fall	of	1998	and	found,
like	most	students,	that	he	had	a	bit	of	spare	time.	Some	students	turn	to	theater,
some	to	the	newspaper,	some	to	carousing,	some	to	athletic	teams,	some	to
drinking,	and	most	choose	one	or	more	of	the	above.	A	few	students	search	out
some	charitable	work	for	their	spare	time	and	volunteer	at	a	homeless	shelter	or
hospital.	Law	students	love	to	work	at	the	free	legal	clinic	for	the	poor.	Baron,
however,	is	a	bit	of	a	nerd	in	all	of	the	good	senses	of	the	word.	He's	been
working	on	cleaning	up	Netscape's	open	source	browser	project	known	as
Mozilla,	and	he	thinks	it's	a	great	act	of	charity.

Baron	spends	his	spare	time	poking	around	the	Mozilla	layout	engine
responsible	for	arranging	the	graphics,	text,	form	slots,	buttons,	and	whatnot	in	a
consistent	way.	Graphic	designers	want	all	web	browsers	on	the	Net	to	behave	in
a	consistent	way	and	they've	been	agitating	to	try	and	get	the	browser	companies
(Netscape,	Microsoft,	iCab,	WebTV,	and	Opera)	to	adhere	to	a	set	of	standards
developed	by	the	W3C,	the	World	Wide	Web	Consortium	based	at	MIT.	These
standards	spell	out	exactly	how	the	browsers	are	supposed	to	handle	complicated
layout	instructions	like	cascading	style	sheets.

Baron	looked	at	these	standards	and	thought	they	were	a	good	idea.	If	all	web
browsers	handled	content	in	the	same	way,	then	little	buttons	saying	"Best
Viewed	with	Microsoft	IE"	or	"Best	Viewed	by	Netscape"	would	disappear.	The
browser	companies	would	be	able	to	compete	on	features,	not	on	their	ability	to
display	weirder	web	pages.	It	would	cut	the	web	designers	out	of	the	battle
between	Microsoft	and	Netscape.

The	standards	also	help	users,	especially	users	with	different	needs.	He	told	me,
"Standards	(particularly	CSS)	encourage	accessibility	for	users	with	all	sorts	of
disabilities	because	they	allow	authors	to	use	HTML	as	it	was	originally
intended--as	a	structural	markup	language	that	can	be	interpreted	by	browsers
that	display	things	in	nonvisual	media	or	in	very	large	fonts	for	users	with	poor
vision.	Changing	the	HTML	on	the	web	back	to	structural	markup	will	also
allow	these	browsers	to	produce	sensible	output."

Handling	standards	like	this	is	always	a	bit	of	a	political	problem	for	companies.

Every	developer	tries	to	stick	their	fingers	in	the	wind	and	see	which	standards
will	be	important	and	which	ones	will	fall	by	the	wayside.	Microsoft,	Netscape,
iCab,	WebTV,	and	Opera	have	all	been	wondering	about	the	cascading	style
sheets	because	they're	sort	of	a	pain	in	the	neck.	Ideally,	the	graphics	designers
will	be	able	to	come	up	with	graphics	rules	for	a	set	of	web	pages	and	they'll	be
applied	using	the	rules	set	out	by	the	reader.

CSS	is	not	about	"total	control	by	the	author	of	the	page,"	says	Baron.	"The
basic	idea	of	the	cascade	is	that	user	preferences	(through	the	browser's	UI	or
possibly	through	a	user	CSS	style	sheet)	and	author	suggestions	(contained	in
CSS	style	sheets)	combine	to	produce	the	formatting	of	the	page."

A	modern	catalog	conglomerate,	for	instance,	may	have	two	branches.	One
would	be	aimed	at	middle-aged	men	who	dote	on	their	cars	by	giving	them
endless	wax	jobs	and	cleaning	them	forever.	Another	might	be	aimed	at	young
mothers	who	dote	on	their	children,	in	part	by	keeping	the	home	as	clean	as
could	be.	Normally,	the	catalog	company	would	use	different	designers	to	create
very	different-looking	catalogs.	One	would	come	with	retro,	hard-edged	graphics
covered	with	racing	stripes,	and	the	other	with	floral	prints.	What	happens	when
these	catalogs	head	to	the	web?	Normally	two	designers	would	give	two
different	websites	two	different	looks.

What	if	there	is	one	cleaning	product,	say	a	car	wheel	cleaner,	that	appears	in
both	catalogs?	In	the	old	days	before	cascading	style	sheets,	both	designers
would	have	to	do	up	each	page	separately.	A	well-designed	system	of	cascading
style	sheets	would	let	one	web	page	for	the	product	display	correctly	on	both
sites.	It	would	pick	up	either	the	floral	prints	or	the	racing	stripes	automatically
when	either	site	called	it	up.

These	standards	are	notoriously	difficult	to	enforce.	Armies	around	the	world
dream	of	turning	out	perfect	privates	that	can	be	inserted	into	any	conflict	in	any
platoon	without	any	retraining.	Newspapers	dream	of	having	interchangeable
reporters	who	can	cover	the	White	House	or	a	cricket	match	in	India.	It's	no
wonder	that	the	web	industry	wants	the	same	thing.

Baron	told	me,	"I	got	interested	in	Mozilla	because	I'm	interested	in	web
standards."	He	noticed	that	a	group	known	as	the	Web	Standards	Project	was
running	a	political	campaign	to	pressure	the	browser	companies	to	lay	out	pages
the	same	way	(www.webstandards.org).

"A	group	of	developers	got	together	and	said,	'The	browsers	aren't	supporting	the
standards'	and	this	makes	it	impossible	to	create	pages,"	Baron	explained.	"If
every	browser	supports	the	standards	in	a	different	way,	then	you	have	to	design
a	different	version	of	the	site	for	each	browser.	Or,	more	realistically,	web
designers	resort	to	hacks	that	make	the	page	legible	in	all	the	'major'	browsers
but	not	accessible	to	people	with	disabilities	or	people	with	older	computers."

Of	course,	it's	one	thing	for	a	web	designer	or	a	web	master	to	take	up	this	call.
Baron,	however,	was	just	a	college	freshman	who	framed	this	as	volunteer	work.
When	he	happened	upon	the	Web	Standards	Project,	he	heard	their	message	and
saw	an	itch	that	he	wanted	to	scratch.

"I	want	to	see	the	standards	supported	correctly.	Someone's	got	to	do	it,"	he	told
me.	"I	might	as	well	be	doing	this	instead	of	playing	around	and	looking	at
websites	all	day.	A	lot	of	people	do	volunteer	work,	but	not	a	lot	of	people	get	to
do	volunteer	work	at	this	level.	It	uses	what	I	know	pretty	well.	A	lot	of	students
who	are	very	smart	end	up	doing	volunteer	work	which	doesn't	use	their	skills.
When	you	can	do	volunteer	work	that	uses	what	you	know,	it's	even	better."

So	Baron	would	download	the	latest	versions	of	the	Mozilla	layout	engine
known	as	Gecko	and	play	with	web	pages.	He	would	create	weird	web	pages
with	strange	style	sheets,	load	them	up,	and	watch	where	they	broke.	When
things	went	wrong,	he	would	write	up	detailed	bug	reports	and	mail	them	off	to
the	folks	doing	the	coding.	He	was	part	of	a	quality	control	team	that	included
some	Netscape	employees	and	a	wide	variety	of	other	users	on	the	Net.

This	community	involvement	was	what	Netscape	wanted	when	it	created
Mozilla.	They	hoped	that	more	people	would	take	it	upon	themselves	to	test	out
the	code	and	at	least	make	complaints	when	things	were	going	wrong.	One
hacker	named	James	Clark,	who	isn't	related	to	the	founder	of	Netscape	with	the
same	name,	actually	kicked	in	a	complete	XML	parser,	a	tool	for	taking	apart	the
latest	superset	of	HTML	that	is	capturing	the	attention	of	software	and	web
designers.

Baron	is	one	of	the	few	folks	I	met	while	writing	this	book	who	frames	his	work
on	an	open	source	project	as	charity.	Most	devotees	get	into	the	projects	because
they	offer	them	the	freedom	to	mess	with	the	source	code.	Most	also	cite	the
practical	strengths	of	open	source,	like	the	relatively	quick	bug	fixes	and	the
stability	of	well-run	projects.	Most	people	like	to	distance	themselves	from	the

more	political	firebrands	of	the	free	software	movement	like	Richard	Stallman
by	pointing	out	that	they're	not	really	in	it	to	bring	about	the	second	coming	of
the	Communist	Revolution.	Few	suggest	that	their	work	is	sort	of	a	gift	of	their
time	that	might	make	the	world	a	better	place.	Few	compare	their	work	to	the
folks	cleaning	up	homeless	shelters	or	hospitals.	Most	don't	disagree	when	it	is
pointed	out	to	them,	but	most	free	software	hackers	don't	roll	out	the	charitable
rhetoric	to	explain	what	they're	up	to.

This	may	just	be	a	class	difference.	Baron	is	a	sophomore,	as	this	is	written,	at
Harvard	and	Harvard	is,	by	definition,	a	finishing	school	for	the	upper	crust.
Even	the	vast	sea	of	kids	from	middle-class	families	and	public	schools	end	up
talking	and	acting	as	if	they	came	out	of	Choate	or	Exeter	by	the	end	of	their
time	at	Harvard.	They	pick	up	the	Kennedyesque	noblesse	oblige	that	somehow
commands	the	rich	and	fortunate	to	be	out	helping	the	poor	with	very	public	acts
of	assistance.	It	just	sort	of	seeps	into	all	of	those	Harvard	kids.

Most	of	the	free	software	members,	on	the	other	hand,	are	kind	of	outcasts.	The
hackers	come	from	all	parts	of	the	globe	and	from	all	corners	of	the	social
hierarchy,	but	few	of	them	are	from	the	beautiful	people	who	glide	through	life
on	golden	rails.	The	programmers	usually	have	their	heads	in	strange,	obtuse
mathematical	clouds	instead	of	the	overstuffed	clouds	of	Olympus.	They're
concerned	with	building	neat	software	and	spinning	up	wonderful	abstract
structures	that	interlock	in	endlessly	repeating,	elegant	patterns.	If	they	were
interested	in	power	or	social	prestige,	they	wouldn't	be	spending	their	nights	in
front	of	a	terminal	waiting	for	some	code	to	compile.

But	if	the	free	software	movement	doesn't	use	the	charitable	card	very	often,	it
doesn't	mean	that	the	work	is	too	different	from	that	of	the	homeless	shelters.	In
fact,	so	little	money	changes	hands	that	there	are	not	many	reasons	for	people	to
take	their	donations	off	on	their	taxes.	Donations	of	time	don't	count.	Maybe	a
few	companies	could	write	it	off	their	books,	but	that's	about	it.

In	fact,	Baron	is	right	that	work	like	his	can	make	a	difference	for	people.
Software	is	a	growing	part	of	the	cost	of	a	computer	today.	In	low-end	PCs,	the
Microsoft	OS	may	cost	more	than	the	processor	or	the	memory.	A	free	OS	with	a
free	web	browser	that	works	correctly	can	help	the	thousands	of	schools,
homeless	shelters,	hospitals,	and	recreation	centers	get	on	the	web	at	a	cheaper
cost.

The	free	software	charity	is	often	a	bit	cleaner.	Bill	Gates	and	many	of	the	other
Microsoft	millionaires	aren't	shy	about	giving	away	real	money	to	schools	and
other	needy	organizations.	Melinda	Gates,	Bill's	wife,	runs	a	charitable
foundation	that	is	very	generous.	In	1999,	for	instance,	the	foundation	made	a
very	real	gift	of	tuition	money	for	minority	students.	The	foundation	has	also
given	millions	of	dollars	to	help	fund	medical	research	throughout	the	globe.

Still,	at	other	times,	there	has	been	a	sly	edge	to	the	Gates	benevolence.	In	some
cases,	the	company	gives	away	millions	of	dollars	in	Microsoft	software.	This
helps	get	kids	used	to	Microsoft	products	and	acts	like	subtle	advertising.	Of
course,	there's	nothing	new	about	this	kind	of	charity.	Most	corporations	insist
that	they	receive	some	publicity	for	their	giving.	It's	how	they	justify	the
benevolence	to	their	shareholders.

The	value	of	giving	copies	of	software	away	is	a	difficult	act	to	measure.	One
million	copies	of	Windows	95	might	retail	for	about	$100	million,	but	the	cost	to
Microsoft	is	significantly	lower.	CD-ROMs	cost	less	than	one	dollar	to
duplicate,	and	many	schools	probably	received	one	CD-ROM	for	all	of	their
machines.	Giving	the	users	support	is	an	important	cost,	but	it	can	be	controlled
and	limited	by	restricting	the	number	of	employees	dedicated	to	particular	phone
lines.	Determining	the	value	of	all	of	the	benevolence	must	be	a	tough	job	for	the
tax	accountants.	How	Microsoft	chose	to	account	for	its	donations	is	a	private
matter	between	Gates,	the	Internal	Revenue	Service,	and	his	God.

Consider	the	example	of	an	imaginary	proprietary	software	company	called
SoftSoft	that	gives	away	one	million	copies	of	its	$50	WidgetWare	product	to
schools	and	charities	across	the	United	States.	This	is,	in	many	ways,	generous
because	SoftSoft	only	sells	500,000	copies	a	year,	giving	them	gross	revenues	of
$25	million.

If	SoftSoft	values	the	gift	at	the	full	market	value,	they	have	a	deduction	of	$50
million,	which	clearly	puts	them	well	in	the	red	and	beyond	the	reach	of	taxes
for	the	year.	They	can	probably	carry	the	loss	forward	and	wipe	out	next	year's
earnings,	too.

The	accountants	may	not	choose	to	be	so	adventurous.	The	IRS	might	insist	that
they	deduct	the	cost	of	the	goods	given,	not	their	potentially	inflated	market
price.	Imagine	that	the	company's	cost	for	developing	WidgetWare	came	to	$21
million.	If	there	were	no	gift,	they	would	have	a	nice	profit	of	$4	million.

SoftSoft	could	split	the	development	costs	of	$21	million	between	all	of	the	1.5
million	units	that	are	shipped.	Instead	of	deducting	the	market	value	of	the
software,	it	would	only	deduct	the	costs	allocated	to	it.	Still,	that	means	they	get
a	$14	million	deduction,	which	is	still	far	from	shabby.

More	conservative	companies	may	come	up	with	smaller	deductions	based	upon
the	cost	of	duplicating	the	additional	copies	and	the	cost	of	supporting	the
schools	and	charities.	Strict	accounting	measures	would	be	the	most	honest,	but
it's	hard	to	know	what	companies	do	and	what	they	should	do.

Free	software,	of	course,	avoids	all	that	paperwork	and	accounting.	The	software
costs	nothing,	so	giving	it	away	generates	no	deduction.	There's	no	need	for
complicated	cost	accounting	or	great	press	releases.	It	just	sits	on	the	web	server
and	people	download	it.

Of	course,	it's	possible	to	start	counting	up	downloads	and	doing	some
multiplication	to	come	up	with	outrageous	numbers.	Windows	NT	can	sell	for
between	$200	and	$1,000.	There	are	about	3.7	million	web	servers	running
Apache,	according	to	the	latest	Netcraft	poll.	If	1	percent	qualify	as	charitable
sites,	then	37,000	are	served	by	Apache.	Of	course,	not	all	sites	sit	on	separate
machines.	To	correct	for	this,	assume	that	each	server	hosts	10	machines	and
there	are	only	3,700	machines	using	Apache.	That's	still	about	$3.7	million	in
donations.

But	numbers	like	this	can't	really	capture	the	depth	of	the	gift.	Linus	Torvalds
always	likes	to	say	that	he	started	writing	Linux	because	he	couldn't	afford	a
decent	OS	for	his	machine	so	he	could	do	some	experiments.	Who	knows	how
many	kids,	grown-ups,	and	even	retired	people	are	hacking	Linux	now	and	doing
some	sophisticated	computer	science	experiments	because	they	can?	How	do	we
count	this	beneficence?

Free	software	essentially	removes	the	red	tape	and	the	institutional	character	of
charity.	There	are	no	boards.	There	is	no	counting	of	gifts.	There's	no	fawning	or
flattering.	There	are	no	new	J.	Henry	P.	Plutocrat	Wings	for	the	Franklin	P.
Moneysucker	Museum	of	Philanthropy.	It's	just	a	pure	gift	with	no	overhead.

There	is	also	a	smooth	efficiency	to	the	world	of	free	software	charity.	My
economics	professor	used	to	joke	that	gifts	were	just	very	inefficient.	Grandmas
always	bought	unhip	sweaters	for	their	grandkids.	Left	on	their	own,	children

would	give	candy	and	stuffed	animals	to	their	parents	on	their	birthdays	and
Christmas.	All	of	these	bad	choices	must	be	returned	or	thrown	away,	ruining	the
efficiency	of	the	economy.	The	professor	concluded	by	saying,	"So,	guys,	when
you	go	out	on	the	date,	don't	bother	with	the	flowers.	Forget	about	the	jewelry.
Just	give	her	cash."

Free	source	software,	of	course,	doesn't	fit	into	many	of	the	standard	models	of
economic	theory.	Giving	the	stuff	away	doesn't	cost	much	money,	and	accepting
it	often	requires	a	bit	of	work.	The	old	rules	of	gift	giving	and	charity	don't	really
apply.

Imagine	that	some	grandmother	wrote	some	complicated	software	for	computing
the	patterns	for	knitting	sweaters.	Some	probably	have.	If	they	give	the	source
code	away,	it	ends	up	in	the	vast	pool	of	free	source	code	and	other	knitters	may
find	it.	It	might	not	help	any	grandchildren,	at	least	not	for	20	or	30	years,	but	it
will	be	moving	to	the	place	where	it	can	do	the	most	good	with	as	little	friction
as	possible.	The	software	hacked	by	the	kids,	on	the	other	hand,	would	flow
from	child	to	child	without	reaching	the	parents.	The	software	tools	for
generating	dumb	jokes	and	sorting	bubble	gum	cards	would	make	a	generation
of	kids	happy,	and	they	would	be	able	to	exchange	it	without	their	parents	or
grandparents	getting	in	the	way.

The	inefficiencies	of	gift-giving	can	often	affect	charities,	which	have	less
freedom	to	be	picky	than	grandchildren.	Charities	can't	look	a	gift	horse	in	the
mouth.	If	a	company	wants	to	give	a	women's	shelter	1,000	new	men's	raincoats,
the	shelter	will	probably	take	them.	Refusing	them	can	offend	potential
contributors	who	might	give	them	something	of	value	in	the	next	quarter.

Free	source	code	has	none	of	these	inefficiencies.	Websites	like	Slashdot,
Freshmeat,	Linux	Weekly	News,	LinuxWorld,	KernelTraffic,	and	hundreds	of
other	Linux	or	project-specific	portals	do	a	great	job	moving	the	software	to	the
people	who	can	use	its	value.	People	write	the	code	and	then	other	folks	discover
the	value	in	it.	Bad	or	unneeded	code	isn't	foisted	on	anyone.

Free	software	also	avoids	being	painted	as	a	cynical	tax	scheme.	It	is	not
uncommon	for	drug	manufacturers	to	donate	some	surplus	pills	to	disaster	relief
operations.	In	some	cases,	the	manufacturers	clear	their	shelves	of	pills	that	are
about	to	expire	and	thus	about	to	be	destroyed.	They	take	a	liability	and	turn	it
into	a	tax-deductible	asset.	This	may	be	a	good	idea	when	the	drugs	are	needed,

but	they	are	often	superfluous.	In	many	cases,	the	drugs	just	end	up	in	a	landfill.
The	relief	organizations	accept	millions	of	dollars	in	drugs	to	get	a	few	thousand
dollars'	worth	of	ones	they	really	need.

14.1	CHARITABLE	OPEN	SOURCE	ORGANIZATIONS

...

Of	course,	there	are	some	open	source	charities.	Richard	Stallman's	Free
Software	Foundation	is	a	tax-exempt	501(c)(3)	charity	that	raises	money	and
solicits	tax-deductible	donations.	This	money	is	used	to	pay	for	computers,
overhead,	and	the	salaries	of	young	programmers	who	have	great	ideas	for	free
software.	The	Debian	Project	also	has	a	charitable	arm	known	as	Software	in	the
Public	Interest	that	raises	money	and	computer	equipment	to	support	the	creation
of	more	free	software.

These	organizations	are	certainly	part	of	the	world	of	tax	deductions,	fund-
raisers,	and	the	charity-industrial	complex.	The	Free	Software	Foundation,	for
instance,	notes	that	you	can	arrange	for	all	or	part	of	your	gift	to	the	United	Way
to	go	to	the	Foundation.

But	there	are	differences,	too.	Stallman,	for	instance,	is	proud	of	the	fact	that	he
accepts	no	salary	or	travel	reimbursement	from	the	Free	Software	Foundation.
He	works	2	months	a	year	to	support	himself	and	then	donates	the	other	10
months	a	year	to	raising	money	to	support	other	programmers	to	work	on
Foundation	projects.

Their	budgets	are	pretty	manageable	as	well.	Perens	notes	that	Debian's	budget
is	about	$10,000	a	year,	and	this	is	spent	largely	on	distributing	the	software.
Servers	that	support	plenty	of	traffic	cost	a	fair	amount	of	money,	but	the	group
does	get	donations	of	hardware	and	bandwidth.	The	group	also	presses	a	large
number	of	CD-ROMs	with	the	software.

The	groups	also	make	a	point	of	insisting	that	good	code	is	more	valuable	than
money.	The	Free	Software	Foundation,	for	instance,	lists	projects	that	need	work
next	to	its	call	for	money.	Volunteers	are	needed	to	write	documentation,	test
software,	organize	the	office,	and	also	write	more	code.

Jordan	Hubbard,	the	director	of	the	FreeBSD	project,	says	that	money	is	not
always	the	best	gift.	"I'll	take	people	over	six-digit	sums	of	donations	almost	any

day,"	he	says,	and	explains	that	FreeBSD	is	encouraging	companies	to	donate
some	of	the	spare	time	of	its	employees.	He	suggests	that	companies	assign	a
worker	to	the	FreeBSD	project	for	a	month	or	two	if	there	is	time	to	spare.

"Employees	also	give	us	a	window	into	what	that	company's	needs	are.	All	of
those	co-opted	employees	bring	back	the	needs	of	their	jobsite.	Those	are	really
valuable	working	relationships,"	he	continues.

Hubbard	has	also	found	that	money	is	often	not	the	best	motivator.	Hardware,	it
turns	out,	often	works	well	at	extracting	work	out	of	programmers.	He	likes	to
ship	a	programmer	one	of	the	newest	peripherals	like	a	DVD	drive	or	a	joystick
and	ask	him	to	write	a	driver	for	the	technology	in	exchange.	"It's	so	much	more
cost-effective	to	buy	someone	a	$500	piece	of	hardware,	which	in	turn	motivates
him	to	donate	thousands	of	dollars	worth	of	work,	something	we	probably
couldn't	pay	for	anyway,"	he	says.

Money	is	still	important,	however,	to	take	care	of	all	the	jobs	that	can't	be
accomplished	by	piquing	someone's	curiosity.	"The	area	we	need	the	most
contributions	for	are	infrastructure.	Secretarial	things	are	no	fun	to	do	and	you
don't	want	to	make	volunteers	do	it,"	he	says.

All	of	these	charitable	organizations	are	bound	to	grow	in	the	next	several	years
as	the	free	software	movement	becomes	more	sophisticated.	In	some	cases	it	will
be	because	the	hackers	who	loved	playing	with	computers	will	discover	that	the
tax	system	is	just	another	pile	of	code	filled	with	bugs	looking	to	be	hacked.	In
most	cases,	though,	I	think	it	will	be	because	large	companies	with	their
sophisticated	tax	attorneys	will	become	interested.	I	would	not	be	surprised	if	a
future	version	of	this	book	includes	a	very	cynical	treatment	of	the	tax	habits	of
some	open	source	organizations.	Once	an	idea	reaches	a	critical	mass,	it	is
impossible	to	shield	it	from	the	forces	of	minor	and	major	corruption.

14.2	GIFTS	AS	A	CULTURAL	IMPERATIVE

...................................

Marcel	Mauss	was	an	anthropologist	who	studied	the	tribes	of	the	northwestern
corner	of	North	America.	His	book	Gift:	The	Form	and	Reason	for	Exchange	in
Archaic	Societies	explained	how	the	tribes	like	the	Chinook,	the	Tlinget,	and	the
Kwakiutl	would	spend	the	months	of	the	fall	giving	and	going	to	huge	feasts.
Each	year,	the	members	in	the	tribe	would	take	the	bounty	of	the	harvest	and

throw	a	feast	for	their	friends.	The	folks	who	attended	might	have	a	good	time,
but	they	were	then	obligated	to	give	a	feast	of	equal	or	greater	value	next	year.

Many	anthropologists	of	the	free	software	world	like	to	draw	parallels	between
these	feasts,	known	as	potlatches	in	one	tribe,	and	the	free-for-all	world	of	free
source	software.	The	hackers	are	giving	away	source	code	in	much	the	same	way
that	the	tribe	members	gave	away	salmon	or	deer	meat.

The	comparison	does	offer	some	insight	into	life	in	the	free	software	community.
Some	conventions	like	LinuxExpo	and	the	hundreds	of	install-fests	are	sort	of
like	parties.	One	company	at	a	LinuxExpo	was	serving	beer	in	its	booth	to	attract
attention.	Of	course,	Netscape	celebrated	its	decision	to	launch	the	Mozilla
project	with	a	big	party.	They	then	threw	another	one	at	the	project's	first
birthday.

But	the	giving	goes	beyond	the	parties	and	the	conferences.	Giving	great
software	packages	creates	social	standing	in	much	the	same	way	that	giving	a
lavish	feast	will	establish	you	as	a	major	member	of	the	tribe.	There	is	a	sort	of
pecking	order,	and	the	coders	of	great	systems	like	Perl	or	Linux	are	near	the
top.	The	folks	at	the	top	of	the	pyramid	often	have	better	luck	calling	on	other
programmers	for	help,	making	it	possible	for	them	to	get	their	jobs	done	a	little
better.	Many	managers	justify	letting	their	employees	contribute	to	the	free
software	community	because	they	build	up	a	social	network	that	they	can	tap	to
finish	their	official	jobs.

But	there's	a	difference	between	tribal	potlatch	and	free	software.	The	potlatch
feasts	built	very	strong	individual	bonds	between	people	in	the	same	tribe	who
knew	each	other	and	worked	together.	The	gifts	flowed	between	people	who
were	part	of	each	other's	small	community.

The	free	source	world,	on	the	other	hand,	is	a	big	free-for-all	in	both	senses	of
the	phrase.	The	code	circulates	for	everyone	to	grab,	and	only	those	who	need	it
dig	in.	There's	no	great	connection	between	programmer	and	user.	People	grab
software	and	take	it	without	really	knowing	to	whom	they	owe	any	debt.	I	only
know	a	few	of	the	big	names	who	wrote	the	code	running	the	Linux	box	on	my
desk,	and	I	know	that	there	are	thousands	of	people	who	also	contributed.	It
would	be	impossible	for	me	to	pay	back	any	of	these	people	because	it's	hard	to
keep	them	straight.

This	vast	mass	of	contributors	often	negates	the	value	and	prestige	that	comes
from	writing	neat	code.	Since	no	one	can	keep	track	of	it	all,	people	tend	to	treat
all	requests	from	unknown	people	equally.	The	free	source	world	tends	to	have
many	equals,	just	because	there's	no	hierarchy	to	make	it	easy	for	us	to	suss	out
each	other's	place.	Corporations	have	titles	like	executive	vice	president	and
super	executive	vice	president.	The	military	labels	people	as	private,	sergeant,	or
major.	There	are	no	guideposts	in	the	free	software	world.

Still,	good	contributions	pay	off	in	good	reputations.	A	bug	fix	here	and	a	bug	fix
there	might	not	build	a	name,	but	after	a	year	or	two	they	pay	off.	A	good
reputation	opens	doors,	wins	jobs,	creates	friendships,	and	makes	it	possible	to
interest	people	in	new	projects.

The	free	source	world	is	also	a	strange	mirror	image	of	the	hierarchies	that
emerge	after	a	season	of	tribal	potlatch	ceremonies.	In	the	tribes,	those	who
receive	great	gifts	are	required	to	return	the	favor	with	even	greater	ones.	So	the
skillful	hunters	and	gatherers	give	good	gifts	and	receive	something	better	in
return.	The	rich	get	richer	by	giving	away	their	bounty.	The	less	skillful	end	up
at	the	bottom	of	the	list.	The	free	source	world,	on	the	other	hand,	spreads	its
riches	out	to	everyone.	There	are	many	modest	programmers	who	enjoy	the
source	code	of	the	great	programmers,	and	there	may	be	billions	of	non-
programmers	who	also	tag	along.	Many	major	websites	run	on	free	OSs	alone.
Who	knows	which	cheap	Internet	tools	will	come	along	in	the	future?	The	poor
get	lifted	along	at	no	great	cost	to	the	economy.	The	charity	is	broadcast	to
everyone,	not	narrowcast	to	a	few.

The	efficiency	goes	deeper.	There's	a	whole	class	of	products	for	the	home	that
are	much	fancier	and	sophisticated	than	what	people	need.	One	company	near
me	sells	perfectly	usable	nonstick	pans	for	$2.95.	A	fancy	department	store	sells
hefty,	industrial-grade	pans	that	do	the	same	thing	for	more	than	$100.	Why?
They	make	great	gifts	for	people	getting	married.	This	wedding-industrial
complex	adds	needless	accoutrements,	doodads,	and	schmaltz	just	to	give
products	enough	cach	to	make	them	great	gifts.

The	free	source	world,	on	the	other	hand,	has	no	real	incentive	to	generate
phony,	chrome-plated	glitz	to	make	its	gifts	acceptable	or	worthy	enough	of
giving.	People	give	away	what	they	write	for	themselves,	and	they	tend	to	write
what	they	need.	The	result	is	a	very	efficient,	usable	collection	of	software	that
helps	real	people	solve	real	problems.	The	inefficiency	of	the	wedding-industrial

complex,	the	Father's	Day-industrial	complex,	the	Christmas-industrial	complex,
and	their	need	to	create	acceptable	gifts	are	gone.

Of	course,	there's	also	a	certain	element	of	selfishness	to	the	charity.	The	social
prestige	that	comes	from	writing	good	free	software	is	worth	a	fair	amount	in	the
job	market.	People	like	to	list	accomplishments	like	"wrote	driver"	or
"contributed	code	to	Linux	Kernel	2.2"	on	their	r	sum	.	Giving	to	the	right
project	is	a	badge	of	honor	because	serious	folks	doing	serious	work	embraced
the	gift.	That's	often	more	valuable	and	more	telling	than	a	plaque	or	an	award
from	a	traditional	boss.

Rob	Newberry	is	a	programmer	at	Group	Logic,	a	small	software	house	in
northern	Virginia	where	I	once	did	some	consulting.	His	official	title	is	"Director
of	Fajita	Technology,"	and	he	is	sometimes	known	as	"The	Dude,"	a	reference	to
a	character	in	the	movie	/The	Big	Lebowski/.	Technically,	his	job	is	building	and
supporting	their	products,	which	are	used	to	automate	the	prepress	industry.	One
of	their	products,	known	as	Mass	Transit,	will	move	files	over	the	Internet	and
execute	a	number	of	automated	programs	to	them	before	moving	them	on.
Printers	use	them	to	take	in	new	jobs,	massage	the	data	to	their	needs	by
performing	tasks	like	color	separation,	and	then	send	the	jobs	to	the	presses.	This
work	requires	great	understanding	of	the	various	network	protocols	like	FTP	of
NFS.

Newberry	is	also	a	Linux	fan.	He	reads	the	Kernel	list	but	rarely	contributes
much	to	it.	He	runs	various	versions	of	Linux	around	the	house,	and	none	of
them	were	working	as	well	as	he	wanted	with	his	Macintosh.	So	he	poked
around	in	the	software,	fixed	it,	and	sent	his	code	off	to	Alan	Cox,	who	watches
over	the	part	of	the	kernel	where	his	fixes	belonged.

"I	contributed	some	changes	to	the	Appletalk	stack	that's	in	the	Linux	Kernel
that	make	it	easier	for	a	Linux	machine	to	offer	dial-in	services	for	Macintosh
users,"	he	said	in	an	article	published	in	Salon.	"As	it	stands,	Mac	users	have
always	been	able	to	dial	into	a	Linux	box	and	use	IP	protocols,	but	if	they
wanted	to	use	Appletalk	over	PPP,	the	support	wasn't	really	there."

Newberry,	of	course,	is	doing	all	of	this	on	his	own	time	because	he	enjoys	it.
But	his	boss,	Derick	Naef,	still	thinks	it's	pretty	cool	that	he's	spending	some	of
his	programming	energy	on	a	project	that	won't	add	anything	immediately	to	the
bottom	line.

"He's	plugged	into	that	community	and	mailing	lists	a	lot	more,"	explains	Naef.
"There	are	other	people	here	who	are,	too,	but	there	are	all	these	tools	out	there
in	the	open	source	world.	There's	code	out	there	that	can	be	incorporated	into	our
computer	projects.	It	can	cut	your	development	costs	if	you	can	find	stuff	you
can	use."

Of	course,	all	of	this	justification	and	rationalization	aren't	the	main	reason	why
Newberry	spends	so	much	of	his	time	hacking	on	Linux.	Sure,	it	may	help	his
company's	bottom	line.	Sure,	it	might	beef	up	his	r	sum	by	letting	him	brag	that
he	got	some	code	in	the	Linux	kernel.	But	he	also	sees	this	as	a	bit	of	charity.

"I	get	a	certain	amount	of	satisfaction	from	the	work.	..	but	I	get	a	certain	amount
of	satisfaction	out	of	helping	people.	Improving	Linux	and	especially	its
integration	with	Macs	has	been	a	pet	project	of	mine	for	some	time,"	he	says.
Still,	he	sums	up	his	real	motivation	by	saying,	"I	write	software	because	I	just
love	doing	it."	Perhaps	we're	just	lucky	that	so	many	people	love	writing	open
source	software	and	giving	it	away.

1.	 LOVE

It's	not	hard	to	find	bad	stories	about	people	who	write	good	code.	One	person	at
a	Linux	conference	told	me,	"The	strange	thing	about	Linus	Torvalds	is	that	he
hasn't	really	offended	everyone	yet.	All	of	the	other	leaders	have	managed	to
piss	off	someone	at	one	time	or	another.	It's	hard	to	find	someone	who	isn't	hated
by	someone	else."	While	he	meant	it	as	a	compliment	for	Torvalds,	he	sounded
as	if	he	wouldn't	be	surprised	if	Torvalds	did	a	snotty,	selfish,	petulant	thing.	It
would	just	be	par	for	the	course.

There	are	thousands	of	examples	of	why	people	in	the	open	source	community
hate	each	other	and	there	are	millions	of	examples	of	why	they	annoy	each	other.
The	group	is	filled	with	many	strong-minded,	independent	individuals	who	aren't
afraid	to	express	their	opinions.	Flame	wars	spring	up	again	and	again	as	people
try	to	decide	technical	questions	like	whether	it	makes	more	sense	to	use	long
integers	or	floating	point	numbers	to	hold	a	person's	wealth	in	dollars.

Of	course,	hate	is	really	too	strong	a	word.	If	you	manage	to	pin	down	some	of
the	people	and	ask	them,	point	blank,	whether	they	really	hate	someone,	they'll
say,	"No."	They	really	just	don't	like	a	few	of	that	person's	technical	decisions.

These	points	of	friction	fester	and	turn	into	what	might	more	commonly	be
called	hate.

These	technical	debates	are	terrible	tar	pits	for	the	community,	and	they	eat	up
the	energy.	The	debates	turn	frustrating	because	they	have	the	strange	distinction
of	being	both	technically	important	and	utterly	trivial.	Everyone	would	like	to
just	sail	through	life	and	not	worry	about	tiny	details	like	the	type	of	integer	used
in	a	calculation.	There	are	millions	of	these	decisions	that	take	up	time	that
might	be	better	spent	imagining	grand	dreams	of	a	seamless	information
noosphere	that	provides	the	wisdom	of	the	ages	in	a	simple	graphical	interface.
But	every	programmer	learns	that	it's	the	details	that	count.	NASA	lost	a
spacecraft	when	some	programmer	used	English	units	instead	of	the	metric
system.	So	the	work	needs	to	get	done.

Occasionally,	the	fights	get	interesting.	Eric	Raymond	and	Bruce	Perens	are	both
great	contributors	to	the	open	source	movement.	In	fact,	both	worked	together	to
try	to	define	the	meaning	of	the	term.	Perens	worked	with	the	community	that
creates	the	Debian	distribution	of	Linux	to	come	up	with	a	definition	of	what
was	acceptable	for	the	community.	This	definition	morphed	into	a	more	official
version	used	by	the	Open	Source	Initiative.	When	they	got	a	definition	they
liked,	they	published	it	and	tried	to	trademark	the	term	"open	source"	in	order	to
make	sure	it	was	applied	with	some	consistency.	It	should	be	no	surprise	that	all
of	that	hard	work	brought	them	farther	apart.

In	early	April	1999,	soon	after	Apple	Computer	joined	the	free	source	world	by
releasing	some	of	the	source	code	to	their	operating	system,	Raymond	and
Perens	found	themselves	at	each	other's	throats.	Raymond	had	worked	closely
with	Apple	on	developing	their	license	and	blessed	it	soon	after	it	emerged.
Apple	was	so	pleased	that	it	put	Raymond's	endorsement	on	their	web	page.	The
decision	was	a	big	coup	for	the	open	source	movement	and	strong	proof	that
corporations	were	embracing	the	movement.	Big	executives	from	big	companies
like	Apple	were	knocking	on	the	open	source	movement's	door.	Raymond
thought	the	victory	would	bring	more	attention	to	the	cause.

Others	thought	Raymond	had	given	away	the	farm.	Perens	and	many	others
looked	at	the	license	and	spotted	a	small	clause	that	seemed	dangerous.	The
license	for	their	open	source	code	could	be	withdrawn	at	a	moment's	notice.
Someone	pointed	out	that	it	would	be	a	real	bummer	to	do	lots	of	work	on
Apple's	system	and	then	find	out	that	some	neb-nosed	lawyer	at	Apple	could	just

pull	the	license.	No	one	wanted	to	take	that	chance.	Flame	wars	erupted	and
Perens	started	publicly	disagreeing	with	Raymond.	To	Perens,	the	Apple	license
just	wasn't	open	enough	to	be	called	"open	source."

Raymond	didn't	take	this	too	well.	He	had	worked	hard	to	build	a	strong
coalition.	He	had	worked	hard	to	convince	corporations	that	open	source	was
much	more	than	a	way	for	teenagers	to	experiment	with	communism	while	they
were	living	on	their	parents'	dime.	He	wanted	the	open	source	world	to	be	a
smoothly	running,	suave	machine	that	gracefully	welcomed	Apple	into	its	fold.
Now	his	buddy	Bruce	Perens	was	effectively	aping	Lloyd	Bentsen's	famous
putdown	of	Dan	Quayle:	"I've	known	open	source;	I've	worked	with	open
source;	and	Eric,	this	license	isn't	open	source."	His	whole	announcement	was
supposed	to	unroll	with	the	clockwork	precision	of	great	corporate	PR,	and	now
someone	had	lobbed	a	grenade.

Raymond	fired	back	a	terse	e-mail	that	said,	"If	you	ever	again	behave	like	that
kind	of	disruptive	asshole	in	public,	insult	me,	and	jeopardize	the	interests	of	our
entire	tribe,	I'll	take	it	just	as	personally	and	I	will	find	a	way	to	make	you	regret
it.	Watch	your	step."

This	note	rattled	Perens,	so	he	started	sending	copies	around	the	Net.	Then	he
got	serious	and	called	the	police.	Officially,	he	was	publicizing	the	disagreement
to	preserve	his	health	because	Raymond	is	quite	vocal	about	his	support	for	the
second	amendment.	Therefore	the	phrase	"Watch	your	step"	should	be	taken	as	a
veiled	threat	of	violence.

Perens	defended	his	decision	to	call	the	police	and	told	me	afterward,	"When	I
don't	like	something,	I	write	about	it.	Well,	gee,	maybe	Eric	was	threatening	to
just	write	about	me.	In	the	signature	at	the	bottom	of	the	page	was	a	Thomas
Jefferson	quote,	which	claimed	the	pistol	was	the	best	form	of	exercise.	The	next
day,	Perens	decided	that	he	was	overreacting	a	bit	and	posted	a	new	note:	"Eric
says	he	only	meant	to	threaten	me	with	'defamation	of	character,'	not	with	any
kind	of	violence.	Thus,	I	think	I'll	just	let	this	issue	drop	now."

When	I	asked	him	about	the	matter	several	months	later	after	tempers	had
cooled,	Raymond	said	that	the	disagreement	began	several	months	before	the
Apple	event	when	Perens	and	Raymond	clashed	over	whether	the	book	publisher
O'Reilly	should	be	allowed	to	use	the	term	"open	source"	in	the	name	of	their
conference.	"He	was	flaming,	and	not	the	initiative	itself	but	a	critical	supporter,"

says	Raymond.

"Sometime	back	I	had	to	accept	Bruce's	resignation	from	the	OSI	because	he
was	flaming	public	allies	on	a	mailing	list.	If	you're	going	to	go	public,	you	can't
run	your	mouth	like	a	rabid	attack	dog.	When	the	APSL	[Apple	Public	Source
License]	came	along,	he	convinced	people	that	everybody	should	go	mug	Eric
and	the	OSI,"	Raymond	said.	It	caused	more	grief.

Perens,	for	his	part,	said,	"I	was	disappointed	in	Eric	because	certainly	open
source	is	about	freedom	of	speech.	He	should	be	able	to	tolerate	a	dissenting
voice.	The	entire	argument	was	about	my	not	deferring	to	his	leadership.	He	felt
that	my	dissent	was	damaging.	The	actual	result	was	that	Apple	took	my
criticism	seriously	and	took	all	of	the	suggestions."

Raymond	is	still	critical.	He	says,	"Apple	was	more	diplomatic	to	Bruce	in
public	than	they	should	have	been.	The	truth	is	that	his	meddling	got	the	people
inside	Apple	who	were	pushing	open	source	into	considerable	political	trouble,
and	they	considered	him	a	disruptive	asshole.	Their	bosses	wanted	to	know,
quite	reasonably,	why	Apple	should	bother	trying	to	do	an	open	source	license	if
all	it	meant	was	that	they'd	be	attacked	by	every	flake	case	with	an	agenda.	By
undermining	OSI's	status	as	trusted	representatives	of	the	whole	community,
Bruce	nearly	scuttled	the	whole	process."

For	now,	the	two	work	apart.	Perens	says	he'll	make	up	with	Raymond,	but
doesn't	see	it	happening	too	soon.	Raymond	is	happy	to	focus	on	the	future	of
open	source	and	write	more	analysis	of	the	movement.	They've	been	separated,
and	the	tempers	are	cool.

Giving	away	software	seems	like	an	entirely	altruistic	act.	Writing	code	is	hard
work,	and	simply	casting	it	onto	the	net	with	no	restrictions	is	a	pretty	nice	gift
outright,	especially	if	the	code	took	months	or	years	to	write.	This	image	of
selflessness	is	so	strong	that	many	people	assume	that	the	free	software	world	is
inhabited	by	saints	who	are	constantly	doing	nice	things	for	each	other.	It	seems
like	a	big	love-in.

But	love	is	more	than	a	many	splendored	thing.	It's	a	strange	commodity	that
binds	us	together	emotionally	in	ways	that	run	deeper	than	placid	pools
reflecting	starry	eyes.	After	the	flush	of	infatuation,	strong	love	lasts	if	and	only
if	it	answers	everyone's	needs.	The	hippie	culture	of	free	love	lasted	only	a	few

years,	but	the	institution	of	marriage	continues	to	live	on	despite	the	battle	scars
and	wounds	that	are	almost	mortal.	Half	may	fail,	but	half	succeed.

The	free	software	community	also	flourishes	by	creating	a	strong,	transcendent
version	of	love	and	binding	it	with	a	legal	document	that	sets	out	the	rules	of	the
compact.	Stallman	wrote	his	first	copyleft	virus	more	than	15	years	before	this
book	began,	and	the	movement	is	just	beginning	to	gain	real	strength.	The	free
software	world	isn't	just	a	groovy	love	nest,	it's	a	good	example	of	how	strong
fences,	freedom,	and	mutual	respect	can	build	strong	relationships.

The	important	thing	to	realize	is	that	free	software	people	aren't	any	closer	to
being	saints	than	the	folks	in	the	proprietary	software	companies.	They're	just	as
given	to	emotion,	greed,	and	the	lust	for	power.	It's	just	that	the	free	software
rules	tend	to	restrain	their	worst	instincts	and	prevent	them	from	acting	upon
them.

The	rules	are	often	quite	necessary.	E-mail	and	the	news	services	give	people	the
ability	to	vent	their	anger	quickly.	Many	of	the	programmers	are	very	proficient
writers,	so	they	can	tear	each	other	apart	with	verbal	scalpels.	The	free	source
world	is	cut	up	into	hundreds	if	not	thousands	of	political	camps	and	many
dislike	each	other	immensely.	One	group	begged	with	me	not	to	ask	them
questions	about	another	group	because	just	hearing	someone's	name	brought	up
terrible	memories	of	pain	and	discord.

Despite	these	quick-raging	arguments,	despite	the	powerful	disagreements,
despite	the	personal	animosities,	the	principles	of	the	public	licenses	keep
everything	running	smoothly.	The	people	are	just	as	human	as	the	rats	running
around	in	the	maze	of	the	proprietary	software	business,	but	the	license	keeps
them	in	line.

The	various	public	licenses	counter	human	behavior	in	two	key	ways.	First,	they
encourage	debate	by	making	everyone	a	principal	in	the	project.	Everyone	has	a
right	to	read,	change,	and	of	course	make	comments	about	the	software.	Making
everything	available	opens	the	doors	for	discussion,	and	discussion	usually	leads
to	arguments.

But	when	the	arguments	come	to	blows,	as	they	often	do,	the	second	effect	of
free	source	licenses	kicks	in	and	moderates	the	fallout	by	treating	everyone
equally.	If	Bob	and	John	don't	like	each	other,	then	there's	still	nothing	they	can

do	to	stop	each	other	from	working	on	the	project.	The	code	is	freely	available	to
all	and	shutting	off	the	distribution	to	your	enemy	just	isn't	allowed.	You	can't
shut	out	anyone,	even	someone	you	hate.

Anyone	familiar	with	corporate	politics	should	immediately	see	the	difference.
Keeping	rivals	in	the	dark	is	just	standard	practice	in	a	corporation.	Information
is	a	powerful	commodity,	and	folks	competing	for	the	same	budget	will	use	it	to
the	best	of	their	ability.	Bosses	often	move	to	keep	their	workers	locked	away
from	other	groups	to	keep	some	control	over	the	flow	of	information.

Retribution	is	also	common	in	the	corporate	world.	Many	managers	quickly
develop	enemies	in	the	ranks,	and	the	groups	constantly	spend	time	sabotaging
projects.	Requests	will	be	answered	quickly	or	slowly	depending	on	who	makes
them.	Work	will	be	done	or	put	off	depending	on	which	division	is	asking	for	it
to	be	done.	Managers	will	often	complain	that	their	job	is	keeping	their
underlings	from	killing	each	other	and	then	turn	around	and	start	battling	the
other	managers	at	their	level.

The	people	in	the	free	source	world	aren't	any	nicer	than	the	people	in	the
corporate	cubicle	farms,	but	their	powers	of	secrecy	and	retribution	are	severely
limited.	The	GNU	General	Public	License	requires	that	anyone	who	makes
changes	to	a	program	and	then	releases	the	program	must	also	release	the	source
code	to	the	world.	No	shutting	off	your	enemies	allowed.

This	effect	could	be	called	a	number	of	different	things.	It	isn't	much	different
from	the	mutual	disarmament	treaties	signed	by	nations.	Athletic	teams	strive	for
this	sort	of	pure	focus	when	they	hire	referees	to	make	the	tough	calls	and	keep
everyone	playing	by	the	same	rules.	The	government	sometimes	tries	to	enforce
some	discipline	in	the	free	market	through	regulation.

Now,	compare	this	disarmament	with	a	story	about	the	poor	folks	who	stayed
behind	at	the	Hotmail	website	after	Microsoft	bought	them.	It's	really	just	one	of
a	million	stories	about	corporate	politics.	The	workers	at	Hotmail	went	from
being	supreme	lords	of	their	Hotmail	domain	to	soldiers	in	the	Microsoft	army.
Their	decisions	needed	to	further	Microsoft's	relentless	growth	in	wealth,	not	the
good	of	the	Hotmail	site.	This	probably	didn't	really	bother	the	Hotmail	people
as	much	as	the	fact	that	the	people	at	Microsoft	couldn't	decide	what	they	wanted
from	Hotmail.

Robert	X.	Cringely	described	the	situation	in	an	article	in	PBS	Online,	and	he
quoted	one	Hotmail	worker	as	saying,	"They	send	a	new	top-level	group	down
to	see	us	every	week,	yet	it	really	means	nothing.	The	plan	is	constantly
changing.	Today	Hotmail	is	primarily	a	way	of	shoveling	new	users	into	the
MSN	portal.	We	had	for	a	short	time	a	feature	called	Centerpoint	for
communicating	directly	with	our	users,	but	that	was	killed	as	a	possible
competitor	with	the	MSN	portal.	No	new	features	could	be	added	because	the
Outlook	Express	team	saw	us	as	competition	and	sabotaged	everything."

Cringely	explained	the	corporate	friction	and	gridlock	this	way:

"What	Hotmail	learned	is	that	at	Microsoft	almost	anyone	can	say	'no,'	but
hardly	anyone	can	say	'yes.'	The	way	it	specifically	works	at	Microsoft	is	that
everyone	says	'no'	to	anyone	below	them	on	the	organizational	structure	or	on
the	same	level,	and	'yes'	to	anyone	above.	Since	the	vertical	lines	of	authority	are
narrow	this	means	people	tend	to	agree	only	with	their	bosses	and	their	boss's
boss	and	try	to	kick	and	gouge	everyone	else."

The	free	software	world,	of	course,	removes	these	barriers.	If	the	Hotmail	folks
had	joined	the	Linux	team	instead	of	Microsoft,	they	would	be	free	to	do
whatever	they	wanted	with	their	website	even	if	it	annoyed	Linus	Torvalds,
Richard	Stallman,	and	the	pope.	They	wouldn't	be	rich,	but	there's	always	a
price.

Using	the	word	"love"	is	a	bit	dangerous	because	the	word	manages	to	include
the	head-over-heels	infatuation	of	teenagers	and	the	affection	people	feel	for	a
new	car	or	a	restaurant's	food.	The	love	that's	embodied	by	the	GPL,	on	the	other
hand,	isn't	anywhere	near	as	much	fun	and	it	isn't	particularly	noteworthy.	It	just
encompasses	the	mutual	responsibility	and	respect	that	mature	folks	occasionally
feel	for	each	other.	It's	St.	Paul's	version	of	unconditional,	everlasting	love,	not
the	pangs	of	desire	that	kept	St.	Augustine	up	late	in	his	youth.

Anyone	who	has	spent	time	in	the	trenches	in	a	corporate	cubicle	farm	knows
how	wasteful	the	battles	between	groups	and	divisions	can	be.	While	the
competition	can	sometimes	produce	healthy	rivalries,	it	often	just	promotes
discord.	Any	veteran	of	these	wars	should	see	the	immediate	value	of
disarmament	treaties	like	the	GPL.	They	permit	healthy	rivalries	to	continue
while	preventing	secrecy	and	selfishness	from	erupting.	The	free	source
movement	may	not	have	money	to	move	mountains,	but	it	does	have	this	love.

This	love	also	has	a	more	traditional	effect	on	the	hackers	who	create	the	free
source	code.	They	do	it	because	they	love	what	they're	doing.	Many	of	the
people	in	the	free	source	movement	are	motivated	by	writing	great	software,	and
they	judge	their	success	by	the	recognition	they	get	from	equally	talented	peers.
A	"nice	job"	from	the	right	person--like	Richard	Stallman,	Alan	Cox,	or	Linus
Torvalds--can	be	worth	more	than	$100,000	for	some	folks.	It's	a	strange	way	to
keep	score,	but	for	most	of	the	programmers	in	the	free	source	world	it's	more	of
a	challenge	than	money.	Any	schmoe	in	Silicon	Valley	can	make	a	couple	of
million	dollars,	but	only	a	few	select	folks	can	rewrite	the	network	interface	code
of	the	Linux	kernel	to	improve	the	throughput	of	the	Apache	server	by	20
percent.

Keeping	score	by	counting	the	number	of	people	who	dig	your	work	is	a	strange
system,	but	one	that	offers	the	same	incentives	as	business.	A	good	store	doesn't
insult	people	who	could	be	repeat	customers.	A	good	free	software	project
doesn't	insult	people	who	have	a	choice	of	which	package	to	use.	A	good
businessman	makes	it	easy	for	people	to	get	to	the	store,	park,	and	make	a
purchase.	A	good	free	software	project	makes	it	simple	for	people	to	download
the	code,	compile	it,	modify	it,	understand	it,	and	use	it.

There's	even	some	research	to	support	the	notion	that	rewards	can	diminish	the
creativity	of	people.	Stallman	likes	to	circulate	a	1987	article	from	the	Boston
Globe	that	describes	a	number	of	different	scientific	experiments	that	show	how
people	who	get	paid	are	less	creative	than	those	who	produce	things	from	their
love	of	the	art.	The	studies	evaluated	the	success	of	poets,	artists,	and	teachers
who	did	their	job	for	the	fun	of	it	and	compared	it	with	those	who	were	rewarded
for	their	efforts.	In	many	cases,	these	were	short-bounded	exercises	that	could	be
evaluated	fairly	easily.

One	scientist,	Theresa	Amabile,	told	the	Globe	that	her	work	"definitely	refutes
the	notion	that	creativity	can	be	operantly	conditioned."	That	is,	you	can't	turn	it
on	by	just	pouring	some	money	on	it.	Many	free	software	folks	point	out	that
this	is	why	the	free	source	movement	is	just	as	likely	to	succeed	as	a	massively
funded	corporate	juggernaut.

Many	people	don't	need	scientists	to	tell	them	that	you	can't	throw	money	at
many	problems	and	expect	them	to	go	away.	This	is	a	hard	lesson	that	managers
and	businesses	learn	quickly.	But	this	doesn't	mean	that	the	lack	of	money	means
that	the	free	source	movement	will	beat	the	thousands	of	shackled	programmers

in	their	corporate	rabbit	hutches.	These	studies	just	measured	"creativity"	and
found	that	the	unpaid	folks	were	more	"creative."	That's	not	necessarily	a
compliment.	In	fact,	the	word	is	often	used	as	a	euphemism	for	"strange,"
"weird,"	or	just	plain	"bad."	It's	more	often	a	measure	of	just	how	different
something	is	instead	of	how	good	it	is.	Would	you	rather	eat	at	the	house	of	a
creative	chef	or	a	good	chef?

This	love	of	creativity	can	be	a	problem	for	the	free	source	world.	Most	people
don't	want	to	use	a	creative	spreadsheet	to	do	their	accounting--it	could	get	them
in	trouble	with	the	SEC	or	the	IRS.	They	want	a	solid	team	player	for	many	of
their	jobs,	not	a	way	cool	creative	one.

The	free	source	world	is	often	seen	as	too	artistic	and	temperamental	to
undertake	the	long,	arduous	task	of	creating	good,	solid	software	that	solves	the
jobs	of	banks,	pharmacies,	airlines,	and	everyone	else.	Many	of	these	tasks	are
both	mind-numbingly	boring	and	difficult	to	do.	While	they	just	involve	adding
a	few	numbers	and	matching	up	some	data,	the	tasks	have	to	be	done	right	or
airplanes	will	crash.	The	free	source	world	can't	rely	on	love	or	creativity	to
motivate	people	to	take	on	these	tasks.	The	only	solution	might	be	money.

Of	course,	it's	important	to	recognize	that	even	seemingly	boring	jobs	can	have
very	creative	solutions.	Stallman's	GNU	Emacs	is	a	fascinating	and	over-the-top,
creative	solution	to	the	simple	job	of	manipulating	text.	Word	processors	and
text	editors	might	not	be	that	exciting	anymore,	but	finding	creative	ways	to
accomplish	the	task	is	still	possible.

1.	 CORPORATIONS

Many	movies	about	teenagers	follow	a	time-proven	formula:	once	the	magic
summer	is	over,	the	gang	is	going	to	split	up	and	it	will	never	be	the	same	again.
Bob's	going	to	college;	Rick	is	getting	married;	and	Harry	is	going	to	be	stuck	in
the	old	town	forever.	Right	now,	the	free	software	world	is	playing	out	the	same
emotions	and	dramas	as	the	greater	world	discovers	open	source	software.	In	the
fall,	the	corporations	are	coming	and	the	old,	cool	world	of	late-night	hackfests
fueled	by	pizza	and	Jolt	are	in	danger.	Some	people	in	the	realm	of	free	source
software	are	going	to	grow	up,	get	educated,	and	join	the	establishment;	some
will	get	married;	and	some	will	get	left	behind	wondering	why	the	old	game	isn't
as	cool	anymore.

The	free	source	world	is	suffering	from	an	acute	case	of	success.	Many	of	the
great	projects	like	Apache	and	Sendmail	are	growing	up	and	being	taken	over	by
corporations	with	balance	sheets.	Well,	not	exactly	taken	over,	but	the
corporations	will	exist	and	they'll	try	to	shepherd	development.	Other
corporations	like	Apple,	Sun,	and	Netscape	are	experimenting	with	open	source
licenses	and	trying	to	make	money	while	sharing	code.	Some	quaint	open	source
companies	like	Red	Hat	are	growing	wealthy	by	floating	IPOs	to	raise	some
money	and	maybe	buy	a	few	Porsches	for	their	stakeholders.	There's	a	lot	of
coming	of	age	going	on.

On	the	face	of	it,	none	of	this	rampant	corporatization	should	scare	the	guys	who
built	the	free	software	world	in	their	spare	cycles.	The	corporations	are	coming
to	free	source	because	it's	a	success.	They	want	to	grab	some	of	the	open
software	mojo	and	use	it	to	drive	their	own	companies.	The	suits	on	the	plane	are
all	tuning	into	Slashdot,	buying	T-shirts,	and	reading	Eric	Raymond's	essay	"The
Cathedral	and	the	Bazaar"	in	the	hopes	of	glomming	on	to	a	great	idea.	The	suits
have	given	up	their	usual	quid	pro	quo:	be	a	good	nerd,	keep	the	code	running,
and	we'll	let	you	wear	a	T-shirt	in	your	basement	office.	Now	they	want	to	try	to
move	in	and	live	the	life,	too.	If	Eric	Raymond	were	selling	Kool-Aid,	they
would	be	fighting	to	drink	it.

The	talk	is	serious,	and	it's	affecting	many	of	the	old-line	companies	as	well.
Netscape	started	the	game	by	releasing	the	source	code	to	a	development	version
of	their	browser	in	March	of	1998.	Apple	and	Sun	followed	and	began	giving
away	the	source	code	to	part	of	their	OS.	Of	course,	Apple	got	part	of	the	core	of
their	OS	from	the	open	source	world,	but	that's	sort	of	beside	the	point.	They're
still	sharing	some	of	their	new,	Apple-only	code.	Some,	not	all.	But	that's	a	lot
more	than	they	shared	before.	Sun	is	even	sharing	the	source	code	to	their	Java
system.	If	you	sign	the	right	papers	or	click	the	right	buttons,	you	can	download
the	code	right	now.	Its	license	is	more	restrictive,	but	they're	joining	the	club,
getting	religion,	and	hopping	on	the	bandwagon.

Most	of	the	true	devotees	are	nervous	about	all	of	this	attention.	The	free
software	world	was	easy	to	understand	when	it	was	just	late-night	hackfests	and
endless	railing	against	AT&T	and	UNIX.	It	was	simple	when	it	was	just	messing
around	with	grungy	code	that	did	way	cool	things.	It	was	a	great,	he-man,
Windoze-hating	clubhouse	back	then.

Well,	the	truth	is	that	some	of	the	free	software	world	is	going	to	go	off	to

college,	graduate	with	a	business	degree,	and	turn	respectable.	Eric	Allman,	for
instance,	is	trying	to	build	a	commercial	version	of	his	popular	free	package
Sendmail.	The	free	version	will	still	be	free,	but	you	can	get	a	nicer	interface	and
some	cooler	features	for	managing	accounts	if	you	buy	in.	If	things	work	out,
some	of	the	folks	with	the	free	version	will	want	all	of	the	extra	features	he's
tacking	on	and	they'll	pay	him.	No	one	knows	what	this	will	do	to	the	long-term
development	of	Sendmail,	of	course.	Will	he	only	make	new	improvements	in
the	proprietary	code?	Will	other	folks	stop	contributing	to	the	project	because
they	see	a	company	involved?	There's	some	evidence	that	Allman's	not	the	same
guy	who	hung	around	the	pizza	joint.	When	I	contacted	him	for	an	interview,	he
passed	me	along	to	his	public	relations	expert,	who	wrote	back	wanting	to	"make
sure	this	is	a	profitable	way	to	spend	Eric's	time."	For	all	we	know,	Eric	may
have	even	been	wearing	a	suit	when	he	hired	a	corporate	PR	team.

Some	of	the	other	free	software	folks	are	going	to	get	married.	The	Apache
group	has	leveraged	its	success	with	small	server	organizations	into	connections
with	the	best	companies	selling	high-powered	products.	IBM	is	now	a	firm
supporter	of	Apache,	and	they	run	it	on	many	of	their	systems.	Brian	Behlendorf
still	schedules	his	own	appointments,	jokes	often,	and	speaks	freely	about	his
vision	for	Apache,	but	he's	as	serious	as	any	married	man	with	several	kids	to
support.	It's	not	just	about	serving	up	a	few	web	pages	filled	with	song	lyrics	or
Star	Wars	trivia.	People	are	using	Apache	for	business--serious	business.	There
can	still	be	fun,	but	Apache	needs	to	be	even	more	certain	that	they're	not
screwing	up.

And	of	course	there	are	thousands	of	free	software	projects	that	are	going	to	get
left	behind	hanging	out	at	the	same	old	pizza	joint.	There	were	always	going	to
be	thousands	left	behind.	People	get	excited	about	new	projects,	better	protocols,
and	neater	code	all	the	time.	The	old	code	just	sort	of	withers	away.	Occasionally
someone	rediscovers	it,	but	it	is	usually	just	forgotten	and	superseded.	But	this
natural	evolution	wasn't	painful	until	the	successful	projects	started	ending	up	on
the	covers	of	magazines	and	generating	million-dollar	deals	with	venture
capitalists.	People	will	always	be	wondering	why	their	project	isn't	as	big	as
Linux.

There	will	also	be	thousands	of	almost	great	projects	that	just	sail	on	being
almost	great.	All	of	the	distributions	come	with	lots	of	programs	that	do	some
neat	things.	But	there's	no	way	that	the	spotlight	can	be	bright	enough	to	cover
them	all.	There	will	be	only	one	Torvalds	and	everyone	is	just	going	to	be	happy

that	he's	so	gracious	when	he	reminds	the	adoring	press	that	most	of	the	work
was	done	by	thousands	of	other	nameless	folks.

Most	of	the	teen	movies	don't	bother	trying	to	figure	out	what	happens	after	that
last	fateful	summer.	It's	just	better	to	end	the	movie	with	a	dramatic	race	or	stage
show	that	crystallizes	all	the	unity	and	passion	that	built	up	among	this	group
during	their	formative	years.	They	sing,	they	dance,	they	win	the	big	game,	they
go	to	the	prom,	and	then	cameras	love	to	freeze	the	moment	at	the	end	of	the
film.	The	free	software	movement,	on	the	other	hand,	is	just	too	important	and
powerful	to	stop	this	book	on	a	climactic	note.	It	would	be	fun	to	just	pause	the
book	at	the	moment	in	time	when	Linus	Torvalds	and	Bob	Young	were	all	over
the	magazines.	Their	big	show	was	a	success,	but	the	real	question	is	what	will
happen	when	some	folks	go	to	school,	some	folks	get	married,	and	some	folks
are	left	behind.

To	some	extent,	the	influx	of	money	and	corporations	is	old	news.	Very	old
news.	Richard	Stallman	faced	the	same	problem	in	the	1980s	when	he	realized
that	he	needed	to	find	a	way	to	live	without	a	university	paycheck.	He	came	up
with	the	clever	notion	that	the	software	and	the	source	must	always	be	free,	but
that	anyone	could	charge	whatever	the	market	would	bear	for	the	copies.	The
Free	Software	Foundation	itself	continues	to	fund	much	of	its	development	by
creating	and	selling	both	CD-ROMs	and	printed	manuals.

This	decision	to	welcome	money	into	the	fold	didn't	wreck	free	software.	If
anything,	it	made	it	possible	for	companies	like	Red	Hat	to	emerge	and	sell
easier-to-use	versions	of	the	free	software.	The	companies	competed	to	put	out
the	best	distributions	and	didn't	use	copyright	and	other	intellectual	property
laws	to	constrain	each	other.	This	helped	attract	more	good	programmers	to	the
realm	because	most	folks	would	rather	spend	their	time	writing	code	than
juggling	drivers	on	their	machine.	Good	distributions	like	Red	Hat,	Slackware,
Debian,	FreeBSD,	and	SuSE	made	it	possible	for	everyone	to	get	their	machines
up	and	running	faster.

There's	no	reason	why	the	latest	push	into	the	mainstream	is	going	to	be	any
different.	Sure,	Red	Hat	is	charging	more	and	creating	better	packages,	but	most
of	the	distribution	is	still	governed	by	the	GPL.	Whenever	people	complain	that
Red	Hat	costs	too	much,	Bob	Young	just	points	people	to	the	companies	that	rip
off	his	CDs	and	charge	only	$2	or	$3	per	copy.	The	GPL	keeps	many	people
from	straying	too	far	from	the	ideal.

The	source	is	also	still	available.	Sure,	the	corporate	suits	can	come	in,	cut	deals,
issue	press	releases,	raise	venture	capital,	and	do	some	IPOs,	but	that	doesn't
change	the	fact	that	the	source	code	is	now	widely	distributed.	Wasn't	that	the
goal	of	Stallman's	revolution?	Didn't	he	want	to	be	able	to	get	at	the	guts	of
software	and	fix	it?	The	source	is	now	more	omnipresent	than	ever.	The
corporations	are	practically	begging	folks	to	download	it	and	send	in	bug	fixes.

Of	course,	access	to	the	source	was	only	half	of	Stallman's	battle.	A	cynic	might
growl	that	the	corporations	seem	to	be	begging	folks	to	do	their	research,	testing,
and	development	work	for	them.	They're	looking	for	free	beers.	Stallman	wanted
freedom	to	do	whatever	he	wanted	with	the	source	and	many	of	the	companies
aren't	ready	to	throw	away	all	of	their	control.

Apple	sells	its	brand,	and	it	was	careful	not	to	open	up	the	source	code	to	its
classic	desktop	interface.	They	kept	that	locked	away.	Most	of	the	source	code
that	Apple	released	is	from	its	next	version	of	the	operating	system,	Mac	OS	X,
which	came	from	the	folks	at	NeXT	when	Apple	acquired	that	company.	Where
did	that	code	come	from?	Large	portions	came	from	the	various	free	versions	of
BSD	like	NetBSD	or	Mach.	It's	easy	to	be	generous	when	you	only	wrote	a
fraction	of	the	code.

Ernest	Prabhakar,	the	project	manager	for	Apple's	first	open	source	effort	known
as	Darwin,	describes	the	tack	he	took	to	get	Apple's	management	to	embrace	this
small	core	version	of	the	BSD	operating	system	tuned	to	the	Macintosh
hardware	platform.

"The	first	catalysts	were	the	universities.	There	were	a	lot	of	universities	like
MIT	and	University	of	Michigan	that	had	some	specialized	network
infrastructure	needs,"	he	said.

"We	realized	that	the	pieces	they're	most	interested	in	are	the	most
commoditized.	There	wasn't	really	any	proprietary	technology	added	that	we	had
to	worry	about	them	copying.	There	are	people	who	know	them	better	than	we
do	like	the	BSD	community.	We	started	making	the	case,	if	we	really	want	to
partner	with	the	universities	we	should	just	open	the	source	code	and	release	it	as
a	complete	BSD-style	operating	system.

"We	wanted	people	to	use	this	in	classes,	really	embed	it	in	the	whole
educational	process	without	constraining	teaching	to	fit	some	corporate	model,"

he	finishes.

Of	course,	Prabhakar	suggests	that	there	is	some	self-interest	as	well.	Apple
wants	to	be	a	full	partner	with	the	BSD	community.	It	wants	the	code	it	shares	to
mingle	and	cross-pollinate	with	the	code	from	the	BSD	trees.	In	the	long	run,
Apple's	Darwin	and	the	BSDs	will	grow	closer	together.	In	an	ideal	world,	both
groups	will	flourish	as	they	avoid	duplicating	each	other's	efforts.

Prabhakar	says,	"This	reduces	our	reintegration	costs.	The	ability	to	take	the
standard	version	of	FreeBSD	and	dump	it	into	our	OS	was	a	big	win.	Prior	to
doing	the	open	source,	we	had	done	a	small	scale	of	givebacks."

This	view	is	echoed	by	other	companies.	IBM	is	a	great	hardware	company	and
an	even	greater	service	company	that's	never	had	much	luck	selling	software,	at
least	in	the	same	way	that	Microsoft	sells	software.	Their	OS/2	never	got	far	off
the	ground.	They've	sold	plenty	of	software	to	companies	by	bundling	it	with
handholding	and	long-term	service,	but	they've	never	had	great	success	in	the
shrink-wrapped	software	business.	Open	source	gives	them	the	opportunity	to
cut	software	development	costs	and	concentrate	on	providing	service	and
hardware.	They	get	free	development	help	from	everyone	and	the	customers	get
more	flexibility.

Sun's	Community	Source	License	is	also	not	without	some	self-interest.	The
company	would	like	to	make	sure	that	Java	continues	to	be	"Write	Once,	Run
Anywhere,"	and	that	means	carefully	controlling	the	APIs	and	the	code	to	make
sure	no	idiosyncrasies	or	other	glitches	emerge.	People	and	companies	that	want
to	be	part	of	the	community	must	abide	by	Sun's	fairly	generous,	but	not
complete,	gift	to	the	world.

The	company's	web	page	points	out	the	restriction	Sun	places	on	its	source	code
fairly	clearly.	"Modified	source	code	cannot	be	distributed	without	the	express
written	permission	of	Sun"	and	"Binary	programs	built	using	modified	Java	2
SDK	source	code	may	not	be	distributed,	internally	or	externally,	without
meeting	the	compatibility	and	royalty	requirements	described	in	the	License
Agreement."

While	some	see	this	clause	as	a	pair	of	manacles,	Bill	Joy	explains	that	the
Community	Source	License	is	closer	to	our	definition	of	a	real	community.	"It's
a	community	in	a	stronger	sense,"	he	told	an	audience	at	Stanford.	"If	you	make

improvements,	you	can	own	them."	After	you	negotiate	a	license	with	Sun,	you
can	sell	them.	Joy	also	points	out	that	Sun's	license	does	require	some	of	the
GNU-like	sharing	by	requiring	everyone	to	report	bugs.

Some	customers	may	like	a	dictator	demanding	complete	obeisance	to	Sun's
definition	of	Java,	but	some	users	are	chaffing	a	bit.	The	freedom	to	look	at	the
code	isn't	enough.	They	want	the	freedom	to	add	their	own	features	that	are	best
tuned	to	their	own	needs,	a	process	that	may	start	to	Balkanize	the	realm	by
creating	more	and	more	slightly	different	versions	of	Java.	Sun	clearly	worries
that	the	benefits	of	all	this	tuning	aren't	worth	living	through	the	cacophony	of
having	thousands	of	slightly	different	versions.	Releasing	the	source	code	allows
all	of	the	users	to	see	more	information	about	the	structure	of	Sun's	Java	and
helps	them	work	off	the	same	page.	This	is	still	a	great	use	of	the	source	code,
but	it	isn't	as	free	as	the	use	imagined	by	Stallman.

Alan	Baratz,	the	former	president	of	Sun's	Java	division,	says	that	their
Community	Source	License	has	been	a	large	success.	Sure,	some	folks	would
like	the	ability	to	take	the	code	and	fork	off	their	own	versions	as	they	might	be
able	to	do	with	software	protected	by	a	BSD-	or	GNU-style	license,	but	Java
developers	really	want	the	assurance	that	it's	all	compatible.	As	many	said,
"Microsoft	wanted	to	fork	Java	so	it	could	destroy	it."

Baratz	said,	"We	now	have	forty	thousand	community	source	licensees.	The
developers	and	the	systems	builders	and	the	users	all	want	the	branded	Java
technology.	They	want	to	know	that	all	of	the	apps	are	going	to	be	there.	That's
the	number-one	reason	that	developers	are	writing	to	the	platform."	Their	more
restrictive	license	may	not	make	Stallman	and	other	free	software	devotees
happy,	but	at	least	Java	will	run	everywhere.

Maybe	in	this	case,	the	quality	and	strength	of	the	unity	Sun	brings	to	the
marketplace	is	more	important	than	the	complete	freedom	to	do	whatever	you
want.	There	are	already	several	Java	clones	available,	like	Kaffe.	They	were
created	without	the	help	of	Sun,	so	their	creators	aren't	bound	by	Sun's	licenses.
But	they	also	go	out	of	their	way	to	avoid	splitting	with	Sun.	Tim	Wilkinson,	the
CEO	of	Transvirtual,	the	creators	of	Kaffe,	says	that	he	plans	to	continue	to
make	Kaffe	100	percent	Java	compatible	without	paying	royalties	or	abiding	by
the	Community	Source	License.	If	his	project	or	other	similar	ones	continue	to
thrive	and	grow,	then	people	will	know	that	the	freedom	of	open	source	can	be
as	important	as	blind	allegiance	to	Sun.

These	corporate	efforts	are	largely	welcomed	by	the	open	source	world,	but	the
welcome	does	not	come	with	open	arms	or	a	great	deal	of	warmth.

Source	code	with	some	restrictions	is	generally	better	than	no	source	at	all,	but
there	is	still	a	great	deal	of	suspicion.	Theo	de	Raadt,	the	leader	of	the	OpenBSD
project,	says,	"Is	that	free?	We	will	not	look	at	Apple	source	code	because	we'll
have	contaminated	ourselves."	De	Raadt	is	probably	overreacting,	but	he	may
have	reason	to	worry.	AT&T's	USL	tied	up	the	BSD	project	for	more	than	a	year
with	a	lawsuit	that	it	eventually	lost.	Who	knows	what	Apple	could	do	to	the
folks	at	OpenBSD	if	there	were	a	some	debate	over	whether	some	code	should
be	constrained	by	the	Apple	license?	It's	just	easier	for	everyone	at	OpenBSD	to
avoid	looking	at	the	Apple	code	so	they	can	be	sure	that	the	Apple	license	won't
give	some	lawyers	a	toehold	on	OpenBSD's	code	base.

Richard	Stallman	says,	"Sun	wants	to	be	thought	of	as	having	joined	our	club,
without	paying	the	dues	or	complying	with	the	public	service	requirements.
They	want	the	users	to	settle	for	the	fragments	of	freedom	Sun	will	let	them
have."

He	continues,	"Sun	has	intentionally	rejected	the	free	software	community	by
using	a	license	that	is	much	too	restrictive.	You	are	not	allowed	to	redistribute
modified	versions	of	Sun's	Java	software.	It	is	not	free	software."

16.1	FAT	CATS	AND	ALLEY	CATS

............................

The	corporations	could	also	sow	discord	and	grief	by	creating	two	different
classes:	the	haves	and	the	have-nots.	The	people	who	work	at	the	company	and
draw	a	salary	would	get	paid	for	working	on	the	software	while	others	would	get
a	cheery	grin	and	some	thanks.	Everyone's	code	would	still	be	free,	but	some	of
the	contributors	might	get	much	more	than	others.	In	the	past,	everyone	was	just
hanging	out	on	the	Net	and	adding	their	contributions	because	it	was	fun.

This	split	is	already	growing.	Red	Hat	software	employs	some	of	the	major
Linux	contributors	like	Alan	Cox.	They	get	a	salary	while	the	rest	of	the
contributors	get	nothing.	Sun,	Apple,	and	IBM	employees	get	salaries,	but	folks
who	work	on	Apache	or	the	open	versions	of	BSD	get	nothing	but	the
opportunity	to	hack	cool	code.

One	employee	from	Microsoft,	who	spoke	on	background,	predicted	complete
and	utter	disaster.	"Those	folks	are	going	to	see	the	guys	from	Red	Hat	driving
around	in	the	Porsches	and	they're	just	going	to	quit	writing	code.	Why	help
someone	else	get	rich?"	he	said.	I	pointed	out	that	jealousy	wasn't	just	a	problem
for	free	software	projects.	Didn't	many	contract	employees	from	Microsoft
gather	together	and	sue	to	receive	stock	options?	Weren't	they	locked	out,	too?

Still,	he	raises	an	interesting	point.	Getting	people	to	join	together	for	the	sake	of
a	group	is	easy	to	do	when	no	one	is	getting	rich.	What	will	happen	when	more
money	starts	pouring	into	some	folks'	pockets?	Will	people	defect?	Will	they
stop	contributing?

Naysayers	are	quick	to	point	to	experiments	like	Netscape's	Mozilla	project,
which	distributed	the	source	code	to	the	next	generation	of	its	browser.	The
project	received	plenty	of	hype	because	it	was	the	first	big	open	source	project
created	by	a	major	company.	They	set	up	their	own	website	and	built	serious
tools	for	keeping	track	of	bugs.	Still,	the	project	has	not	generated	any	great
browser	that	would	allow	it	to	be	deemed	a	success.	At	this	writing,	about	15
months	after	the	release,	they're	still	circulating	better	and	better	beta	versions,
but	none	are	as	complete	or	feature-rich	as	the	regular	version	of	Netscape,
which	remains	proprietary.[^11]

[11]:	At	this	writing,	version	M13	of	Mozilla	looks	very	impressive.	It's	getting
quite	close	to	the	proprietary	version	of	Netscape.

The	naysayers	like	to	point	out	that	Netscape	never	really	got	much	outside	help
on	the	Mozilla	project.	Many	of	the	project's	core	group	were	Netscape
employees	and	most	of	the	work	was	done	by	Netscape	employees.	There	were
some	shining	examples	like	Jim	Clark	(no	relation	to	the	founder	of	Netscape
with	the	same	name),	who	contributed	an	entire	XML	parser	to	the	project.
David	Baron	began	hacking	and	testing	the	Mozilla	code	when	he	was	a
freshman	at	Harvard.	But	beyond	that,	there	was	no	great	groundswell	of
enthusiasm.	The	masses	didn't	rise	up	and	write	hundreds	of	thousands	of	lines
of	code	and	save	Netscape.

But	it's	just	as	easy	to	cast	the	project	as	a	success.	Mozilla	was	the	first	big
corporate-sponsored	project.	Nothing	came	before	it,	so	it	isn't	possible	to
compare	it	with	anything.	It	is	both	the	best	and	the	worst	example.	The	civilian
devotees	could	just	as	well	be	said	to	have	broken	the	world	record	for	source

code	contributed	to	a	semi-commercial	project.	Yes,	most	of	the	work	was
officially	done	by	Netscape	employees,	but	how	do	you	measure	work?	Many
programmers	think	a	good	bug	report	is	more	valuable	than	a	thousand	lines	of
code.	Sure,	some	folks	like	Baron	spend	most	of	their	time	testing	the	source
code	and	looking	for	incompatibilities,	but	that's	still	very	valuable.	He	might
not	have	added	new	code	himself,	but	his	insight	may	be	worth	much	more	to
the	folks	who	eventually	rely	on	the	product	to	be	bug-free.

It's	also	important	to	measure	the	scope	of	the	project.	Mozilla	set	out	to	rewrite
most	of	the	Netscape	code.	In	the	early	days,	Netscape	grew	by	leaps	and	bounds
as	the	company	struggled	to	add	more	and	more	features	to	keep	ahead	of
Microsoft.	The	company	often	didn't	have	the	time	to	rebuild	and	reengineer	the
product,	and	many	of	the	new	features	were	not	added	in	the	best	possible	way.
The	Mozilla	team	started	off	by	trying	to	rebuild	the	code	and	put	it	on	a	stable
foundation	for	the	future.	This	hard-core,	structural	work	often	isn't	as	dramatic.
Casual	observers	just	note	that	the	Mozilla	browser	doesn't	have	as	many
features	as	plain	old	Netscape.	They	don't	realize	that	it's	completely	redesigned
inside.

Jeff	Bates,	an	editor	at	Slashdot,	says	that	Mozilla	may	have	suffered	because
Netscape	was	so	successful.	The	Netscape	browser	was	already	available	for	free
for	Linux.	"There	wasn't	a	big	itch	to	scratch,"	he	says.	"We	already	had
Netscape,	which	was	fine	for	most	people.	This	project	interested	a	smaller
group	than	if	we'd	not	had	Netscape-hence	why	it	didn't	get	as	much	attention."

The	experiences	at	other	companies	like	Apple	and	Sun	have	been	more	muted.
These	two	companies	also	released	the	source	code	to	their	major	products,	but
they	did	not	frame	the	releases	as	big	barn-raising	projects	where	all	of	the	users
would	rise	up	and	do	the	development	work	for	the	company.	Some	people
portrayed	the	Mozilla	project	as	a	bit	of	a	failure	because	Netscape	employees
continued	to	do	the	bulk	of	code	writing.	Apple	and	Sun	have	done	a	better	job
emphasizing	the	value	of	having	the	source	available	while	avoiding	the
impossible	dream	of	getting	the	folks	who	buy	the	computers	to	write	the	OS,
too.

Not	all	interactions	between	open	source	projects	and	corporations	involve
corporations	releasing	their	source	code	under	a	new	open	source	license.	Much
more	code	flows	from	the	open	source	community	into	corporations.	Free	things
are	just	as	tempting	to	companies	as	to	people.

In	most	cases,	the	flow	is	not	particularly	novel.	The	companies	just	choose
FreeBSD	or	some	version	of	Linux	for	their	machines	like	any	normal	human
being.	Many	web	companies	use	a	free	OS	like	Linux	or	FreeBSD	because
they're	both	cheap	and	reliable.	This	is	going	to	grow	much	more	common	as
companies	realize	they	can	save	a	substantial	amount	of	money	over	buying	seat
licenses	from	companies	like	Microsoft.

In	some	cases,	the	interactions	between	the	open	source	realm	and	the	corporate
cubicle	farm	become	fairly	novel.	When	the	Apache	web	server	grew	popular,
the	developers	at	IBM	recognized	that	they	had	an	interesting	opportunity	at
hand.	If	IBM	could	get	the	Apache	server	to	work	on	its	platforms,	it	might	sell
more	machines.	Apache	was	growing	more	common,	and	common	software
often	sold	machines.	When	people	came	looking	for	a	new	web	server,	the	IBM
salesmen	thought	it	might	be	nice	to	offer	something	that	was	well	known.

Apache's	license	is	pretty	loose.	IBM	could	have	taken	the	Apache	code,	added
some	modifications,	and	simply	released	it	under	their	own	name.	The	license
only	required	that	IBM	give	some	credit	by	saying	the	version	was	derived	from
Apache	itself.	This	isn't	hard	to	do	when	you're	getting	something	for	free.

Other	companies	have	done	the	same	thing.	Brian	Behlendorf,	one	of	the	Apache
core	group,	says,	"There's	a	company	that's	taken	the	Apache	code	and	ported	it
to	Mac.	They	didn't	contribute	anything	back	to	the	Apache	group,	but	it	didn't
really	hurt	us	to	do	that."	He	suggested	that	the	karma	came	back	to	haunt	them
because	Apple	began	releasing	their	own	version	of	Apache	with	the	new	OS,
effectively	limiting	the	company's	market.

IBM	is,	of	course,	an	old	master	at	creating	smooth	relationships	with	customers
and	suppliers.	They	chose	to	build	a	deeper	relationship	with	Apache	by	hiring
one	of	the	core	developers,	Ken	Coar,	and	paying	him	to	keep	everyone	happy.

"My	job	is	multifaceted,"	says	Coar.	"I	don't	work	on	the	IBM	addedvalue	stuff.
I	work	on	the	base	Apache	code	on	whatever	platforms	are	available	to	me.	I
serve	as	a	liaison	between	IBM	and	the	Apache	group,	basically	advising	IBM
on	whether	the	things	that	they	want	to	do	are	appropriate.	It's	an	interesting	yet
unique	role.	All	of	my	code	makes	it	back	into	the	base	Apache	code."

Coar	ended	up	with	the	job	because	he	helped	IBM	and	Apache	negotiate	the
original	relationship.	He	said	there	was	a	considerable	amount	of	uncertainty	on

both	sides.	IBM	wondered	how	they	could	get	something	without	paying	for	it,
and	Apache	wondered	whether	IBM	would	come	in	and	simply	absorb	Apache.

"There	were	questions	about	it	from	the	Apache	side	that	any	sort	of	IBM
partnership	would	make	it	seem	as	if	IBM	had	acquired	Apache.	It	was
something	that	Apache	didn't	want	to	see	happen	or	seem	to	see	happen,"	Coar
said.

Today,	Coar	says	IBM	tries	to	participate	in	the	Apache	project	as	a	peer.	Some
of	the	code	IBM	develops	will	flow	into	the	group	and	other	bits	may	remain
proprietary.	When	the	Apache	group	incorporated,	Coar	and	another	IBM
employee,	Ken	Stoddard,	were	members.	This	sort	of	long-term	involvement	can
help	ensure	that	the	Apache	group	doesn't	start	developing	the	server	in	ways
that	will	hurt	its	performance	on	IBM's	machine.	If	you	pay	several	guys	who
contribute	frequently	to	the	project,	you	can	be	certain	that	your	needs	will	be
heard	by	the	group.	It	doesn't	guarantee	anything,	but	it	can	buy	a	substantial
amount	of	goodwill.

Of	course,	it's	important	to	realize	that	the	Apache	group	was	always	fairly
business-oriented.	Many	of	the	original	developers	ran	web	servers	and	wanted
access	to	the	source	code.	They	made	money	by	selling	the	service	of
maintaining	a	website	to	the	customers,	not	a	shrink-wrapped	copy	of	Apache
itself.	The	deal	with	IBM	didn't	mean	that	Apache	changed	many	of	its	ways;	it
just	started	working	with	some	bigger	fish.

At	first	glance,	each	of	these	examples	doesn't	really	suggest	that	the	coming	of
the	corporations	is	going	to	change	much	in	the	free	source	world.	Many	of	the
changes	were	made	long	ago	when	people	realized	that	some	money	flowing
around	made	the	free	software	world	a	much	better	place.	The	strongest
principles	still	survive:	(1)	hackers	thrive	when	the	source	code	is	available,	and
(2)	people	can	create	their	own	versions	at	will.

The	arrival	of	companies	like	IBM	doesn't	change	this.	The	core	Apache	code	is
still	available	and	still	running	smoothly.	The	modules	still	plug	in	and	work
well.	There's	no	code	that	requires	IBM	hardware	to	run	and	the	committee
seems	determined	to	make	sure	that	any	IBM	takeover	doesn't	occur.	In	fact,	it
still	seems	to	be	in	everyone's	best	interest	to	keep	the	old	development	model.
The	marketplace	loves	standards,	and	IBM	could	sell	many	machines	just
offering	a	standard	version	of	Apache.	When	the	customers	walk	in	looking	for	a

web	server,	IBM's	sales	force	can	just	say	"This	little	baby	handles	X	billion	hits
a	day	and	it	runs	the	industry-leading	Apache	server."	IBM's	arrival	isn't	much
different	from	the	arrival	of	a	straightlaced,	no-nonsense	guy	who	strolls	in	from
the	Net	and	wants	to	contribute	to	Apache	so	he	can	get	ahead	in	his	job	as	a
webmaster.	In	this	case,	it's	just	a	corporation,	not	a	person.

Many	suggest	that	IBM	will	gradually	try	to	absorb	more	and	more	control	over
Apache	because	that's	what	corporations	do.	They	generate	inscrutable	contracts
and	unleash	armies	of	lawyers.	This	view	is	shortsighted	because	it	ignores	how
much	IBM	gains	by	maintaining	an	arm'slength	relationship.	If	Apache	is	a
general	program	used	on	machines	throughout	the	industry,	then	IBM	doesn't
need	to	educate	customers	on	how	to	use	it.	Many	of	them	learned	in	college	or
in	their	spare	time	on	their	home	machines.	Many	of	them	read	books	published
by	third	parties,	and	some	took	courses	offered	by	others.	IBM	is	effectively
offloading	much	of	its	education	and	support	costs	onto	a	marketplace	of	third-
party	providers.

Would	IBM	be	happier	if	Apache	was	both	the	leading	product	in	the	market	and
completely	owned	by	IBM?	Sure,	but	that's	not	how	it	turned	out.	IBM	designed
the	PC,	but	they	couldn't	push	OS/2	on	everyone.	They	can	make	great
computers,	however,	and	that's	not	a	bad	business	to	be	in.	At	least	Apache	isn't
controlled	by	anyone	else,	and	that	makes	the	compromise	pretty	easy	on	the
ego.

Some	worry	that	there's	a	greater	question	left	unanswered	by	the	arrival	of
corporations.	In	the	past,	there	was	a	general	link	between	the	creator	of	a
product	and	the	consumer.	If	the	creator	didn't	do	a	good	job,	then	the	consumer
could	punish	the	creator	by	not	buying	another	version.	This	marketplace	would
ensure	that	only	the	best	survived.

Patrick	Reilly	writes,	"In	a	free	market,	identifiable	manufacturers	own	the
product.	They	are	responsible	for	product	performance,	and	they	can	be	held
liable	for	inexcusable	flaws."

What	happens	if	a	bug	emerges	in	some	version	of	the	Linux	kernel	and	it	makes
it	into	several	distributions?	It's	not	really	the	fault	of	the	distribution	creators,
because	they	were	just	shipping	the	latest	version	of	the	kernel.	And	it's	not
really	the	kernel	creators'	fault,	because	they	weren't	marketing	the	kernel	as
ready	for	everyone	to	run.	They	were	just	floating	some	cool	software	on	the	Net

for	free.	Who's	responsible	for	the	bug?	Who	gets	sued?

Reilly	takes	the	scenario	even	further.	Imagine	that	one	clever	distribution
company	finds	a	fix	for	the	bug	and	puts	it	into	their	distribution.	They	get	no
long-term	reward	because	any	of	the	other	distribution	companies	can	come
along	and	grab	the	bug	fix.

He	writes,	"Consumers	concerned	about	software	compatibility	would	probably
purchase	the	standard	versions.	But	companies	would	lose	profit	as	other
consumers	would	freely	download	improved	versions	of	the	software	from	the
Internet.	Eventually	the	companies	would	suffer	from	widespread	confusion	over
the	wide	variety	of	software	versions	of	each	product,	including	standard
versions	pirated	by	profiteers."

There's	no	doubt	that	Reilly	points	toward	a	true	breakdown	in	the	feedback	loop
that	is	supposed	to	keep	free	markets	honest	and	efficient.	Brand	names	are
important,	and	the	free	source	world	is	a	pretty	confusing	stew	of	brand	names.

But	he	also	overestimates	the	quality	of	the	software	emerging	from	proprietary
companies	that	can	supposedly	be	punished	by	the	marketplace.	Many	users
complain	frequently	about	bugs	that	never	get	fixed	in	proprietary	code,	in	part
because	the	proprietary	companies	are	frantically	trying	to	glom	on	more
features	so	they	can	convince	more	people	to	buy	another	version	of	the
software.	Bugs	don't	always	get	fixed	in	the	proprietary	model,	either.

Richard	Stallman	understands	Reilly's	point,	but	he	suggests	that	the	facts	don't
bear	him	out.	If	this	feedback	loop	is	so	important,	why	do	so	many	people	brag
about	free	software's	reliability?

Stallman	says,	"He	has	pointed	out	a	theoretical	problem,	but	if	you	look	at	the
empirical	facts,	we	do	not	have	a	real	problem.	So	it	is	only	a	problem	for	the
theory,	not	a	problem	for	the	users.	Economists	may	have	a	challenge	explaining
why	we	DO	produce	such	reliable	software,	but	users	have	no	reason	to	worry."

16.2	THE	RETURN	OF	THE	HARDWARE	KINGS

.....................................

The	biggest	effect	of	the	free	software	revolution	may	be	to	shift	the	power
between	the	hardware	and	software	companies.	The	biggest	corporate

proponents	of	open	source	are	IBM,	Apple,	Netscape/AOL,	Sun,	and	Hewlett-
Packard.	All	except	Netscape	are	major	hardware	companies	that	watched
Microsoft	turn	the	PC	world	into	a	software	monopoly	that	ruled	a	commodity
hardware	business.

Free	source	code	changes	the	equation	and	shifts	power	away	from	software
companies	like	Microsoft.	IBM	and	Hewlett-Packard	are	no	longer	as	beholden
to	Microsoft	if	they	can	ship	machines	running	a	free	OS.	Apple	is	borrowing
open	source	software	and	using	it	for	the	core	of	their	new	OS.	These	companies
know	that	the	customers	come	to	them	looking	for	a	computer	that	works	nicely
when	it	comes	from	the	factory.	Who	cares	whether	the	software	is	free	or	not?
If	it	does	what	the	customer	wants,	then	they	can	make	their	money	on	hardware.

The	free	software	movement	pushes	software	into	the	public	realm,	and	this
makes	it	easier	for	the	hardware	companies	to	operate.	Car	companies	don't	sit
around	and	argue	about	who	owns	the	locations	of	the	pedals	or	the	position	of
the	dials	on	the	dashboard.	Those	notions	and	design	solutions	are	freely
available	to	all	car	companies	equally.	The	lawyers	don't	need	to	get	involved	in
that	level	of	car	creation.

Of	course,	the	free	software	movement	could	lead	to	more	consolidation	in	the
hardware	business.	The	car	business	coalesced	over	the	years	because	the	large
companies	were	able	to	use	their	economies	of	scale	to	push	out	the	small
companies.	No	one	had	dominion	over	the	idea	of	putting	four	wheels	on	a	car	or
building	an	engine	with	pistons,	so	the	most	efficient	companies	grew	big.

This	is	also	a	threat	for	the	computer	business.	Microsoft	licensed	their	OS	to	all
companies,	big	or	small,	that	were	willing	to	prostrate	themselves	before	the
master.	It	was	in	Microsoft's	best	interests	to	foster	free	competition	between	the
computer	companies.	Free	software	takes	this	one	step	further.	If	no	company
has	control	over	the	dominant	OS,	then	competition	will	shift	to	the	most
efficient	producers.	The	same	forces	that	brought	GM	to	the	center	of	the	car
industry	could	help	aggregate	the	hardware	business.

This	vision	would	be	more	worrisome	if	it	hadn't	happened	already.	Intel
dominates	the	market	for	CPU	chips	and	takes	home	the	lion's	share	of	the	price
of	a	PC.	The	marketplace	already	chose	a	winner	of	that	battle.	Now,	free
software	could	unshackle	Intel	from	its	need	to	maintain	a	partnership	with
Microsoft	by	making	Intel	stronger.

Of	course,	the	free	OSs	could	also	weaken	Intel	by	opening	it	up	to	competition.
Windows	3.1,	95,	and	98	always	ran	only	on	Intel	platforms.	This	made	it	easier
for	Intel	to	dominate	the	PC	world	because	the	OS	that	was	most	in	demand
would	only	run	on	Intel	or	Intel	compatible	chips.	Microsoft	made	some	attempt
to	break	out	of	this	tight	partnership	by	creating	versions	of	Windows	NT	that
ran	on	the	Alpha	chip,	but	these	were	never	an	important	part	of	the	market.

The	free	OS	also	puts	Intel's	lion's	share	up	for	grabs.	Linux	runs	well	on	Intel
chips,	but	it	also	runs	on	chips	made	by	IBM,	Motorola,	Compaq,	and	many
others.	The	NetBSD	team	loves	to	brag	that	its	software	runs	on	almost	all
platforms	available	and	is	dedicated	to	porting	it	to	as	many	as	possible.
Someone	using	Linux	or	NetBSD	doesn't	care	who	made	the	chip	inside	because
the	OS	behaves	similarly	on	all	of	them.

Free	source	code	also	threatens	one	of	the	traditional	ways	computer
manufacturers	differentiated	their	products.	The	Apple	Macintosh	lost	market
share	and	potential	customers	because	it	was	said	that	there	wasn't	much
software	available	for	it.	The	software	written	for	the	PC	would	run	on	the	Mac
only	using	a	slow	program	that	converted	it.	Now,	if	everyone	has	access	to	the
source	code,	they	can	convert	the	software	to	run	on	their	machine.	In	many
cases,	it's	as	simple	as	just	recompiling	it,	a	step	that	takes	less	than	a	minute.
Someone	using	an	Amiga	version	of	NetBSD	could	take	software	running	on	an
Intel	chip	version	and	recompile	it.

This	threat	shows	that	the	emergence	of	the	free	OSs	ensures	that	hardware
companies	will	also	face	increased	competitive	pressure.	Sure,	they	may	be	able
to	get	Microsoft	off	their	back,	but	Linux	may	make	things	a	bit	worse.

In	the	end,	the	coming	of	age	of	free	software	may	be	just	as	big	a	threat	to	the
old	way	of	life	for	corporations	as	it	is	to	the	free	software	community.	Sure,	the
hackers	will	lose	the	easy	camaraderie	of	swapping	code	with	others,	but	the
corporations	will	need	to	learn	to	live	without	complete	control.	Software
companies	will	be	under	increasing	pressure	from	free	versions,	and	hardware
companies	will	be	shocked	to	discover	that	their	product	will	become	more	of	a
commodity	than	it	was	before.	Everyone	is	going	to	have	to	find	a	way	to
compete	and	pay	the	rent	when	much	of	the	intellectual	property	is	free.

These	are	big	changes	that	affect	big	players.	But	what	will	the	changes	mean	to
the	programmers	who	stay	up	late	spinning	mountains	of	code?	Will	they	be

disenfranchised?	Will	they	quit	in	despair?	Will	they	move	on	to	open	source
experiments	on	the	human	genome?

"The	money	flowing	in	won't	turn	people	off	or	break	up	the	community,	and
here's	why,"	says	Eric	Raymond.	"The	demand	for	programmers	has	been	so
high	for	the	last	decade	that	anyone	who	really	cared	about	money	is	already
gone.	We've	been	selected	for	artistic	passion."

1.	 MONEY

Everyone	who's	made	it	past	high	school	knows	that	money	changes	everything.
Jobs	disappear,	love	crumbles,	and	wars	begin	when	money	gets	tight.	Of	course,
a	good	number	of	free	source	believers	aren't	out	of	high	school,	but	they'll
figure	this	out	soon	enough.	Money	is	just	the	way	that	we	pay	for	things	we
need	like	food,	clothing,	housing,	and	of	course	newer,	bigger,	and	faster
computers.

The	concept	of	money	has	always	been	the	Achilles	heel	of	the	free	software
world.	Everyone	quickly	realizes	the	advantages	of	sharing	the	source	code	with
everyone	else.	As	they	say	in	the	software	business,	"It's	a	no-brainer."	But
figuring	out	a	way	to	keep	the	fridge	stocked	with	Jolt	Cola	confounds	some	of
the	best	advocates	for	free	software.

Stallman	carefully	tried	to	spell	out	his	solution	in	the	GNU	Manifesto.	He
wrote,	"There's	nothing	wrong	with	wanting	pay	for	work,	or	seeking	to
maximize	one's	income,	as	long	as	one	does	not	use	means	that	are	destructive.
But	the	means	customary	in	the	field	of	software	today	are	based	on	destruction.

"Extracting	money	from	users	of	a	program	by	restricting	their	use	of	it	is
destructive	because	the	restrictions	reduce	the	amount	and	the	way	that	the
program	can	be	used.	This	reduces	the	amount	of	wealth	that	humanity	derives
from	the	program.	When	there	is	a	deliberate	choice	to	restrict,	the	harmful
consequences	are	deliberate	destruction."

At	first	glance,	Richard	Stallman	doesn't	have	to	worry	too	much	about	making
ends	meet.	MIT	gave	him	an	office.	He	got	a	genius	grant	from	the	MacArthur
Foundation.	Companies	pay	him	to	help	port	his	free	software	to	their	platforms.
His	golden	reputation	combined	with	a	frugal	lifestyle	means	that	he	can	support
himself	with	two	months	of	paid	work	a	year.	The	rest	of	the	time	he	donates	to

the	Free	Software	Foundation.	It's	not	in	the	same	league	as	running	Microsoft,
but	he	gets	by.

Still,	Stallman's	existence	is	far	from	certain.	He	had	to	work	hard	to	develop	the
funding	lines	he	has.	In	order	to	avoid	any	conflicts	of	interest,	the	Free	Software
Foundation	doesn't	pay	Stallman	a	salary	or	cover	his	travel	expenses.	He	says
that	getting	paid	by	corporations	to	port	software	helped	make	ends	meet,	but	it
didn't	help	create	new	software.	Stallman	works	hard	to	raise	new	funds	for	the
FSF,	and	the	money	goes	right	out	the	door	to	pay	programmers	on	new	projects.
This	daily	struggle	for	some	form	of	income	is	one	of	the	greatest	challenges	in
the	free	source	world	today.

Many	other	free	software	folks	are	following	Stallman's	tack	by	selling	the
services,	not	the	software.	Many	of	the	members	of	the	Apache	Webserver	Core,
for	instance,	make	their	money	by	running	websites.	They	get	paid	because	their
customers	are	able	to	type	in	www.website.com	and	see	something	pop	up.	The
customer	doesn't	care	whether	it	is	free	software	or	something	from	Microsoft
that	is	juggling	the	requests.	They	just	want	the	graphics	and	text	to	keep
moving.

Some	consultants	are	following	in	the	same	footsteps.	Several	now	offer
discounts	of	something	like	25	percent	if	the	customer	agrees	to	release	the
source	code	from	the	project	as	free	software.	If	there's	no	great	proprietary
information	in	the	project,	then	customers	often	take	the	deal.	At	first	glance,	the
consultant	looks	like	he's	cutting	his	rates	by	25	percent,	but	at	second	glance,	he
might	be	just	making	things	a	bit	more	efficient	for	all	of	his	customers.	He	can
reuse	the	software	his	clients	release,	and	no	one	knows	it	better	than	he	does.	In
time,	all	of	his	clients	share	code	and	enjoy	lower	development	costs.

The	model	of	selling	services	instead	of	source	code	works	well	for	many
people,	but	it	is	still	far	from	perfect.	Software	that	is	sold	as	part	of	a	shrink-
wrapped	license	is	easy	for	people	to	understand	and	budget.	If	you	pay	the
price,	you	get	the	software.	Services	are	often	billed	by	the	hour	and	they're
often	very	open-ended.	Managing	these	relationships	can	be	just	as	difficult	as
raising	some	capital	to	write	the	software	and	then	marketing	it	as	shrink-
wrapped	code.

17.1	CYGNUS--ONE	COMPANY	THAT	GREW	RICH	ON	FREE	SOFTWARE

..

There	have	been	a	number	of	different	success	stories	of	companies	built	around
selling	free	software.	One	of	the	better-known	examples	is	Cygnus,	a	company
that	specializes	in	maintaining	and	porting	the	GNU	C	Compiler.	The	company
originally	began	by	selling	support	contracts	for	the	free	software	before
realizing	that	there	was	a	great	demand	for	compiler	development.

The	philosophy	in	the	beginning	was	simple.	John	Gilmore,	one	of	the	founders,
said,	"We	make	free	software	affordable."	They	felt	that	free	software	offered
many	great	tools	that	people	needed	and	wanted,	but	realized	that	the	software
did	not	come	with	guaranteed	support.	Cygnus	would	sell	people	contracts	that
would	pay	for	an	engineer	who	would	learn	the	source	code	inside	and	out	while
waiting	to	answer	questions.	The	engineer	could	also	rewrite	code	and	help	out.

David	Henkel-Wallace,	one	of	the	other	founders,	says,	"We	started	in	1989
technically,	1990	really.	Our	first	offices	were	in	my	house	on	University	Avenue
[in	Palo	Alto].	We	didn't	have	a	garage,	we	had	a	carport.	It	was	an	apartment
complex.	We	got	another	apartment	and	etherneted	them	together.	By	the	time
we	left,	we	had	six	apartments."

While	the	Bay	Area	was	very	technically	sophisticated,	the	Internet	was	mainly
used	at	that	time	by	universities	and	research	labs.	Commercial	hookups	were
rare	and	only	found	in	special	corners	like	the	corporate	research	playpen,	Xerox
PARC.	In	order	to	get	Net	service,	Cygnus	came	up	with	a	novel	plan	to	wire	the
apartment	complex	and	sell	off	some	of	the	extra	bandwidth	to	their	neighbors.
HenkelWallace	says,	"We	started	our	own	ISP	[Internet	Service	Provider]	as	a
cooperative	because	there	weren't	those	things	in	those	days.	Then	people	moved
into	those	apartments	because	they	were	on	the	Internet."

At	the	beginning,	the	company	hoped	that	the	free	software	would	allow	them	to
offer	something	the	major	manufacturers	didn't:	cross-platform	consistency.	The
GNU	software	would	perform	the	same	on	a	DEC	Alpha,	a	Sun	SPARC,	and
even	a	Microsoft	box.	The	manufacturers,	on	the	other	hand,	were	locked	up	in
their	proprietary	worlds	where	there	was	little	cross-pollination.	Each	company
developed	its	own	editors,	compilers,	and	source	code	tools,	and	each	took
slightly	different	approaches.

One	of	the	other	founders,	Michael	Tiemann,	writes	of	the	time:	"When	it	came

to	tools	for	programmers	in	1989,	proprietary	software	was	in	a	dismal	state.
First,	the	tools	were	primitive	in	the	features	they	offered.	Second,	the	features,
when	available,	often	had	built-in	limitations	that	tended	to	break	when	projects
started	to	get	complicated.	Third,	support	from	proprietary	vendors	was	terrible.
..	finally,	every	vendor	implemented	their	own	proprietary	extensions,	so	that
when	you	did	use	the	meager	features	of	one	platform,	you	became,
imperceptibly	at	first,	then	more	obviously	later,	inextricably	tied	to	that
platform."

The	solution	was	to	clean	up	the	GNU	tools,	add	some	features,	and	sell	the
package	to	people	who	had	shops	filled	with	different	machines.	Henkel-Wallace
said,	"We	were	going	to	have	two	products:	compiler	tools	and	shell	tools.	Open
systems	people	will	buy	a	bunch	of	SGIs,	a	bunch	of	HPs,	a	bunch	of	Unix
machines.	Well,	we	thought	people	who	have	the	same	environment	would	want
to	have	the	same	tools."

This	vision	didn't	work	out.	They	sold	no	contracts	that	offered	that	kind	of
support.	They	did	find,	however,	that	people	wanted	them	to	move	the	compiler
to	other	platforms.	"The	compilers	people	got	from	the	vendors	weren't	as	good
and	the	compiler	side	of	the	business	was	making	money	from	day	one,"	says
Henkel-Wallace.

The	company	began	to	specialize	in	porting	GCC,	the	GNU	compiler	written
first	by	Richard	Stallman,	to	new	chips	that	came	along.	While	much	of	the
visible	world	of	computers	was	frantically	standardizing	on	Intel	chips	running
Microsoft	operating	systems,	an	invisible	world	was	fragmenting	as	competition
for	the	embedded	systems	blossomed.	Everyone	was	making	different	chips	to
run	the	guts	of	microwave	ovens,	cell	phones,	laser	printers,	network	routers,
and	other	devices.	These	manufacturers	didn't	care	whether	a	chip	ran	the	latest
MS	software,	they	just	wanted	it	to	run.	The	appliance	makers	would	set	up	the
chip	makers	to	compete	against	each	other	to	provide	the	best	solution	with	the
cheapest	price,	and	the	chip	manufacturers	responded	by	churning	out	a	stream
of	new,	smaller,	faster,	and	cheaper	chips.

Cygnus	began	porting	the	GCC	to	each	of	these	new	chips,	usually	after	being
paid	by	the	manufacturer.	In	the	past,	the	chip	companies	would	write	or	license
their	own	proprietary	compilers	in	the	hope	of	generating	something	unique	that
would	attract	sales.	Cygnus	undercut	this	idea	by	offering	something	standard
and	significantly	cheaper.	The	chip	companies	would	save	themselves	the

trouble	of	coming	up	with	their	own	compiler	tools	and	also	get	something	that
was	fairly	familiar	to	their	customers.	Folks	who	used	GCC	on	Motorola's	chip
last	year	were	open	to	trying	out	National	Semiconductor's	new	chip	if	it	also	ran
GCC.	Supporting	free	software	may	not	have	found	many	takers,	but	Cygnus
found	more	than	enough	people	who	wanted	standard	systems	for	their
embedded	processors.

Selling	processor	manufacturers	on	the	conversion	contracts	was	also	a	bit
easier.	Businesses	wondered	what	they	were	doing	paying	good	money	for	free
software.	It	just	didn't	compute.	The	chip	manufacturers	stopped	worrying	about
this	when	they	realized	that	the	free	compilers	were	just	incentives	to	get	people
to	use	their	chips.	The	companies	spent	millions	buying	pens,	T-shirts,	and	other
doodads	that	they	gave	away	to	market	the	chips.	What	was	different	about
buying	software?	If	it	made	the	customers	happy,	great.	The	chip	companies
didn't	worry	as	much	about	losing	a	competitive	advantage	by	giving	away	their
work.	It	was	just	lagniappe.

Cygnus,	of	course,	had	to	worry	about	competition.	There	was	usually	some	guy
who	worked	at	the	chip	company	or	knew	someone	who	worked	at	the	chip
company	who	would	say,	"Hey,	I	know	compilers	as	well	as	those	guys	at
Cygnus.	I	can	download	GCC	too	and	underbid	them."

Henkel-Wallace	says,	"Cygnus	was	rarely	the	lowest	bidder.	People	who	cared
about	price	more	than	anyone	else	were	often	the	hardest	customers	anyway.	We
did	deals	on	a	fair	price	and	I	think	people	were	happy	with	the	result.	We	rarely
competed	on	price.	What	really	matters	to	you?	Getting	a	working	tool	set	or	a
cheap	price?"

17.2	HOW	THE	GPL	BUILT	CYGNUS'S	MONOPOLY

..

The	GNU	General	Public	License	was	also	a	bit	of	a	secret	weapon	for	Cygnus.
When	their	competitors	won	a	contract,	they	had	to	release	the	source	code	for
their	version	when	they	were	done	with	it.	All	of	the	new	features	and	insights
developed	by	competitors	would	flow	directly	back	to	Cygnus.

Michael	Tiemann	sounds	surprisingly	like	Bill	Gates	when	he	speaks	about	this
power:	"Fortunately,	the	open	source	model	comes	to	the	rescue	again.	Unless
and	until	a	competitor	can	match	the	one	hundred-plus	engineers	we	have	on

staff	today,	most	of	whom	are	primary	authors	or	maintainers	of	the	software	we
support,	they	cannot	displace	us	from	our	position	as	the	'true	GNU'	source.	The
best	they	can	hope	to	do	is	add	incremental	features	that	their	customers	might
pay	them	to	add.	But	because	the	software	is	open	source,	whatever	value	they
add	comes	back	to	Cygnus..	.	."

Seeing	these	effects	is	something	that	only	a	truely	devoted	fan	of	free	software
can	do.	Most	people	rarely	get	beyond	identifying	the	problems	with	giving	up
the	source	code	to	a	project.	They	don't	realize	that	the	GPL	affects	all	users	and
also	hobbles	the	potential	competitors.	It's	like	a	mutual	disarmament	or	mutual
armament	treaty	that	fixes	the	rules	for	all	comers	and	disarmament	treaties	are
often	favored	by	the	most	powerful.

The	money	Cygnus	makes	by	selling	this	support	has	been	quite	outstanding.
The	company	continues	to	grow	every	year,	and	it	has	been	listed	as	one	of	the
largest	and	fastest-growing	private	software	companies.	The	operation	was	also	a
bootstrap	business	where	the	company	used	the	funds	from	existing	contracts	to
fund	the	research	and	development	of	new	tools.	They	didn't	take	funding	from
outside	venture	capital	firms	until	1995.	This	let	the	founders	and	the	workers
keep	a	large	portion	of	the	company,	one	of	the	dreams	of	every	Silicon	Valley
start-up.	In	1999,	Red	Hot	merged	with	Cygnus	to	"create	an	open	source
powerhouse."

The	success	of	Cygnus	doesn't	mean	that	others	have	found	ways	of	duplicating
the	model.	While	Cygnus	has	found	some	success	and	venture	capital,	Gilmore
says,	"The	free	software	business	gives	many	MBAs	the	willies."Many
programmers	have	found	that	free	software	is	just	a	free	gift	for	others.	They
haven't	found	an	easy	way	to	charge	for	their	work.

17.3	SNITCHWARE

...............

Larry	McVoy	is	one	programmer	who	looks	at	the	free	source	world	and	cringes.
He's	an	old	hand	from	the	UNIX	world	who	is	now	trying	to	build	a	new	system
for	storing	the	source	code.	To	him,	giving	away	source	code	is	a	one-way	train
to	no	money.	Sure,	companies	like	Cygnus	and	Red	Hat	can	make	money	by
adding	some	extra	service,	but	the	competition	means	that	the	price	of	this	value
will	steadily	go	to	zero.	There	are	no	regulatory	or	large	capital	costs	to	restrain

entry,	so	he	feels	that	the	free	software	world	will	eventually	push	out	all	but	the
independently	wealthy	and	the	precollege	teens	who	can	live	at	home.	"We	need
to	find	a	sustainable	method.	People	need	to	write	code	and	raise	families,	pay
mortgages,	and	all	of	that	stuff,"	he	says.

McVoy's	solution	is	a	strange	license	that	some	call	"snitchware."	He's
developing	a	product	known	as	BitKeeper	and	he's	giving	it	away,	with	several
very	different	hooks	attached.	He	approached	this	philosophically.	He	says,	"In
order	to	make	money,	I	need	to	find	something	that	the	free	software	guys	don't
value	that	the	businesspeople	do	value.	Then	I	take	it	away	from	the	free
software	guys.	The	thing	I	found	is	your	privacy."

BitKeeper	is	an	interesting	type	of	product	that	became	essential	as	software
projects	grew	larger	and	more	unwieldy.	In	the	beginning,	programmers	wrote	a
program	that	was	just	one	coherent	file	with	a	beginning,	a	middle,	some
digressions,	and	then	an	end.	These	were	very	self-contained	and	easily	managed
by	one	person.

When	more	than	one	programmer	started	working	on	a	project	together,
however,	everyone	needed	to	work	on	coordinating	their	work	with	each	other.
One	person	couldn't	start	tearing	apart	the	menus	because	another	might	be
trying	to	hook	up	the	menus	to	a	new	file	system.	If	both	started	working	on	the
same	part,	the	changes	would	be	difficult	if	not	impossible	to	sort	out	when	both
were	done.	Once	a	team	of	programmers	digs	out	from	a	major	mess	like	that,
they	look	for	some	software	like	BitKeeper	to	keep	the	source	code	organized.

BitKeeper	is	sophisticated	and	well-integrated	with	the	Internet.	Teams	of
programmers	can	be	spread	out	throughout	the	world.	At	particular	times,
programmers	can	call	each	other	up	and	synchronize	their	projects.	Both	tightly
controlled,	large	corporate	teams	and	loose	and	uncoordinated	open	source
development	teams	can	use	the	tool.

The	synchronization	creates	change	logs	that	summarize	the	differences	between
two	versions	of	the	project.	These	change	logs	are	optimized	to	move	the	least
amount	of	information.	If	two	programmers	don't	do	too	much	work,	then
synchronizing	them	doesn't	take	too	long.	The	change	logs	build	up	a	complete
history	of	the	project	and	make	it	possible	to	roll	back	the	project	to	earlier
points	if	it	turns	out	that	development	took	the	wrong	path.

McVoy's	snitchware	solution	is	to	post	the	change	logs	of	the	people	who	don't
buy	a	professional	license.	These	logs	include	detailed	information	on	how	two
programs	are	synchronized,	and	he	figures	that	this	information	should	be
valuable	enough	for	a	commercial	company	to	keep	secret.	They	might	say,
"Moved	auction	control	structure	to	Bob's	version	from	Caroline's	version.
Moved	new	PostScript	graphics	engine	to	Caroline's	version	from	Bob's."

McVoy	says,	"If	you're	Sun	or	Boeing,	you	don't	want	the	Internet	to	be	posting
a	message	like	'I	just	added	the	bomb	bay.'	But	for	the	free	software	guys,	not
only	is	that	acceptable,	but	it's	desirable.	If	you're	doing	open	source,	what	do
you	have	to	hide?"

BitKeeper	is	free	for	anyone	to	use,	revise,	and	extend	as	long	as	they	don't	mess
with	the	part	that	tattles.	If	you	don't	care	about	the	world	reading	your	change
logs,	then	it's	not	much	different	from	the	traditional	open	source	license.	The
user	has	the	same	rights	to	extend,	revise,	and	modify	BitKeeper	as	they	do
GNU	Emacs,	with	one	small	exception:	you	can't	disable	the	snitch	feature.

McVoy	thinks	this	is	an	understandable	trade-off.	"From	the	business	guys	you
can	extract	money.	You	can	hope	that	they'll	pay	you.	This	is	an	important	point
I	learned	consulting	at	Schwab	and	Morgan	Stanley.	They	insist	that	they	pay	for
the	software	they	get.	They	don't	want	to	pay	nothing.	I	used	to	think	that	they
were	idiots.	Now	I	think	they're	very	smart,"	he	says.

The	matter	is	simple	economics,	he	explains.	"They	believe	that	if	enough
money	is	going	to	their	supplier,	it	won't	be	a	total	disaster.	I	call	this	an
insurance	model	of	software."

Companies	that	pay	for	the	privacy	with	BitKeeper	will	also	be	funding	further
development.	The	work	won't	be	done	in	someone's	spare	time	between	exams
and	the	homecoming	game.	It	won't	be	done	between	keeping	the	network
running	and	helping	the	new	secretary	learn	Microsoft	Word.	It	will	be
developed	by	folks	who	get	paid	to	do	the	work.

"There's	enough	money	going	back	to	the	corporation	so	it	can	be	supported,"
McVoy	says.	"This	is	the	crux	of	the	problem	with	the	open	source	model.	It's
possible	to	abuse	the	proprietary	model,	too.	They	get	you	in	there,	they	lock
you	in,	and	then	they	rape	you.	This	business	of	hoping	that	it	will	be	okay	is
unacceptable.	You	need	to	have	a	lock.	The	MIS	directors	insist	you	have	a

lock."

He	has	a	point.	Linux	is	a	lot	of	fun	to	play	with	and	it	is	now	a	very	stable	OS,
but	it	took	a	fair	number	of	years	to	get	to	this	point.	Many	folks	in	the	free
source	world	like	to	say	things	like,	"It	used	to	be	that	the	most	fun	in	Linux	was
just	getting	it	to	work."	Companies	like	Morgan	Stanley,	Schwab,	American
Airlines,	and	most	others	live	and	die	on	the	quality	of	their	computer	systems.
They're	quite	willing	to	pay	money	if	it	helps	ensure	that	things	don't	go	wrong.

McVoy's	solution	hasn't	rubbed	everyone	the	right	way.	The	Open	Source
Initiative	doesn't	include	his	snitchware	license	in	a	list	of	acceptable	solutions.
"The	consensus	of	the	license	police	is	that	my	license	is	NOT	open	source,"	he
says.	"The	consensus	of	my	lawyer	is	that	it	is.	But	I	don't	call	it	open	source
anymore."

He's	going	his	own	way.	"I	made	my	own	determination	of	what	people	value	in
the	OS	community:	they	have	to	be	able	to	get	the	source,	modify	the	source,
and	redistribute	the	source	for	no	fee.	All	of	the	other	crap	is	yeah,	yeah
whatever,"	he	says.

"The	problem	with	the	GPL	is	the	GPL	has	an	ax	to	grind,	and	in	order	to	grind
that	ax	it	takes	away	all	of	the	rights	of	the	person	who	wrote	the	code.	It	serves
the	need	of	everyone	in	the	community	except	the	person	who	wrote	it."

McVoy	has	also	considered	a	number	of	other	alternatives.	Instead	of	taking
away	something	that	the	free	software	folks	don't	value,	he	considered	putting	in
something	that	the	businesses	would	pay	to	get	rid	of.	The	product	could	show
ads	it	downloaded	from	a	central	location.	This	solution	is	already	well	known
on	the	Internet,	where	companies	give	away	e-mail,	searching	solutions,
directories,	and	tons	of	information	in	order	to	sell	ads.	This	solution,	however,
tends	to	wreck	the	usability	of	the	software.	Eudora,	the	popular	e-mail	program,
is	distributed	with	this	option.

McVoy	also	considered	finding	a	way	to	charge	for	changes	and	support	to
BitKeeper.	"The	Cygnus	model	isn't	working	well	because	it	turns	them	into	a
contracting	shop.	That	means	you	actually	have	to	do	something	for	every	hour
of	work."

To	him,	writing	software	and	charging	for	each	version	can	generate	money
without	work--that	is,	without	doing	further	work.	The	support	house	has	to	have

someone	answering	the	phone	every	moment.	A	company	that	is	selling	shrink-
wrapped	software	can	collect	money	as	people	buy	new	copies.	McVoy	doesn't
want	this	cash	to	spend	tipping	bartenders	on	cruise	ships,	although	he	doesn't
rule	it	out.	He	wants	the	capital	to	reinvest	in	other	neat	ideas.	He	wants	to	have
some	cash	coming	in	so	he	can	start	up	development	teams	looking	at	new	and
bigger	projects.

The	Cygnus	model	is	too	constraining	for	him.	He	argues	that	a	company	relying
on	support	contracts	must	look	for	a	customer	to	fund	each	project.	Cygnus,	for
instance,	had	to	convince	Intel	that	they	could	do	a	good	job	porting	the	GCC	to
the	i960.	They	found	few	people	interested	in	general	support	of	GNU,	so	they
ended	up	concentrating	on	GCC.

McVoy	argues	that	it's	the	engineers	who	come	up	with	the	dreams	first.	The
customers	are	often	more	conservative	and	less	able	to	see	how	some	new	tool	or
piece	of	software	could	be	really	useful.	Someone	needs	to	hole	up	in	a	garage
for	a	bit	to	create	a	convincing	demonstration	of	the	idea.	Funding	a	dream	takes
capital.

To	him,	the	absence	of	money	in	the	free	software	world	can	be	a	real	limitation
because	money	is	a	way	to	store	value.	It's	not	just	about	affording	a	new	Range
Rover	and	balsamic	vinegars	that	cost	more	than	cocaine	by	weight.	Money	can
be	a	nice	way	to	store	up	effort	and	transport	it	across	time.	Someone	can	work
like	a	dog	for	a	six	months,	turn	out	a	great	product,	and	sell	it	for	a	pile	of	cash.
Ten	years	later,	the	cash	can	be	spent	on	something	else.	The	work	is	effectively
stored	for	the	future.

Of	course,	this	vision	isn't	exactly	true.	Cygnus	has	managed	to	charge	enough
for	their	contracts	to	fund	the	development	of	extra	tools.	Adding	new	features
and	rolling	them	out	into	the	general	distribution	of	some	GNU	tool	is	part	of	the
job	that	the	Cygnus	team	took	on	for	themselves.	These	new	features	also	mean
that	the	users	need	more	support.	On	one	level,	it's	not	much	different	from	a
traditional	software	development	cycle.	Cygnus	is	doing	its	work	by	subscription
while	a	traditional	house	is	creating	its	new	features	on	spec.

In	fact,	Cygnus	did	so	well	over	such	a	long	period	of	time	that	it	found	it	could
raise	capital.	"Once	Cygnus	had	a	track	record	of	making	money	and	delivering
on	time,	investors	wanted	a	piece	of	it,"	says	Gilmore.

Red	Hat	has	managed	to	sell	enough	CD-ROM	disks	to	fund	the	development	of
new	projects.	They've	created	a	good	selection	of	installation	tools	that	make	it
relatively	easy	for	people	to	use	Linux.	They	also	help	pay	salaries	for	people
like	Alan	Cox	who	contribute	a	great	deal	to	the	evolution	of	the	kernel.	They	do
all	of	this	while	others	are	free	to	copy	their	distribution	disks	verbatim.

McVoy	doesn't	argue	with	these	facts,	but	feels	that	they're	just	a	temporary
occurrence.	The	huge	growth	of	interest	in	Linux	means	that	many	new	folks	are
exploring	the	operating	system.	There's	a	great	demand	for	the	hand-holding	and
packaging	that	Red	Hat	offers.	In	time,	though,	everyone	will	figure	out	how	to
use	the	product	and	the	revenue	stream	should	disappear	as	competition	drives
out	the	ability	to	charge	$50	for	each	disk.

Of	course,	the	folks	at	Cygnus	or	Red	Hat	might	not	disagree	with	McVoy	either.
They	know	it's	a	competitive	world	and	they	figure	that	their	only	choice	is	to
remain	competitive	by	finding	something	that	people	will	want	to	pay	for.
They've	done	it	in	the	past	and	they	should	probably	be	able	to	do	it	in	the	future.
There	are	always	new	features.

17.4	BOUNTIES	FOR	QUICKER	TYPER-UPPERS

......................................

Some	developers	are	starting	to	explore	a	third	way	of	blending	capital	with
open	source	development	by	trying	to	let	companies	and	people	put	bounties	out
on	source	code.	The	concept	is	pretty	simple	and	tuned	to	the	open	software
world.	Let's	say	you	have	an	annoying	habit	of	placing	French	bon	mots	in	the
middle	of	sentences.	Although	this	looks	stupide	to	your	friends,	you	think	it's
quite	chic.	The	problem	is	that	your	old	word	processor's	spell	checker	isn't	quite
la	mode	and	it	only	operates	avec	une	seule	langue.	The	problem	is	that	you've
spent	too	much	time	studying	fran	ais	and	drinking	de	caf	and	not	enough	time
studying	Java,	the	programming	language.	You're	tr	s	d	sol	by	your	word
processor's	inability	to	grok	just	how	BCBG	you	can	be	and	spell-check	in	deux
languages.

The	bounty	system	could	be	your	savior.	You	would	post	a	message	saying,
"Attention!	I	will	reward	with	a	check	for	$100	anyone	who	creates	a	two-
language	spell-checker."	If	you're	lucky,	someone	who	knows	something	about
the	spell-checker's	source	code	will	add	the	feature	in	a	few	minutes.	One

hundred	dollars	for	a	few	minutes'	work	isn't	too	shabby.

It	is	entirely	possible	that	another	person	out	there	is	having	the	same	problem
getting	their	word	processor	to	verstehen	their	needs.	They	might	chip	in	$50	to
the	pool.	If	the	problem	is	truly	grande,	then	the	pot	could	grow	quite	large.

This	solution	is	blessed	with	the	wide-open,	free-market	sensibility	that	many
people	in	the	open	software	community	like.	The	bounties	are	posted	in	the	open
and	anyone	is	free	to	try	to	claim	the	bounties	by	going	to	work.	Ideally,	the
most	knowledgeable	will	be	the	first	to	complete	the	job	and	nab	the	payoff.

Several	developers	are	trying	to	create	a	firm	infrastructure	for	the	plan.	Brian
Behlendorf,	one	of	the	founding	members	of	the	Apache	web	server
development	team,	is	working	with	Tim	O'Reilly's	company	to	build	a	website
known	as	SourceXchange.	Another	group	known	as	CoSource	is	led	by	Bernie
Thompson	and	his	wife,	Laurie.	Both	will	work	to	create	more	software	that	is
released	with	free	source.

Of	course,	these	projects	are	more	than	websites.	They're	really	a	process,	and
how	the	process	will	work	is	still	unclear	right	now.	While	it	is	easy	to	circulate
a	notice	that	some	guy	will	pay	some	money	for	some	software,	it	is	another
thing	to	actually	make	it	work.	Writing	software	is	a	frustrating	process	and	there
are	many	chances	for	disagreement.	The	biggest	question	on	every	developer's
mind	is	"How	can	I	be	sure	I'll	be	paid?"	and	the	biggest	question	on	every	sugar
daddy's	mind	is	"How	can	I	be	sure	that	the	software	works?"

These	questions	are	part	of	any	software	development	experience.	There	is	often
a	large	gap	between	the	expectations	of	the	person	commissioning	the	software
and	the	person	writing	the	code.	In	this	shadow	are	confusion,	betrayal,	and
turmoil.

The	normal	solution	is	to	break	the	project	up	into	milestones	and	require
payment	after	each	milestone	passes.	If	the	coder	is	doing	something
unsatisfactory,	the	message	is	transmitted	when	payment	doesn't	arrive.	Both
SourceXchange	and	CoSource	plan	on	carrying	over	the	same	structure	to	the
world	of	bounty-hunting	programmers.	Each	project	might	be	broken	into	a
number	of	different	steps	and	a	price	for	each	step	might	be	posted	in	advance.

Both	systems	try	to	alleviate	the	danger	of	nonpayment	by	requiring	that
someone	step	in	and	referee	the	end	of	the	project.	A	peer	reviewer	must	be	able

to	look	over	the	specs	of	the	project	and	the	final	code	and	then	determine
whether	money	should	be	paid.	Ideally,	this	person	should	be	someone	both
sides	respect.

A	neutral	party	with	the	ability	to	make	respectable	decisions	is	something	many
programmers	and	consultants	would	welcome.	In	many	normal	situations,	the
contractors	can	only	turn	to	the	courts	to	solve	disagreements,	and	the	legal
system	is	not	really	schooled	in	making	these	kinds	of	decisions.	The	company
with	the	money	is	often	able	to	dangle	payment	in	front	of	the	programmers	and
use	this	as	a	lever	to	extract	more	work.	Many	programmers	have	at	least	one
horror	story	to	tell	about	overly	ambitious	expectations.

Of	course,	the	existence	of	a	wise	neutral	party	who	can	see	deeply	into	the
problems	and	provide	a	fair	solution	is	close	to	a	myth.	Judging	takes	time.
SourceXchange	promises	that	these	peer	reviewers	will	be	paid,	and	this	money
will	probably	have	to	come	from	the	people	offering	the	bounty.	They're	the	only
ones	putting	money	into	the	system	in	the	long	run.	Plus,	the	system	must	make
the	people	offering	bounties	happy	in	the	long	run	or	it	will	fail.

The	CoSource	project	suggests	that	the	developers	must	come	up	with	their	own
authority	who	will	judge	the	end	of	the	job	and	present	this	person	with	their	bid.
The	sponsors	then	decide	whether	to	trust	the	peer	reviewer	when	they	okay	the
job.	The	authorities	will	be	judged	like	the	developers,	and	summaries	of	their
reputation	will	be	posted	on	the	site.	While	it	isn't	clear	how	the	reviewers	will
be	paid,	it	is	not	too	much	to	expect	that	there	will	be	some	people	out	there	who
will	do	it	just	for	the	pleasure	of	having	their	finger	in	the	stew.	They	might,	for
instance,	want	to	offer	the	bounty	themselves	but	be	unable	to	put	up	much
money.	Acting	as	a	reviewer	would	give	them	the	chance	to	make	sure	the
software	did	what	they	wanted	without	putting	up	much	cash.

One	of	the	most	difficult	questions	is	how	to	run	the	marketplace.	A	wide-open
solution	would	let	the	sponsors	pay	when	the	job	was	done	satisfactorily.	The
first	person	to	the	door	with	running	code	that	met	the	specs	would	be	the	one	to
be	paid.	Any	other	team	that	showed	up	later	would	get	nothing.

This	approach	would	offer	the	greatest	guarantees	of	creating	well-running	code
as	quickly	as	possible.	The	programmers	would	have	a	strong	incentive	to	meet
the	specs	quickly	in	order	to	win	the	cash.	The	downside	is	that	the	price	would
be	driven	up	because	the	programmers	would	be	taking	on	more	risk.	They

would	need	to	capitalize	their	own	development	and	take	the	chance	that
someone	might	beat	them	to	the	door.	Anxious	sponsors	who	need	some	code
quickly	should	be	willing	to	pay	the	price.

Another	solution	is	to	award	contracts	before	any	work	is	done.	Developers
would	essentially	bid	on	the	project	and	the	sponsor	would	choose	one	to	start
work.	The	process	would	be	fairly	formal	and	favor	the	seasoned,	connected
programmers.	A	couple	of	kids	working	in	their	spare	time	might	be	able	to	win
an	open	bounty,	but	they	would	be	at	a	great	disadvantage	in	this	system.	Both
CoSource	and	SourceXchange	say	that	they'll	favor	this	sort	of	preliminary
negotiation.

If	the	contracts	are	awarded	before	work	begins,	the	bounty	system	looks	less
like	a	wild	free-for-all	and	more	like	just	a	neutral	marketplace	for	contract
programmers	to	make	their	deals.	Companies	like	Cygnus	already	bid	to	be	paid
for	jobs	that	produce	open	source.	These	market-places	for	bounties	will	need	to
provide	some	structure	and	efficiencies	to	make	it	worth	people's	time	to	use
them.

One	possible	benefit	of	the	bounty	system	is	to	aggregate	the	desires	of	many
small	groups.	While	some	bounties	will	only	serve	the	person	who	asks	for
them,	many	have	the	potential	to	help	people	who	are	willing	to	pay.	An	efficient
system	should	be	able	to	join	these	people	together	into	one	group	and	put	their
money	into	one	pot.

CoSource	says	that	it	will	try	to	put	together	the	bounties	of	many	small	groups
and	allow	people	to	pay	them	with	credit	cards.	It	uses	the	example	of	a	group	of
Linux	developers	who	would	gather	together	to	fund	the	creation	of	an	open
source	version	of	their	favorite	game.	They	would	each	chip	in	$10,	$20,	or	$50
and	when	the	pot	got	big	enough,	someone	would	step	forward.	Creating	a
cohesive	political	group	that	could	effectively	offer	a	large	bounty	is	a	great	job
for	these	sites.

Of	course,	there	are	deeper	questions	about	the	flow	of	capital	and	the	nature	of
risks	in	these	bounty-based	approaches.	In	traditional	software	development,	one
group	pays	for	the	creation	of	the	software	in	the	hope	that	they'll	be	able	to	sell
it	for	more	than	it	cost	to	create.	Here,	the	programmer	would	be	guaranteed	a
fixed	payment	if	he	accomplished	the	job.	The	developer's	risk	is	not	completely
eliminated	because	the	job	might	take	longer	than	they	expected,	but	there	is

little	of	the	traditional	risk	of	a	start-up	firm.	It	may	not	be	a	good	idea	to
separate	the	risk-taking	from	the	people	doing	the	work.	That	is	often	the	best
way	to	keep	people	focused	and	devoted.

Each	of	these	three	systems	shows	how	hard	the	free	software	industry	is
working	at	finding	a	way	for	people	to	pay	their	bills	and	share	information
successfully.	Companies	like	Cygnus	or	BitKeeper	are	real	efforts	built	by
serious	people	who	can't	live	off	the	largesse	of	a	university	or	a	steady	stream	of
government	grants.	Their	success	shows	that	it	is	quite	possible	to	make	money
and	give	the	source	code	away	for	free,	but	it	isn't	easy.

Still,	there	is	no	way	to	know	how	well	these	companies	will	survive	the	brutal
competition	that	comes	from	the	free	flow	of	the	source	code.	There	are	no
barriers	to	entry,	so	each	corporation	must	be	constantly	on	its	toes.	The	business
becomes	one	of	service,	not	manufacturing,	and	that	changes	everything.	There
are	no	grand	slam	home	runs	in	that	world.	There	are	no	billion-dollar
explosions.	Service	businesses	grow	by	careful	attention	to	detail	and	plenty	of
focused	effort.

1.	 FORK

A	T-shirt	once	offered	this	wisdom	to	the	world:	"If	you	love	someone,	set	them
free.	If	they	come	back	to	you,	it	was	meant	to	be.	If	they	don't	come	back,	hunt
them	down	and	kill	them."	The	world	of	free	software	revolves	around	letting
your	source	code	go	off	into	the	world.	If	things	go	well,	others	will	love	the
source	code,	shower	it	with	bug	fixes,	and	send	all	of	this	hard	work	flowing
back	to	you.	It	will	be	a	shining	example	of	harmony	and	another	reason	why	the
free	software	world	is	great.	But	if	things	don't	work	out,	someone	might	fork
you	and	there's	nothing	you	can	do	about	it.

"Fork"	is	a	UNIX	command	that	allows	you	to	split	a	job	in	half.	UNIX	is	an
operating	system	that	allows	several	people	to	use	the	same	computer	to	do
different	tasks,	and	the	operating	system	pretends	to	run	them	simultaneously	by
quickly	jumping	from	task	to	task.	A	typical	UNIX	computer	has	at	least	100
different	tasks	running.	Some	watch	the	network	for	incoming	data,	some	run
programs	for	the	user,	some	watch	over	the	file	system,	and	others	do	many
menial	tasks.

If	you	"fork	a	job,"	you	arrange	to	split	it	into	two	parts	that	the	computer	treats
as	two	separate	jobs.	This	can	be	quite	useful	if	both	jobs	are	often	interrupted,
because	one	can	continue	while	the	other	one	stalls.	This	solution	is	great	if	two
tasks,	A	and	B,	need	to	be	accomplished	independently	of	each	other.	If	you	use
one	task	and	try	to	accomplish	A	first,	then	B	won't	start	until	A	finishes.	This
can	be	quite	inefficient	if	A	stalls.	A	better	solution	is	to	fork	the	job	and	treat	A
and	B	as	two	separate	tasks.

Most	programmers	don't	spend	much	time	talking	about	these	kinds	of	forks.
They're	mainly	concerned	about	forks	in	the	political	process.

Programmers	use	"fork"	to	describe	a	similar	process	in	the	organization	of	a
project,	but	the	meaning	is	quite	different.	Forks	of	a	team	mean	that	the	group
splits	and	goes	in	different	directions.	One	part	might	concentrate	on	adding
support	for	buzzword	Alpha	while	the	other	might	aim	for	full	buzzword	Beta
compatibility.

In	some	cases,	there	are	deep	divisions	behind	the	decision	to	fork.	One	group
thinks	buzzword	Alpha	is	a	sloppy,	brain-dead	kludge	job	that's	going	to	blow	up
in	a	few	years.	The	other	group	hates	buzzword	Beta	with	a	passion.	Disputes
like	this	happen	all	the	time.	They	often	get	resolved	peacefully	when	someone

comes	up	with	buzzword	Gamma,	which	eclipses	them	both.	When	no	Gamma
arrives,	people	start	talking	about	going	their	separate	ways	and	forking	the
source.	If	the	dust	settles,	two	different	versions	start	appearing	on	the	Net
competing	with	each	other	for	the	hearts	and	CPUs	of	the	folks	out	there.
Sometimes	the	differences	between	the	versions	are	great	and	sometimes	they're
small.	But	there's	now	a	fork	in	the	evolution	of	the	source	code,	and	people
have	to	start	making	choices.

The	free	software	community	has	a	strange	attitude	toward	forks.	On	one	hand,
forking	is	the	whole	reason	Stallman	wrote	the	free	software	manifesto.	He
wanted	the	right	and	the	ability	to	mess	around	with	the	software	on	his
computer.	He	wanted	to	be	free	to	change	it,	modify	it,	and	tear	it	to	shreds	if	he
felt	like	doing	it	one	afternoon.	No	one	should	be	able	to	stop	him	from	doing
that.	He	wanted	to	be	totally	free.

On	the	other	hand,	forking	can	hurt	the	community	by	duplicating	efforts,
splitting	alliances,	and	sowing	confusion	in	the	minds	of	users.	If	Bob	starts
writing	and	publishing	his	own	version	of	Linux	out	of	his	house,	then	he's
taking	some	energy	away	from	the	main	version.	People	start	wondering	if	the
version	they're	running	is	the	Missouri	Synod	version	of	Emacs	or	the	Christian
Baptist	version.	Where	do	they	send	bug	fixes?	Who's	in	charge?	Distribution
groups	like	Debian	or	Red	Hat	have	to	spend	a	few	moments	trying	to	decide
whether	they	want	to	include	one	version	or	the	other.	If	they	include	both,	they
have	to	choose	one	as	the	default.	Sometimes	they	just	throw	up	their	hands	and
forget	about	both.	It's	a	civil	war,	and	those	are	always	worse	than	a	plain	old
war.

Some	forks	evolve	out	of	personalities	that	just	rub	each	other	the	wrong	way.
I've	heard	time	and	time	again,	"Oh,	we	had	to	kick	him	out	of	the	group	because
he	was	offending	people."	Many	members	of	the	community	consider	this	kind
of	forking	bad.	They	use	the	same	tone	of	voice	to	describe	a	fork	of	the	source
code	as	they	use	to	describe	the	breakup	of	two	lovers.	It	is	sad,	unfortunate,
unpleasant,	and	something	we'll	never	really	understand	because	we	weren't
there.	Sometimes	people	take	sides	because	they	have	a	strong	opinion	about
who	is	right.	They'll	usually	go	off	and	start	contributing	to	that	code	fork.	In
other	cases,	people	don't	know	which	to	pick	and	they	just	close	their	eyes	and
join	the	one	with	the	cutest	logo.

18.1	FORKS	AND	THE	THREAT	OF	DISUNITY

.....................................

Eric	Raymond	once	got	in	a	big	fight	with	Richard	Stallman	about	the	structure
of	Emacs	Lisp.	Raymond	said,	"The	Lisp	libraries	were	in	bad	shape	in	a	number
of	ways.	They	were	poorly	documented.	There	was	a	lot	of	work	that	had	gone
on	outside	the	FSF	that	should	be	integrated	and	I	wanted	to	merge	in	the	best
work	from	outside."

The	problem	is	that	Stallman	didn't	want	any	part	of	Raymond's	work.	"He	just
said,	'I	won't	take	those	changes	into	the	distribution.'	That's	his	privilege	to	do,"
Raymond	said.

That	put	Raymond	in	an	awkward	position.	He	could	continue	to	do	the	work,
create	his	own	distribution	of	Emacs,	and	publicly	break	with	Stallman.	If	he
were	right	and	the	Lisp	code	really	needed	work,	then	he	would	probably	find
more	than	a	few	folks	who	would	cheer	his	work.	They	might	start	following
him	by	downloading	his	distribution	and	sending	their	bug	fixes	his	way.	Of
course,	if	he	were	wrong,	he	would	set	up	his	own	web	server,	do	all	the	work,
put	his	Lisp	fixes	out	there,	and	find	that	no	one	would	show	up.	He	would	be
ignored	because	people	found	it	easier	to	just	download	Stallman's	version	of
Emacs,	which	everyone	thought	was	sort	of	the	official	version,	if	one	could	be
said	to	exist.	They	didn't	use	the	Lisp	feature	too	much	so	it	wasn't	worth
thinking	about	how	some	guy	in	Pennsylvania	had	fixed	it.	They	were	getting
the	real	thing	from	the	big	man	himself.

Of	course,	something	in	between	would	probably	happen.	Some	folks	who	cared
about	Lisp	would	make	a	point	of	downloading	Raymond's	version.	The	rest	of
the	world	would	just	go	on	using	the	regular	version.	In	time,	Stallman	might
soften	and	embrace	the	changes,	but	he	might	not.	Perhaps	someone	would	come
along	and	create	a	third	distribution	that	melded	Raymond's	changes	with
Stallman's	into	a	harmonious	version.	That	would	be	a	great	thing,	except	that	it
would	force	everyone	to	choose	from	among	three	different	versions.

In	the	end,	Raymond	decided	to	forget	about	his	improvements.	"Emacs	is	too
large	and	too	complicated	and	forking	is	bad.	There	was	in	fact	one	group	that
got	so	fed	up	with	working	with	him	that	they	did	fork	Emacs.	That's	why	X
Emacs	exists.	But	major	forks	like	that	are	rare	events	and	I	didn't	want	to	be
part	of	perpetrating	another	one,"	he	said.	Someone	else	was	going	to	have	to
start	the	civil	war	by	firing	those	shots	at	Fort	Sumter.

18.2	BSD'S	GARDEN	OF	FORKING	PATHS

..................................

Some	forks	aren't	so	bad.	There	often	comes	a	time	when	people	have	legitimate
reasons	to	go	down	different	paths.	What's	legitimate	and	what's	not	is	often
decided	after	a	big	argument,	but	the	standard	reasons	are	the	same	ones	that
drive	programming	projects.	A	good	fork	should	make	a	computer	run	software
a	gazillion	times	faster.	Or	it	might	make	the	code	much	easier	to	port	to	a	new
platform.	Or	it	might	make	the	code	more	secure.	There	are	a	thousand	different
reasons,	and	it's	impossible	to	really	measure	which	is	the	right	one.	The	only
true	measure	is	the	number	of	people	who	follow	each	branch	of	the	fork.	If	a
project	has	a	number	of	good	disciples	and	the	bug	fixes	are	coming	quickly,
then	people	tend	to	assume	it	is	legitimate.

The	various	versions	of	the	BSD	software	distribution	are	some	of	the	more
famous	splits	around.	All	are	descended,	in	one	way	or	another,	from	the	original
versions	of	UNIX	that	came	out	of	Berkeley.	Most	of	the	current	ones	evolved
from	the	4.3BSD	version	and	the	Network	Release	2	and	some	integrated	code
from	the	4.4BSD	release	after	it	became	free.	All	benefited	from	the	work	of	the
hundreds	of	folks	who	spent	their	free	time	cloning	the	features	controlled	by
AT&T.	All	of	them	are	controlled	by	the	same	loose	BSD	license	that	gives
people	the	right	to	do	pretty	much	anything	they	want	to	the	code.	All	of	them
share	the	same	cute	daemon	as	a	mascot.

That's	where	the	similarities	end.	The	FreeBSD	project	is	arguably	the	most
successful	version.	It	gets	a	fairly	wide	distribution	because	its	developers	have	a
good	deal	with	Walnut	Creek	CD-ROM	Distributors,	a	company	that	packages
up	large	bundles	of	freeware	and	shareware	on	the	Net	and	then	sells	them	on
CD-ROM.	The	system	is	well	known	and	widely	used	because	the	FreeBSD
team	concentrates	on	making	the	software	easy	to	use	and	install	on	Intel
computers.	Lately,	they've	created	an	Alpha	version,	but	most	of	the	users	run
the	software	on	x86	chips.	Yahoo!	uses	FreeBSD.

FreeBSD,	of	course,	began	as	a	fork	of	an	earlier	project	known	as	386BSD,
started	by	Bill	Jolitz.	This	version	of	BSD	was	more	of	an	academic	example	or
a	proof-of-concept	than	a	big	open	source	project	designed	to	take	over	the
world.

Jordan	Hubbard,	someone	who	would	come	along	later	to	create	a	fork	of
386BSD,	said	of	Jolitz's	decision	to	create	a	386-based	fork	of	BSD,	"Bill's	real
contribution	was	working	with	the	386	port.	He	was	kind	of	an	outsider.	No	one
else	saw	the	386	as	interesting.	Berkeley	had	a	myopic	attitude	toward	PCs.
They	were	just	toys.	No	one	would	support	Intel.	That	was	the	climate	at	the
time.	No	one	really	took	PCs	seriously.	Bill's	contribution	was	to	realize	that	PCs
were	going	places."

From	the	beginning,	Hubbard	and	several	others	saw	the	genius	in	creating	a	386
version	of	BSD	that	ran	on	the	cheapest	hardware	available.	They	started	adding
features	and	gluing	in	bug	fixes,	which	they	distributed	as	a	file	that	modified
the	main	386BSD	distribution	from	Jolitz.	This	was	practical	at	the	beginning
when	the	changes	were	few,	but	it	continued	out	of	respect	for	the	original
creator,	even	after	the	patches	grew	complicated.

Finally,	a	tussle	flared	up	in	1993.	Jordan	Hubbard,	one	of	the	forkers,	writes	in
his	history	of	the	project,

386BSD	was	Bill	Jolitz's	operating	system,	which	had	been	up	to	that	point
suffering	rather	severely	from	almost	a	year's	worth	of	neglect.	As	the	patchkit
swelled	ever	more	uncomfortably	with	each	passing	day,	we	were	in	unanimous
agreement	that	something	had	to	be	done	and	decided	to	try	and	assist	Bill	by
providing	this	interim	"cleanup"	snapshot.	Those	plans	came	to	a	rude	halt	when
Bill	Jolitz	suddenly	decided	to	withdraw	his	sanction	from	the	project	and
without	any	clear	indication	of	what	would	be	done	instead.

The	FreeBSD	team	pressed	on	despite	the	denial.	They	decided	to	fork.	Today,
386BSD	is	largely	part	of	the	history	of	computing	while	FreeBSD	is	a	living,
current	OS,	at	least	at	the	time	this	book	was	written.	The	FreeBSD	team	has
done	a	good	job	distributing	bug-free	versions,	and	they've	been	paid	off	in
loyalty,	disciples,	and	money	and	computers	from	Walnut	Creek.	Forking	can
often	be	good	for	society	because	it	prevents	one	person	or	clique	from
thwarting	another	group.	The	free	software	world	is	filled	with	many	of	the	same
stories	of	politics	that	float	across	the	watercoolers	of	corporations,	but	the
stories	don't	have	to	end	the	same	way.	If	one	boss	or	group	tries	to	shut	down	a
free	software	project,	it	really	can't.	The	source	code	is	freely	available,	and
people	are	free	to	carry	on.	The	FreeBSD	project	is	one	example.

Of	course,	good	software	can	have	anti-forking	effects.	Linus	Torvalds	said	in

one	interview,	"Actually,	I	have	never	even	checked	386BSD	out;	when	I	started
on	Linux	it	wasn't	available	(although	Bill	Jolitz's	series	on	it	in	Dr.	Dobbs
Journal	had	started	and	were	interesting),	and	when	386BSD	finally	came	out,
Linux	was	already	in	a	state	where	it	was	so	usable	that	I	never	really	thought
about	switching.	If	386BSD	had	been	available	when	I	started	on	Linux,	Linux
would	probably	never	have	happened."	So	if	386BSD	had	been	easier	to	find	on
the	Net	and	better	supported,	Linux	might	never	have	begun.

Once	someone	starts	forking	BSD,	one	fork	is	rarely	enough.	Another	group
known	as	NetBSD	also	grew	fed	up	with	the	progress	of	386BSD	in	1993.	This
group,	however,	wanted	to	build	a	platform	that	ran	well	on	many	different
machines,	not	just	the	Intel	386.	The	FreeBSD	folks	concentrated	on	doing	a
good	job	on	Intel	boxes,	while	the	NetBSD	wanted	to	create	a	version	that	ran	on
many	different	machines.	Their	slogan	became	"Of	course	it	runs	NetBSD."

NetBSD	runs	on	practically	every	machine	you	can	imagine,	including	older,
less	up-to-date	machines	like	the	Amiga	and	the	Atari.	It	has	also	been	embraced
by	companies	like	NeXT,	which	bundled	parts	of	it	into	the	version	of	the	OS	for
the	Macintosh	known	as	Rhapsody.	Of	course,	the	most	common	chips	like	the
Intel	line	and	the	Alpha	are	also	well	supported.

The	NetBSD	community	emerged	at	the	same	time	as	the	FreeBSD	world.	They
didn't	realize	that	each	team	was	working	on	the	same	project	at	the	same	time.
But	once	they	started	releasing	their	own	versions,	they	stayed	apart.

"The	NetBSD	group	has	always	been	the	purest.	They	saw	it	as	an	OS	research
vehicle.	That	was	what	CSRG	was	doing.	Their	only	mandate	was	to	do
interesting	research,"	said	Hubbard.	"It's	a	very	different	set	of	goals	than	we
concentrated	on	for	the	386.	The	important	thing	for	us	was	to	polish	it	up.	We
put	all	of	our	efforts	into	polishing,	not	porting.	This	was	part	of	our	bringing
BSD	to	the	masses	kind	of	thing.	We're	going	for	numbers.	We're	going	for	mass
penetration."

This	orientation	meant	that	NetBSD	never	really	achieved	the	same	market
domination	as	FreeBSD.	The	group	only	recently	began	shipping	versions	of
NetBSD	on	CD-ROM.	FreeBSD,	on	the	other	hand,	has	always	excelled	at
attracting	new	and	curious	users	thanks	to	their	relationship	with	Walnut	Creek.
Many	experimenters	and	open-minded	users	picked	up	one	of	the	disks,	and	a
few	became	excited	enough	to	actually	make	some	contributions.	The	Walnut

Creek	partnership	also	helped	the	FreeBSD	team	understand	what	it	needed	to
do	to	make	their	distribution	easier	to	install	and	simpler	to	use.	That	was	Walnut
Creek's	business,	after	all.

18.3	FLAMES,	FIGHTS,	AND	THE	BIRTH	OF	OPENBSD

...

The	forking	did	not	stop	with	NetBSD.	Soon	one	member	of	the	NetBSD	world,
Theo	de	Raadt,	began	to	rub	some	people	the	wrong	way.	One	member	of	the
OpenBSD	team	told	me,	"The	reason	for	the	split	from	NetBSD	was	that	Theo
got	kicked	out.	I	don't	understand	it	completely.	More	or	less	they	say	he	was
treating	users	on	the	mailing	list	badly.	He	does	tend	to	be	short	and	terse,	but
there's	nothing	wrong	with	that.	He	was	one	of	the	founding	members	of
NetBSD	and	they	asked	him	to	resign."

Now,	four	years	after	the	split	began	in	1995,	de	Raadt	is	still	a	bit	hurt	by	their
decision.	He	says	about	his	decision	to	fork	BSD	again,	"I	had	no	choice.	I	really
like	what	I	do.	I	really	like	working	with	a	community.	At	the	time	it	all
happened,	I	was	the	second	most	active	developer	in	their	source	tree.	They	took
the	second	most	active	developer	and	kicked	him	off."

Well,	they	didn't	kick	him	out	completely,	but	they	did	take	away	his	ability	to
"commit"	changes	to	the	source	tree	and	make	them	permanent.	After	the	split,
de	Raadt	had	to	e-mail	his	contributions	to	a	member	of	the	team	so	they	could
check	them	in.	This	didn't	sit	well	with	de	Raadt,	who	saw	it	as	both	a	demotion
and	a	real	impediment	to	doing	work.

The	root	of	the	split	is	easy	to	see.	De	Raadt	is	energetic.	He	thinks	and	speaks
quickly	about	everything.	He	has	a	clear	view	about	most	free	software	and	isn't
afraid	to	share	it.	While	some	BSD	members	are	charitable	and	conciliatory	to
Richard	Stallman,	de	Raadt	doesn't	bother	to	hide	his	contempt	for	the
organization.	"The	Free	Software	Foundation	is	one	of	the	most	misnamed
organizations,"	he	says,	explaining	that	only	BSD-style	licensees	have	the	true
freedom	to	do	whatever	they	want	with	the	software.	The	GNU	General	Public
License	is	a	pair	of	handcuffs	to	him.

De	Raadt	lives	in	Calgary	and	dresses	up	his	personal	web	page	with	a	picture	of
himself	on	top	of	a	mountain	wearing	a	bandanna.	If	you	want	to	send	him	a
pizza	for	any	reason,	he's	posted	the	phone	number	of	his	favorite	local	shop

(403/531-3131).	Unfortunately,	he	reports	that	they	don't	take	foreign	credit	card
numbers	anymore.

He	even	manages	to	come	up	with	strong	opinions	about	simple	things	that	he
ostensibly	loves.	Mountain	biking	is	a	big	obsession,	but,	he	says,	"I	like	mud
and	despise	'wooded	back-alleys'	(what	most	people	call	logging	roads)."	That's
not	the	best	way	to	make	friends	with	less	extreme	folks	who	enjoy	a	Sunday
ride	down	logging	roads.

If	you	like	cats,	don't	read	what	he	had	to	say	about	his	pets:	"I	own	cats.	Their
names	are	Galileo	and	Kepler--they're	still	kittens.	Kepler-the	little	bitch--can
apparently	teleport	through	walls.	Galileo	is	a	rather	cool	monster.	When	they
become	full-grown	cats	I	will	make	stew	&	soup	out	of	them.	(Kepler	is	only
good	for	soup)."

Throwaway	comments	like	this	have	strange	effects	on	the	Net,	where	text	is	the
only	way	people	can	communicate.	There	are	no	facial	gestures	or	tonal	clues	to
tell	people	someone	is	joking	around,	and	some	people	don't	have	well-
developed	scanners	for	irony	or	sarcasm.	Some	love	the	sniping	and	baiting,
while	others	just	get	annoyed.	They	can't	let	snide	comments	slide	off	their	back.
Eventually,	the	good	gentlefolk	who	feel	that	personal	kindness	and	politeness
should	still	count	for	something	in	this	world	get	annoyed	and	start	trying	to	do
something.

It's	easy	to	see	how	this	affected	the	NetBSD	folks,	who	conduct	their	business
in	a	much	more	proper	way.	Charles	Hannum,	for	instance,	refused	to	talk	to	me
about	the	schism	unless	I	promised	that	he	would	be	able	to	review	the	parts	of
the	book	that	mentioned	NetBSD.	He	also	suggested	that	forks	weren't
particularly	interesting	and	shouldn't	be	part	of	the	book.	Others	begged	off	the
questions	with	more	polite	letters	saying	that	the	split	happened	a	long	time	ago
and	wasn't	worth	talking	about	anymore.	Some	pointed	out	that	most	of	the
members	of	the	current	NetBSD	team	weren't	even	around	when	the	split
happened.

While	their	silence	may	be	quite	prudent	and	a	better	way	to	spend	a	life,	it
certainly	didn't	help	me	get	both	sides	of	the	story.	I	pointed	out	that	they
wouldn't	accept	code	into	the	NetBSD	tree	if	the	author	demanded	the	right	to
review	the	final	distribution.	I	said	they	could	issue	a	statement	or	conduct	the
interview	by	e-mail.	One	argued	that	there	was	no	great	problem	if	a	few

paragraphs	had	to	be	deleted	from	the	book	in	the	end.	I	pointed	out	that	I
couldn't	give	the	hundreds	of	people	I	spoke	with	veto	power	over	the
manuscript.	It	would	be	impossible	to	complete.	The	book	wasn't	being	written
by	a	committee.	No	one	at	NetBSD	budged.

De	Raadt,	on	the	other	hand,	spoke	quite	freely	with	no	preconditions	or
limitations.	He	still	keeps	a	log	file	with	a	good	number	of	email	letters
exchanged	during	the	separation	and	makes	it	easy	to	read	them	on	his	personal
website.	That's	about	as	open	as	you	can	get.	The	NetBSD	folks	who	refused	to
talk	to	me,	on	the	other	hand,	seemed	intent	on	keeping	control	of	the	story.
Their	silence	came	from	a	different	world	than	the	website	offering	the	phone
number	of	the	local	pizza	place	as	a	hint.	They	were	Dragnet;	de	Raadt	was
Politically	Incorrect.

When	the	NetBSD	folks	decided	to	do	something,	they	took	away	de	Raadt's
access	to	the	source	tree.	He	couldn't	just	poke	around	the	code	making	changes
as	he	went	along.	Well,	he	could	poke	around	and	make	changes,	but	not	to	the
official	tree	with	the	latest	version.	The	project	was	open	source,	after	all.	He
could	download	the	latest	release	and	start	fiddling,	but	he	couldn't	make	quasi-
official	decisions	about	what	source	was	part	of	the	latest	official	unreleased
version.

De	Raadt	thought	this	was	a	real	barrier	to	work.	He	couldn't	view	the	latest
version	of	the	code	because	it	was	kept	out	of	his	view.	He	was	stuck	with	the
last	release,	which	might	be	several	months	old.	That	put	him	at	an	extreme
disadvantage	because	he	might	start	working	on	a	problem	only	to	discover	that
someone	had	either	fixed	it	or	changed	it.

Chris	Demetriou	found	himself	with	the	task	of	kicking	de	Raadt	off	of	the	team.
His	letter,	which	can	still	be	found	on	the	OpenBSD	site,	said	that	de	Raadt's
rough	behavior	and	abusive	messages	had	driven	away	people	who	might	have
contributed	to	the	project.	Demetriou	also	refused	to	talk	about	NetBSD	unless
he	could	review	the	sections	of	the	book	that	contained	his	comments.	He	also
threatened	to	take	all	possible	action	against	anyone	who	even	quoted	his	letters
in	a	commercial	book	without	his	permission.

De	Raadt	collected	this	note	from	Demetriou	and	the	firestorm	that	followed	in	a
300k	file	that	he	keeps	on	his	website.	The	NetBSD	core	tried	to	be	polite	and
firm,	but	the	matter	soon	degenerated	into	a	seven-month-long	flame	war.	After

some	time,	people	started	having	meta-arguments,	debating	whether	the	real
argument	was	more	or	less	like	the	bickering	of	a	husband	and	wife	who	happen
to	work	at	the	same	company.	Husbands	and	wives	should	keep	their	personal
fights	out	of	the	workplace,	they	argued.	And	so	they	bickered	over	whether	de
Raadt's	nastygrams	were	part	of	his	"job"	or	just	part	of	his	social	time.

Through	it	all,	de	Raadt	tried	to	get	back	his	access	to	the	source	tree	of	NetBSD
and	the	group	tried	to	propose	all	sorts	of	mechanisms	for	making	sure	he	was
making	a	"positive"	contribution	and	getting	along	with	everyone.	At	one	time,
they	offered	him	a	letter	to	sign.	These	negotiations	went	nowhere,	as	de	Raadt
objected	to	being	forced	to	make	promises	that	other	contributors	didn't	have	to.

De	Raadt	wrote	free	software	because	he	wanted	to	be	free	to	make	changes	or
write	code	the	way	he	wanted	to	do	it.	If	he	had	wanted	to	wear	the	happy-face
of	a	positive	contributor,	he	could	have	gotten	a	job	at	a	corporation.	Giving	up
the	right	to	get	in	flame	wars	and	speak	at	will	may	not	be	that	much	of	a	trade-
off	for	normal	people	with	fulltime	jobs.	Normal	folks	swallow	their	pride	daily.
Normal	people	don't	joke	about	turning	their	cats	into	soup.	But	de	Raadt	figured
it	was	like	losing	a	bit	of	his	humanity	and	signing	up	willingly	for	a	set	of
manacles.	It	just	wasn't	livable.

The	argument	lasted	months.	De	Raadt	felt	that	he	tried	and	tried	to	rejoin	the
project	without	giving	away	his	honor.	The	core	NetBSD	team	argued	that	they
just	wanted	to	make	sure	he	would	be	positive.	They	wanted	to	make	sure	he
wouldn't	drive	away	perfectly	good	contributors	with	brash	antics.	No	one	ever
gained	any	ground	in	the	negotiations	and	in	the	end,	de	Raadt	was	gone.

The	good	news	is	that	the	fork	didn't	end	badly.	De	Raadt	decided	he	wasn't
going	to	take	the	demotion.	He	just	couldn't	do	good	work	if	he	had	to	run	all	of
his	changes	by	one	of	the	team	that	kicked	him	off	the	project.	It	took	too	long	to
ask	"Mother,	may	I?"	to	fix	every	little	bug.	If	he	was	going	to	have	to	run	his
own	tree,	he	might	as	well	go	whole	hog	and	start	his	own	version	of	BSD.	He
called	it	OpenBSD.	It	was	going	to	be	completely	open.	There	were	going	to	be
relatively	few	controls	on	the	members.	If	the	NetBSD	core	ran	its	world	like	the
Puritan	villagers	in	a	Nathaniel	Hawthorne	story,	then	de	Raadt	was	going	to	run
his	like	Club	Med.

OpenBSD	struggled	for	several	months	as	de	Raadt	tried	to	attract	more
designers	and	coders	to	his	project.	It	was	a	battle	for	popularity	in	many	ways,

not	unlike	high	school.	When	the	cliques	split,	everyone	had	to	pick	and	choose.
De	Raadt	had	to	get	some	folks	in	his	camp	if	he	was	going	to	make	some
lemonade.

The	inspiration	came	to	de	Raadt	one	day	when	he	discovered	that	the	flame	war
archive	on	his	web	page	was	missing	a	few	letters.	He	says	that	someone	broke
into	his	machine	and	made	a	few	subtle	deletions.	Someone	who	had	an	intimate
knowledge	of	the	NetBSD	system.	Someone	who	cared	about	the	image
portrayed	by	the	raw	emotions	in	the	supposedly	private	letters.

He	clarifies	his	comments	to	make	it	clear	that	he's	not	sure	it	was	someone	from
the	NetBSD	core.	"I	never	pursued	it.	If	it	happens,	it's	your	own	fault.	It's	not
their	fault,"	he	said.	Of	course,	the	folks	from	NetBSD	refused	to	discuss	this
matter	or	answer	questions	unless	they	could	review	the	chapter.

This	break-in	gave	him	a	focus.	De	Raadt	looked	at	NetBSD	and	decided	that	it
was	too	insecure.	He	gathered	a	group	of	like-minded	people	and	began	to	comb
the	code	for	potential	insecurities.

"About	the	same	time,	I	got	involved	with	a	company	that	wrote	a	network
security	scanner.	Three	of	the	people	over	there	started	playing	with	the	source
tree	and	searching	for	security	holes.	We	started	finding	problems	all	over	the
place,	so	we	started	a	comprehensive	security	audit.	We	started	from	the
beginning.	Our	task	load	increased	massively.	At	one	time,	I	had	five	pieces	of
paper	on	my	desk	full	of	things	to	look	for,"	he	said.

Security	holes	in	operating	systems	are	strange	beasts	that	usually	appear	by
mistake	when	the	programmer	makes	an	unfounded	assumption.	One	of	the	best-
known	holes	is	the	buffer	overflow,	which	became	famous	in	1988	after	Robert
Morris,	then	a	graduate	student	at	Cornell,	unleashed	a	program	that	used	the
loophole	to	bring	several	important	parts	of	the	Internet	to	a	crawl.

In	this	case,	the	programmer	creates	a	buffer	to	hold	all	of	the	information	that
someone	on	the	net	might	send.	Web	browsers,	for	instance,	send	requests	like
"GET	http://www.nytimes.com"	to	ask	for	the	home	page	of	the	New	York
Times	website.	The	programmer	must	set	aside	some	chunk	of	memory	to	hold
this	request,	usually	a	block	that	is	about	512	bytes	long.	The	programmer
chooses	an	amount	that	should	be	more	than	enough	for	all	requests,	including
the	strangest	and	most	complicated.

Before	the	attack	became	well	known,	programmers	would	often	ignore	the
length	of	the	request	and	assume	that	512	bytes	was	more	than	enough	for
anything.	Who	would	ever	type	a	URL	that	long?

Who	had	an	e-mail	address	that	long?	Attackers	soon	figured	out	that	they	could
send	more	than	512	bytes	and	started	writing	over	the	rest	of	the	computer's
memory.	The	program	would	dutifully	take	in	100,000	bytes	and	keep	writing	it
to	memory.	An	attacker	could	download	any	software	and	start	it	running.	And
attackers	did	this.

De	Raadt	and	many	others	started	combing	the	code	for	loopholes.	They	made
sure	every	program	that	used	a	buffer	included	a	bit	of	code	that	would	check	to
ensure	that	no	hacker	was	trying	to	sneak	in	more	than	the	buffer	could	hold.
They	checked	thousands	of	other	possibilities.	Every	line	was	checked	and
changes	were	made	even	if	there	was	no	practical	way	for	someone	to	get	at	the
potential	hole.	Many	buffers,	for	instance,	only	accept	information	from	the
person	sitting	at	the	terminal.	The	OpenBSD	folks	changed	them,	too.

This	audit	began	soon	after	the	fork	in	1995	and	continues	to	this	day.	Most	of
the	major	work	is	done	and	the	group	likes	to	brag	that	they	haven't	had	a	hole
that	could	be	exploited	remotely	to	gain	root	access	in	over	two	years.	The	latest
logo	boasts	the	tag	line	"Sending	kiddies	to	/dev/null	since	1995."	That	is,	any
attacker	is	going	to	go	nowhere	with	OpenBSD	because	all	of	the	extra
information	from	the	attacks	would	be	routed	to	/dev/null,	a	UNIX	conceit	for
being	erased,	ignored,	and	forgotten.

The	OpenBSD	fork	is	a	good	example	of	how	bad	political	battles	can	end	up
solving	some	important	technical	problems.	Everyone	fretted	and	worried	when
de	Raadt	announced	that	he	was	forking	the	BSD	world	one	more	time.	This
would	further	dilute	the	resources	and	sow	confusion	among	users.	The
concentration	on	security,	however,	gave	OpenBSD	a	brand	identity,	and	the
other	BSD	distributions	keep	at	least	one	eye	on	the	bug	fixes	distributed	by	the
OpenBSD	team.	These	often	lead	to	surreptitious	fixes	in	their	own	distribution.

The	focus	also	helped	him	attract	new	coders	who	were	interested	in	security.
"Some	of	them	used	to	be	crackers	and	they	were	really	cool	people.	When	they
become	eighteen,	it	becomes	a	federal	offense,	you	know,"	de	Raadt	says.

This	fork	may	have	made	the	BSD	community	stronger	because	it	effectively

elevated	the	focus	on	security	and	cryptography	to	the	highest	level.	In	the
corporate	world,	it's	like	taking	the	leader	of	the	development	team	responsible
for	security	and	promoting	him	from	senior	manager	to	senior	executive	vice
president	of	a	separate	division.	The	autonomy	also	gave	the	OpenBSD	team	the
ability	to	make	bold	technical	decisions	for	their	own	reasons.	If	they	saw	a
potential	security	problem	that	might	hurt	usability	or	portability,	the	OpenBSD
team	could	make	the	change	without	worrying	that	other	team	members	would
complain.	OpenBSD	was	about	security.	If	you	wanted	to	work	on	portability,	go
to	NetBSD.	If	you	cared	about	ease-of-use	on	Intel	boxes,	go	to	FreeBSD.
Creating	a	separate	OpenBSD	world	made	it	possible	to	give	security	a	strong
focus.

18.4	TEMPORARY	FORKS

....................

It's	a	mistake	to	see	these	forks	as	absolute	splits	that	never	intermingle	again.
While	NetBSD	and	OpenBSD	continue	to	glower	at	each	other	across	the
Internet	ether,	the	groups	share	code	frequently	because	the	licenses	prevent	one
group	from	freezing	out	another.

Jason	Wright,	one	of	the	OpenBSD	developers,	says,	"We	do	watch	each	other's
source	trees.	One	of	the	things	I	do	for	fun	is	take	drivers	out	of	FreeBSD	and
port	them	to	OpenBSD.	Then	we	have	support	for	a	new	piece	of	hardware."

He	says	he	often	looks	for	drivers	written	by	Bill	Paul,	because	"I've	gotten	used
to	his	style.	So	I	know	what	to	change	when	I	receive	his	code.	I	can	do	it	in
about	five	to	six	hours.	That	is,	at	least	a	rough	port	to	test	if	it	works."

Still,	the	work	is	not	always	simple.	He	says	some	device	drivers	are	much
harder	to	handle	because	both	groups	have	taken	different	approaches	to	the
problem.	"SCSI	drivers	are	harder,"	he	says.	"There's	been	some	divergence	in
the	layering	for	SCSI.	They're	using	something	called	CAM.	We've	got	an	older
implementation	that	we've	stuck	to."	That	is,	the	FreeBSD	has	reworked	the
structure	of	the	way	that	the	SCSI	information	is	shipped	to	the	parts	of	the
system	asking	for	information.	The	OpenBSD	hasn't	adopted	their	changes,
perhaps	because	of	security	reasons	or	perhaps	because	of	inertia	or	perhaps
because	no	one	has	gotten	around	to	thinking	about	it.	The	intermingling	isn't
perfect.

Both	NetBSD	and	FreeBSD	work	on	security,	too.	They	also	watch	the	change
logs	of	OpenBSD	and	note	when	security	holes	are	fixed.	They	also	discover
their	own	holes,	and	OpenBSD	may	use	them	as	an	inspiration	to	plug	their	own
code.	The	discoveries	and	plugs	go	both	ways	as	the	groups	compete	to	make	a
perfect	OS.

Kirk	McKusick	says,	"The	NetBSD	and	the	OpenBSD	have	extremely	strong
personalities.	Each	one	is	absolutely	terrified	the	other	will	gain	an	inch."

While	the	three	forks	of	BSD	may	cooperate	more	than	they	compete,	the	Linux
world	still	likes	to	look	at	the	BSD	world	with	a	bit	of	contempt.	All	of	the	forks
look	somewhat	messy,	even	if	having	the	freedom	to	fork	is	what	Stallman	and
GNU	are	ostensibly	fighting	to	achieve.	The	Linux	enthusiasts	seem	to	think,
"We've	got	our	ducks	in	a	single	row.	What's	your	problem?"	It's	sort	of	like	the
Army	mentality.	If	it's	green,	uniform,	and	the	same	everywhere,	then	it	must	be
good.

The	BSD	lacks	the	monomaniacal	cohesion	of	Linux,	and	this	seems	to	hurt	their
image.	The	BSD	community	has	always	felt	that	Linux	is	stealing	the	limelight
that	should	be	shared	at	least	equally	between	the	groups.	Linux	is	really	built
around	a	cult	of	Linus	Torvalds,	and	that	makes	great	press.	It's	very	easy	for	the
press	to	take	photos	of	one	man	and	put	him	on	the	cover	of	a	magazine.	It's
simple,	clean,	neat,	and	perfectly	amenable	to	a	30-second	sound	bite.
Explaining	that	there's	FreeBSD,	NetBSD,	OpenBSD,	and	who	knows	what
smaller	versions	waiting	in	the	wings	just	isn't	as	manageable.

Eric	Raymond,	a	true	disciple	of	Linus	Torvalds	and	Linux,	sees	it	in	technical
terms.	The	BSD	community	is	proud	of	the	fact	that	each	distribution	is	built	out
of	one	big	source	tree.	They	get	all	the	source	code	for	all	the	parts	of	the	kernel,
the	utilities,	the	editors,	and	whatnot	together	in	one	place.	Then	they	push	the
compile	button	and	let	people	work.	This	is	a	crisp,	effective,	well-managed
approach	to	the	project.

The	Linux	groups,	however,	are	not	that	coordinated	at	all.	Torvalds	only	really
worries	about	the	kernel,	which	is	his	baby.	Someone	else	worries	about	GCC.
Everyone	comes	up	with	their	own	source	trees	for	the	parts.	The	distribution
companies	like	Red	Hat	worry	about	gluing	the	mess	together.	It's	not	unusual	to
find	version	2.0	of	the	kernel	in	one	distribution	while	another	is	sporting
version	2.2.

"In	BSD,	you	can	do	a	unified	make.	They're	fairly	proud	of	that,"	says
Raymond.	"But	this	creates	rigidities	that	give	people	incentives	to	fork.	The
BSD	things	that	are	built	that	way	develop	new	spin-off	groups	each	week,	while
Linux,	which	is	more	loosely	coupled,	doesn't	fork."

He	elaborates,	"Somebody	pointed	out	that	there's	a	parallel	of	politics.	Rigid
political	and	social	institutions	tend	to	change	violently	if	they	change	at	all,
while	ones	with	more	play	in	them	tend	to	change	peacefully."

But	this	distinction	may	be	semantic.	Forking	does	occur	in	the	Linux	realm,	but
it	happens	as	small	diversions	that	get	explained	away	with	other	words.	Red	Hat
may	choose	to	use	GNOME,	while	another	distribution	like	SuSE	might	choose
KDE.	The	users	will	see	a	big	difference	because	both	tools	create	virtual
desktop	environments.	You	can't	miss	them.	But	people	won't	label	this	a	fork.
Both	distributions	are	using	the	same	Linux	kernel	and	no	one	has	gone	off	and
said,	"To	hell	with	Linus,	I'm	going	to	build	my	own	version	of	Linux."
Everyone's	technically	still	calling	themselves	Linux,	even	if	they're	building
something	that	looks	fairly	different	on	the	surface.

Jason	Wright,	one	of	the	developers	on	the	OpenBSD	team,	sees	the	organization
as	a	good	thing.	"The	one	thing	that	all	of	the	BSDs	have	over	Linux	is	a	unified
source	tree.	We	don't	have	Joe	Blow's	tree	or	Bob's	tree,"	he	says.	In	other
words,	when	they	fork,	they	do	it	officially,	with	great	ceremony,	and	make	sure
the	world	knows	of	their	separate	creations.	They	make	a	clear	break,	and	this
makes	it	easier	for	developers.

Wright	says	that	this	single	source	tree	made	it	much	easier	for	them	to	turn
OpenBSD	into	a	very	secure	OS."We've	got	the	security	over	Linux.	They've
recently	been	doing	a	security	audit	for	Linux,	but	they're	going	to	have	a	lot
more	trouble.	There's	not	one	place	to	go	for	the	source	code."

To	extend	this	to	political	terms,	the	Linux	world	is	like	the	1980s	when	Ronald
Reagan	ran	the	Republican	party	with	the	maxim	that	no	one	should	ever
criticize	another	Republican.	Sure,	people	argued	internally	about	taxes,
abortion,	crime,	and	the	usual	controversies,	but	they	displayed	a	rare	public
cohesion.	No	one	criticizes	Torvalds,	and	everyone	is	careful	to	pay	lip	service	to
the	importance	of	Linux	cohesion	even	as	they're	essentially	forking	by	choosing
different	packages.

The	BSD	world,	on	the	other	hand,	is	like	the	biblical	realm	in	Monty	Python's
film	The	Life	of	Brian.	In	it,	one	character	enumerates	the	various	splinter
groups	opposing	the	occupation	by	the	Romans.	There	is	the	People's	Front	of
Judea,	the	Judean	People's	Front,	the	Front	of	Judean	People,	and	several	others.
All	are	after	the	same	thing	and	all	are	manifestly	separate.	The	BSD	world	may
share	a	fair	amount	of	code;	it	may	share	the	same	goals,	but	it	just	presents	it	as
coming	from	three	different	camps.

John	Gilmore,	one	of	the	founders	of	the	free	software	company	Cygnus	and	a
firm	believer	in	the	advantages	of	the	GNU	General	Public	License,	says,	"In
Linux,	each	package	has	a	maintainer,	and	patches	from	all	distributions	go	back
through	that	maintainer.	There	is	a	sense	of	cohesion.	People	at	each	distribution
work	to	reduce	their	differences	from	the	version	released	by	the	maintainer.	In
the	BSD	world,	each	tree	thinks	they	own	each	program--they	don't	send
changes	back	to	a	central	place	because	that	violates	the	ego	model."

Jordan	Hubbard,	the	leader	of	FreeBSD,	is	critical	of	Raymond's	characterization
of	the	BSD	world.	"I've	always	had	a	special	place	in	my	heart	for	that	paper
because	he	painted	positions	that	didn't	exist,"	Hubbard	said	of	Raymond's	piece
"The	Cathedral	and	the	Bazaar."	"You	could	point	to	just	the	Linux	community
and	decide	which	part	was	cathedral-oriented	and	which	part	was	bazaar-
oriented.

"Every	single	OS	has	cathedral	parts	and	bazaar	parts.	There	are	some	aspects	of
development	that	you	leave	deliberately	unfocused	and	you	let	people	contribute
at	their	own	pace.	It's	sort	of	a	bubble-up	model	and	that's	the	bazaar	part.	Then
you	have	the	organizational	part	of	every	project.	That's	the	cathedral	part.
They're	the	gatekeepers	and	the	standards	setters.	They're	necessary,	too,"	he
said.

When	it	comes	right	down	to	it,	there's	even	plenty	of	forking	going	on	about	the
definition	of	a	fork.	When	some	of	the	Linux	team	point	at	the	BSD	world	and
start	making	fun	about	the	forks,	the	BSD	team	gets	defensive.	The	BSD	guys
always	get	defensive	because	their	founder	isn't	on	the	cover	of	all	the
magazines.	The	Linux	team	hints	that	maybe,	if	they	weren't	forking,	they	would
have	someone	with	a	name	in	lights,	too.

Hubbard	is	right.	Linux	forks	just	as	much,	they	just	call	it	a	distribution	or	an
experimental	kernel	or	a	patch	kit.	No	one	has	the	chutzpah	to	spin	off	their	own

rival	political	organization.	No	one	has	the	political	clout.

18.5	A	FORK,	A	SPLIT,	AND	A	REUNION

...................................

Now,	after	all	of	the	nasty	stories	of	backstabbing	and	bickering,	it	is	important
to	realize	that	there	are	actually	some	happy	stories	of	forks	that	merge	back
together.	One	of	the	best	stories	comes	from	the	halls	of	an	Internet	security
company,	C2Net,	that	dealt	with	a	fork	in	a	very	peaceful	way.

C2Net	is	a	Berkeley-based	company	run	by	some	hard-core	advocates	of	online
privacy	and	anonymity.	The	company	began	by	offering	a	remailing	service	that
allowed	people	to	send	anonymous	e-mails	to	one	another.	Their	site	would	strip
off	the	return	address	and	pass	it	along	to	the	recipient	with	no	trace	of	who	sent
it.	They	aimed	to	fulfill	the	need	of	people	like	whistleblowers,	leakers,	and
other	people	in	positions	of	weakness	who	wanted	to	use	anonymity	to	avoid
reprisals.

The	company	soon	took	on	a	bigger	goal	when	it	decided	to	modify	the	popular
Apache	web	server	by	adding	strong	encryption	to	make	it	possible	for	people	to
process	credit	cards	over	the	web.	The	technology,	known	as	SSL	for	"secure
sockets	layer,"	automatically	arranged	for	all	of	the	traffic	between	a	remote	web
server	and	the	user	to	be	scrambled	so	that	no	one	could	eavesdrop.	SSL	is	a
very	popular	technology	on	the	web	today	because	many	companies	use	it	to
scramble	credit	card	numbers	to	defeat	eavesdroppers.

C2Net	drew	a	fair	deal	of	attention	when	one	of	its	founders,	Sameer	Parekh,
appeared	on	the	cover	of	Forbes	magazine	with	a	headline	teasing	that	he	wanted
to	"overthrow	the	government."	In	reality,	C2Net	wanted	to	move	development
operations	overseas,	where	there	were	no	regulations	on	the	creation	of
cryptographically	secure	software.	C2Net	went	where	the	talent	was	available
and	priced	right.

In	this	case,	C2Net	chose	a	free	version	of	SSL	written	by	Eric	Young	known	as
SSLeay.	Young's	work	is	another	of	the	open	source	success	stories.	He	wrote
the	original	version	as	a	hobby	and	released	it	with	a	BSD-like	license.	Everyone
liked	his	code,	downloaded	it,	experimented	with	it,	and	used	it	to	explore	the
boundaries	of	the	protocol.	Young	was	just	swapping	code	with	the	Net	and
having	a	good	time.

Parekh	and	C2Net	saw	an	opportunity.	They	would	merge	two	free	products,	the
Apache	web	server	and	Young's	SSLeay,	and	make	a	secure	version	so	people
could	easily	set	up	secure	commerce	sites	for	the	Internet.	They	called	this
product	Stronghold	and	put	it	on	the	market	commercially.

C2Net's	decision	to	charge	for	the	software	rubbed	some	folks	the	wrong	way.
They	were	taking	two	free	software	packages	and	making	something	commercial
out	of	them.	This	wasn't	just	a	fork,	it	seemed	like	robbery	to	some.	Of	course,
these	complaints	weren't	really	fair.	Both	collections	of	code	emerged	with	a
BSD-style	license	that	gave	everyone	the	right	to	create	and	sell	commercial
additions	to	the	product.	There	wasn't	any	GPL-like	requirement	that	they	give
back	to	the	community.	If	no	one	wanted	a	commercial	version,	they	shouldn't
have	released	the	code	with	a	very	open	license	in	the	first	place.

Parekh	understands	these	objections	and	says	that	he	has	weathered	plenty	of
criticism	on	the	internal	mailing	lists.	Still,	he	feels	that	the	Stronghold	product
contributed	a	great	deal	to	the	strength	of	Apache	by	legitimizing	it.

"I	don't	feel	guilty	about	it.	I	don't	think	we've	contributed	a	whole	lot	of	source
code,	which	is	one	of	the	key	metrics	that	the	people	in	the	Apache	group	are
using.	In	my	perspective,	the	greatest	contribution	we've	made	is	market
acceptance,"	he	said.

Parekh	doesn't	mean	that	he	had	to	build	market	acceptance	among	web
developers.	The	Apache	group	was	doing	a	good	job	of	accomplishing	that
through	their	guerrilla	tactics,	excellent	product,	and	free	price	tag.	But	no	one
was	sending	a	message	to	the	higher	levels	of	the	computer	industry,	where	long-
term	plans	were	being	made	and	corporate	deals	were	being	cut.	Parekh	feels
that	he	built	first-class	respectability	for	the	Apache	name	by	creating	and
supporting	a	first-class	product	that	big	corporations	could	use	successfully.	He
made	sure	that	everyone	knew	that	Apache	was	at	the	core	of	Stronghold,	and
people	took	notice.

Parekh's	first	job	was	getting	a	patent	license	from	RSA	Data	Security.	Secure
software	like	SSL	relies	on	the	RSA	algorithm,	an	idea	that	was	patented	by
three	MIT	professors	in	the	1970s.	This	patent	is	controlled	by	RSA	Data
Security.	While	the	company	publicized	some	of	its	licensing	terms	and	went	out
of	its	way	to	market	the	technology,	negotiating	a	license	was	not	a	trivial	detail
that	could	be	handled	by	some	free	software	team.	Who's	going	to	pay	the

license?	Who's	going	to	compute	what	some	percentage	of	free	is?	Who's	going
to	come	up	with	the	money?	These	questions	are	much	easier	to	answer	if	you're
a	corporation	charging	customers	to	buy	a	product.	C2Net	was	doing	that.
People	who	bought	Stronghold	got	a	license	from	RSA	that	ensured	they	could
use	the	method	without	being	sued.

The	patent	was	only	the	first	hurdle.	SSL	is	a	technology	that	tries	to	bring	some
security	to	web	connections	by	encrypting	the	connections	between	the	browser
and	the	server.	Netscape	added	one	feature	that	allows	a	connection	to	be
established	only	if	the	server	has	a	digital	certificate	that	identifies	it.	These
certificates	are	only	issued	to	a	company	after	it	pays	a	fee	to	a	registered
certificate	agent	like	Verisign.

In	the	beginning,	certificate	agents	like	Verisign	would	issue	the	certificates	only
for	servers	created	by	big	companies	like	Netscape	or	Microsoft.	Apache	was
just	an	amorphous	group	on	the	Net.	Verisign	and	the	other	authorities	weren't
paying	attention	to	it.

Parekh	went	to	them	and	convinced	them	to	start	issuing	the	certificates	so	he
could	start	selling	Stronghold.

"We	became	number	three,	right	behind	Microsoft	and	Netscape.	Then	they	saw
how	much	money	they	were	making	from	us,	so	they	started	signing	certificates
for	everyone,"	he	said.	Other	Apache	projects	that	used	SSL	found	life	much
easier	once	Parekh	showed	Verisign	that	there	was	plenty	of	money	to	be	made
from	folks	using	free	software.

Parekh	does	not	deny	that	C2Net	has	not	made	many	contributions	to	the	code
base	of	Apache,	but	he	doesn't	feel	that	this	is	the	best	measure.	The	political	and
marketing	work	of	establishing	Apache	as	a	worthwhile	tool	is	something	that	he
feels	may	have	been	more	crucial	to	its	long-term	health.	When	he	started
putting	money	in	the	hands	of	Verisign,	he	got	those	folks	to	realize	that	Apache
had	a	real	market	share.	That	cash	talked.

The	Stronghold	fork,	however,	did	not	make	everyone	happy.	SSL	is	an
important	tool	and	someone	was	going	to	start	creating	another	free	version.
C2Net	hired	Eric	Young	and	his	collaborator	Tim	Hudson	and	paid	them	to	do
some	work	for	Stronghold.	The	core	version	of	Young's	original	SSLeay	stayed
open,	and	both	continued	to	add	bug	fixes	and	other	enhancements	over	time.

Parekh	felt	comfortable	with	this	relationship.	Although	Stronghold	was	paying
the	salaries	of	Young	and	Hudson,	they	were	also	spending	some	of	their	spare
time	keeping	their	SSLeay	toolkit	up	to	date.

Still,	the	notion	of	a	free	version	of	SSL	was	a	tempting	project	for	someone	to
undertake.	Many	people	wanted	it.	Secure	digital	commerce	demanded	it.	There
were	plenty	of	economic	incentives	pushing	for	it	to	happen.	Eventually,	a
German	named	Ralf	S.	Engelschall	stepped	up	and	wrote	a	new	version	he	called
mod_SSL.	Engelschall	is	a	well-regarded	contributor	to	the	Apache	effort,	and
he	has	written	or	contributed	to	a	number	of	different	modules	that	could	be
added	to	Apache.	He	calls	one	the	"all-dancing-all-singing	mod_rewrite	module"
for	handling	URLs	easily.

Suddenly,	Engelschall's	new	version	meant	that	there	were	dueling	forks.	One
version	came	out	of	Australia,	where	the	creators	worked	for	a	company	selling
a	proprietary	version	of	the	code.	C2Net	distributed	the	Australian	version	and
concentrated	on	making	their	product	easy	to	install.	The	other	came	out	of
Europe,	distributed	for	free	by	someone	committed	to	an	open	source	license.
The	interface	may	have	been	a	bit	rougher,	but	it	didn't	cost	any	money	and	it
came	with	the	source	code.	The	potential	for	battle	between	SSLeay	and
mod_SSL	could	have	been	great.

The	two	sides	reviewed	their	options.	Parekh	must	have	felt	a	bit	frustrated	and
at	a	disadvantage.	He	had	a	company	that	was	making	a	good	product	with
repeat	buyers.	Then	an	open	source	solution	came	along.	C2Net's	Stronghold
cost	money	and	didn't	come	with	source	code,	while	Engelschall's	mod_SSL	cost
nothing	and	came	with	code.	Those	were	major	negatives	that	he	could	combat
only	by	increasing	service.	When	Engelschall	was	asked	whether	his	free	version
was	pushing	C2Net,	he	sent	back	the	e-mail	with	the	typed	message,	"[grin]."

In	essence,	C2Net	faced	the	same	situation	as	many	major	companies	like
Microsoft	and	Apple	do	today.	The	customers	now	had	a	viable	open	source
solution	to	their	problems.	No	one	had	to	pay	C2Net	for	the	software.	The	users
in	the	United	States	needed	a	patent	license,	but	that	would	expire	in	late	2000.
Luckily,	Parekh	is	a	true	devotee	to	the	open	source	world,	even	though	he	has
been	running	a	proprietary	source	company	for	the	last	several	years.	He	looked
at	the	problem	and	decided	that	the	only	way	to	stay	alive	was	to	join	forces	and
mend	the	fork.

To	make	matters	worse,	Hudson	and	Young	left	C2Net	to	work	for	RSA	Data
Security.	Parekh	lost	two	important	members	of	his	team,	and	he	faced	intense
competition.	Luckily,	his	devotion	to	open	source	came	to	the	rescue.	Hudson
and	Young	couldn't	take	back	any	of	the	work	they	did	on	SSLeay.	It	was	open
source	and	available	to	everyone.

Parekh,	Engelschall,	several	C2Net	employees,	and	several	others	sat	down	(via
e-mail)	and	created	a	new	project	they	called	OpenSSL.	This	group	would	carry
the	torch	of	SSLeay	and	keep	it	up-to-date.	Young	and	Hudson	stopped
contributing	and	devoted	their	time	to	creating	a	commercial	version	for	RSA
Data	Security.

Parekh	says	of	the	time,	"Even	though	it	was	a	serious	setback	for	C2Net	to	have
RSA	pirate	our	people,	it	was	good	for	the	public.	Development	really
accelerated	when	we	started	OpenSSL.	More	people	became	involved	and
control	became	less	centralized.	It	became	more	like	the	Apache	group.	It's	a	lot
bigger	than	it	was	before	and	it's	much	easier	for	anyone	to	contribute."

Parekh	also	worked	on	mending	fences	with	Engelschall.	C2Net	began	to	adopt
some	of	the	mod_SSL	code	and	blend	it	into	their	latest	version	of	Stronghold.
To	make	this	blending	easier,	C2Net	began	sending	some	of	their	formerly
proprietary	code	back	to	Engelschall	so	he	could	mix	it	with	mod_SSL	by
releasing	it	as	open	source.	In	essence,	C2Net	was	averting	a	disastrous
competition	by	making	nice	and	sharing	with	this	competitor.	It	is	a	surprising
move	that	might	not	happen	in	regular	business.

Parekh's	decision	seems	open	and	beneficent,	but	it	has	a	certain	amount	of	self-
interest	behind	it.	He	explains,	"We	just	decided	to	contribute	all	of	the	features
we	had	into	mod_SSL	so	we	could	start	using	mod_SSL	internally,	because	it
makes	our	maintenance	of	that	easier.	We	don't	have	to	maintain	our	own
proprietary	version	of	mod_SSL.	Granted,	we've	made	the	public	version	better,
but	those	features	weren't	significant."

This	mixing	wasn't	particularly	complicated--most	of	it	focused	on	the	structure
of	the	parts	of	the	source	code	that	handle	the	interface.	Programmers	call	these
the	"hooks"	or	the	"API."	If	Stronghold	and	mod_SSL	use	the	same	hook
structure,	then	connecting	them	is	a	piece	of	cake.	If	Engelschall	had	changed
the	hook	structure	of	mod_SSL,	then	the	C2Net	would	have	had	to	do	more
work.

The	decision	to	contribute	the	code	stopped	Engelschall	from	doing	the	work
himself	in	a	way	that	might	have	caused	more	grief	for	C2Net.	"He	was	actually
planning	on	implementing	them	himself,	so	we	were	better	off	contributing	ours
to	avoid	compatibility	issues,"	says	Parekh.	That	is	to	say,	Parekh	was	worried
that	Engelschall	was	going	to	go	off	and	implement	all	the	features	C2Net	used,
and	there	was	a	very	real	danger	that	Engelschall	would	implement	them	in	a
way	that	was	unusable	to	Parekh.	Then	there	would	be	a	more	serious	fork	that
would	further	split	the	two	groups.	C2Net	wouldn't	be	able	to	borrow	code	from
the	free	version	of	OpenSSL	very	easily.	So	it	decided	to	contribute	its	own
code.	It	was	easier	to	give	their	code	and	guarantee	that	OpenSSL	fit	neatly	into
Stronghold.	In	essence,	C2Net	chose	to	give	a	little	so	it	could	continue	to	get	all
of	the	future	improvements.

It's	not	much	different	from	the	car	industry.	There's	nothing	inherently	better	or
worse	about	cars	that	have	their	steering	wheel	on	the	right-hand	side.	They're
much	easier	to	use	in	England.	But	if	some	free	car	engineering	development
team	emerged	in	England,	it	might	make	sense	for	a	U.S.	company	to	donate
work	early	to	ensure	that	the	final	product	could	have	the	steering	wheel	on
either	side	of	the	car	without	extensive	redesign.	If	Ford	just	sat	by	and	hoped	to
grab	the	final	free	product,	it	might	find	that	the	British	engineers	happily
designed	for	the	only	roads	they	knew.

Engelschall	is	happy	about	this	change.	He	wrote	in	an	e-mail	message,	"They
do	the	only	reasonable	approach:	They	base	their	server	on	mod_SSL	because
they	know	they	cannot	survive	against	the	Open	Source	solution	with	their	old
proprietary	code.	And	by	contributing	stuff	to	mod_SSL	they	implicitly	make
their	own	product	better.	This	way	both	sides	benefit."

Parekh	and	C2Net	now	have	a	challenge.	They	must	continue	to	make	the
Stronghold	package	better	than	the	free	version	to	justify	the	cost	people	are
paying.

Not	all	forks	end	with	such	a	happy-faced	story	of	mutual	cooperation.	Nor	do
all	stories	in	the	free	software	world	end	with	the	moneymaking	corporation
turning	around	and	giving	back	their	proprietary	code	to	the	general	effort.	But
the	C2Net/OpenSSL	case	illustrates	how	the	nature	of	software	development
encourages	companies	and	people	to	give	and	cooperate	to	satisfy	their	own
selfish	needs.	Software	can	do	a	variety	of	wonderful	things,	but	the	structure
often	governs	how	easy	it	is	for	some	of	us	to	use.	It	makes	sense	to	spend	some

extra	time	and	make	donations	to	a	free	software	project	if	you	want	to	make
sure	that	the	final	product	fits	your	specs.

The	good	news	is	that	most	people	don't	have	much	incentive	to	break	off	and
fork	their	own	project.	If	you	stay	on	the	same	team,	then	you	can	easily	use	all
the	results	produced	by	the	other	members.	Cooperating	is	so	much	easier	than
fighting	that	people	have	a	big	incentive	to	stay	together.	If	it	weren't	so	selfish,
it	would	be	heartwarming.

1.	 CORE

Projects	in	corporations	have	managers	who	report	to	other	managers	who	report
to	the	CEO	who	reports	to	the	board.	It's	all	very	simple	in	theory,	although	it
never	really	works	that	way	in	practice.	The	lines	of	control	get	crossed	as
people	form	alliances	and	struggle	to	keep	their	bosses	happy.

Projects	in	the	world	of	open	source	software,	on	the	other	hand,	give	everyone	a
copy	of	the	source	code	and	let	them	be	the	master	of	the	code	running	on	their
machine.	Everyone	gets	to	be	the	Board	of	Directors,	the	CEO,	and	the	cubicle
serfs	rolled	into	one.	If	a	free	software	user	doesn't	like	something,	then	he	has
the	power	to	change	it.	You	don't	like	that	icon?	Boom,	it's	gone.	You	don't	want
KDE	on	your	desktop?	Whoosh,	it's	out	of	there.	No	vice	president	in	charge	of
MSN	marketing	in	Redmond	is	going	to	force	you	to	have	an	icon	for	easy
connection	to	the	Microsoft	Network	on	your	desktop.	No	graphic	designer	at
Apple	is	going	to	force	you	to	look	at	that	two-faced	Picasso-esque	MacOS	logo
every	morning	of	your	life	just	because	their	marketing	studies	show	that	they
need	to	build	a	strong	brand	identity.	You're	the	captain	of	your	free	software
ship	and	you	decide	the	menu,	the	course,	the	arrangement	of	the	deck	chairs,
the	placement	of	lookouts	from	which	to	watch	for	icebergs,	the	type	of	soap,
and	the	number	of	toothpicks	per	passenger	to	order.	In	theory,	you're	the	Lord
High	Master	and	Most	Exalted	Ruler	of	all	Software	Big	and	Small,	Wild	and
Wonderful,	and	Interpreted	and	Compiled	on	your	machine.

In	practice,	no	one	has	the	time	to	use	all	of	that	power.	It's	downright	boring	to
worry	about	soap	and	toothpicks.	It's	exhausting	to	rebuild	window	systems
when	they	fail	to	meet	your	caviar-grade	tastes	in	software.

No	one	has	the	disk	space	to	maintain	an	Imelda	Marcos-like	collection	of

screen	savers,	window	managers,	layout	engines,	and	games	for	your	computer.
So	you	start	hanging	around	with	some	friends	who	want	similar	things	and	the
next	thing	you	know,	you've	got	a	group.	A	group	needs	leadership,	so	the	alpha
dog	emerges.	Pretty	soon,	it	all	begins	to	look	like	a	corporate	development
team.	Well,	kind	of.

Many	neophytes	in	the	free	software	world	are	often	surprised	to	discover	that
most	of	the	best	free	source	code	out	there	comes	from	teams	that	look
surprisingly	like	corporate	development	groups.	While	the	licenses	and	the
rhetoric	promise	the	freedom	to	go	your	own	way,	groups	coalesce	for	many	of
the	same	reasons	that	wagon	trains	and	convoys	emerge.	There's	power	in
numbers.	Sometimes	these	groups	even	get	so	serious	that	they	incorporate.	The
Apache	group	recently	formed	the	Apache	Foundation,	which	has	the	job	of
guiding	and	supporting	the	development	of	the	Apache	web	server.	It's	all	very
official	looking.	For	all	we	know,	they're	putting	cubicles	in	the	foundation
offices	right	now.

This	instinct	to	work	together	is	just	as	powerful	a	force	in	the	free	software
world	as	the	instinct	to	grab	as	much	freedom	as	possible	and	use	it	every	day.	If
anything,	it's	just	an	essential	feature	of	human	life.	The	founders	of	the	United
States	of	America	created	an	entire	constitution	without	mentioning	political
parties,	but	once	they	pushed	the	start	button,	the	parties	appeared	out	of
nowhere.

These	parties	also	emerged	in	the	world	of	free	source	software.	When	projects
grew	larger	than	one	person	could	safely	handle,	they	usually	evolved	into
development	teams.	The	path	for	each	group	is	somewhat	different,	and	each	one
develops	its	own	particular	style.	The	strength	of	this	organization	is	often	the
most	important	determinant	of	the	strength	of	the	software	because	if	the	people
can	work	together	well,	then	the	problems	in	the	software	will	be	well	fixed.

The	most	prevalent	form	of	government	in	these	communities	is	the	benign
dictatorship.	Richard	Stallman	wrote	some	of	the	most	important	code	in	the
GNU	pantheon,	and	he	continues	to	write	new	code	and	help	maintain	the	old
software.	The	world	of	the	Linux	kernel	is	dominated	by	Linus	Torvalds.	The
original	founders	always	seem	to	hold	a	strong	sway	over	the	group.	Most	of	the
code	in	the	Linux	kernel	is	written	by	others	and	checked	out	by	a	tight	circle	of
friends,	but	Torvalds	still	has	the	final	word	on	many	changes.

The	two	of	them	are,	of	course,	benign	dictators,	and	the	two	of	them	don't	really
have	any	other	choice.	Both	have	a	seemingly	absolute	amount	of	power,	but	this
power	is	based	on	a	mixture	of	personal	affection	and	technical	respect.	There
are	no	legal	bounds	that	keep	all	of	the	developers	in	line.	There	are	no	rules
about	intellectual	property	or	non-disclosure.	Anyone	can	grab	all	of	the	Linux
kernel	or	GNU	source	code,	run	off,	and	start	making	whatever	changes	they
want.	They	could	rename	it	FU,	Bobux,	Fredux,	or	Meganux	and	no	one	could
stop	them.	The	old	threats	of	lawyers,	guns,	and	money	aren't	anywhere	to	be
seen.

19.1	DEBIAN'S	CORE	TEAM

.......................

The	Debian	group	has	a	wonderful	pedigree	and	many	praise	it	as	the	purest
version	of	Linux	around,	but	it	began	as	a	bunch	of	outlaws	who	cried	mutiny
and	tossed	Richard	Stallman	overboard.	Well,	it	wasn't	really	so	dramatic.	In
fact,	"mutiny"	isn't	really	the	right	word	when	everyone	is	free	to	use	the	source
code	however	they	want.

Bruce	Perens	remembers	the	split	occurred	less	than	a	year	after	the	project
began	and	says,	"Debian	had	already	started.	The	FSF	had	been	funding	Ian
Murdock	for	a	few	months.	Richard	at	that	time	wanted	us	to	make	all	of	the
executables	unstripped."

When	programmers	compile	software	and	convert	it	from	human-readable
source	code	into	machine-readable	binary	code,	they	often	leave	in	some	human
readable	information	to	help	debug	the	program.	Another	way	to	say	this	is	that
the	programmers	don't	strip	the	debugging	tags	out	of	the	code.	These	tags	are
just	the	names	of	the	variables	used	in	the	software,	and	a	programmer	can	use
them	to	analyze	what	each	variable	held	when	the	software	started	going
berserk.

Perens	continued,	"His	idea	was	if	there	was	a	problem,	someone	can	send	a
stacktrace	back	without	having	to	recompile	a	program	and	then	making	it	break
again.	The	problem	with	this	was	distributing	executables	unstripped	makes
them	four	times	as	large.	It	was	a	lot	of	extra	expense	and	trouble.	And	our
software	didn't	dump	core	anyway.	That	was	really	the	bottom	line.	That	sort	of
bug	did	not	come	up	so	often	that	it	was	necessary	for	us	to	distribute	things	that

way	anyways."

Still,	Stallman	insisted	it	was	a	good	idea.	Debian	resisted	and	said	it	took	up	too
much	space	and	raised	duplication	costs.	Eventually,	the	debate	ended	as	the
Debian	group	went	their	own	way.	Although	Stallman	paid	Murdock	and	wrote
much	of	the	GNU	code	on	the	disk,	the	GPL	prevented	him	from	doing	much.
The	project	continued.	The	source	code	lived	on.	And	the	Debian	disks	kept
shipping.	Stallman	was	no	longer	titular	leader	of	Debian.

The	rift	between	the	group	has	largely	healed.	Perens	now	praises	Stallman	and
says	that	the	two	of	them	are	still	very	close	philosophically	on	the	most
important	issues	in	the	free	software	world.	Stallman,	for	his	part,	uses	Debian
on	his	machines	because	he	feels	the	closest	kinship	with	it.

Perens	says,	"Richard's	actually	grown	up	a	lot	in	the	last	few	years.	He's	learned
a	lot	more	about	what	to	do	to	a	volunteer	because	obviously	we're	free	to	walk
away	at	any	time."

Stallman	himself	remembers	the	argument	rather	eloquently."The	fact	is,	I
wanted	to	influence	them,	but	I	did	not	want	to	force	them.	Forcing	them	would
go	against	my	moral	beliefs.	I	believe	that	people	are	entitled	to	freedom	in	these
matters,	which	means	that	I	cannot	tell	them	what	to	do,"	he	told	me.	"I	wrote
the	GPL	to	give	everyone	freedom	from	domination	by	authors	of	software,	and
that	includes	me	on	both	sides."

There's	much	debate	over	the	best	way	to	be	a	benign	dictator.	Eric	Raymond
and	many	others	feel	that	Torvalds's	greatest	claim	to	success	was	creating	a
good	development	model.	Torvalds	released	new	versions	of	his	kernel	often	and
he	tried	to	share	the	news	about	the	development	as	openly	as	possible.	Most	of
this	news	travels	through	a	mailing	list	that	is	open	to	all	and	archived	on	a
website.	The	mailing	list	is	sort	of	like	a	perpetual	congress	where	people	debate
the	technical	issues	behind	the	latest	changes	to	the	kernel.	It's	often	much	better
than	the	real	United	States	Congress	because	the	debate	floor	is	open	to	all	and
there	are	no	glaring	special	interests	who	try	to	steer	the	debate	in	their	direction.
After	some	period	of	debate,	eventually	Torvalds	makes	a	decision	and	this
becomes	final.	Usually	he	doesn't	need	to	do	anything.	The	answer	is	pretty
obvious	to	everyone	who's	followed	the	discussion.

This	army	is	a	diverse	bunch.	At	a	recent	Linux	conference,	Jeff	Bates,	one	of

the	editors	of	the	influential	website	Slashdot	(www.slashdot.org),	pointed	me
toward	the	Debian	booth,	which	was	next	to	theirs.	"If	you	look	in	the	booth,
you	can	see	that	map.	They	put	a	pushpin	in	the	board	for	every	developer	and
project	leader	they	have	around	the	world.	China,	Netherlands,	Somalia,	there
are	people	coming	from	all	over."

James	Lewis-Moss	is	one	of	the	members,	who	just	happened	to	be	in	the
Debian	booth	next	door.	He	lives	in	Asheville,	North	Carolina,	which	is	four
hours	west	of	the	Convention	Center	in	downtown	Raleigh.	The	Debian	group
normally	relies	upon	local	volunteers	to	staff	the	booth,	answer	questions,
distribute	CD-ROMs,	and	keep	people	interested	in	the	project.

Lewis-Moss	is	officially	in	charge	of	maintaining	several	packages,	including
the	X	Emacs,	a	program	that	is	used	to	edit	text	files,	read	email	and	news,	and
do	a	number	of	other	tasks.	A	package	is	the	official	name	for	a	bundle	of
smaller	programs,	files,	data,	and	documentation.	These	parts	are	normally
installed	together	because	the	software	won't	work	without	all	of	its	component
parts.

The	packager's	job	is	to	download	the	latest	software	from	the	programmer	and
make	sure	that	it	runs	well	with	the	latest	version	of	the	other	software	to	go	in
the	Debian	distribution.	This	crucial	task	is	why	groups	like	Debian	are	so
necessary.	If	Lewis-Moss	does	his	job	well,	someone	who	installs	Debian	on	his
computer	will	not	have	any	trouble	using	X	Emacs.

Lewis-Moss's	job	isn't	exactly	programming,	but	it's	close.	He	has	to	download
the	source	code,	compile	the	program,	run	it,	and	make	sure	that	the	latest
version	of	the	source	works	correctly	with	the	latest	version	of	the	Linux	kernel
and	the	other	parts	of	the	OS	that	keep	a	system	running.	The	packager	must	also
ensure	that	the	program	works	well	with	the	Debian-specific	tools	that	make
installation	easier.	If	there	are	obvious	bugs,	he'll	fix	them	himself.	Otherwise,
he'll	work	with	the	author	on	tracking	down	and	fixing	the	problems.

He's	quite	modest	about	this	effort	and	says,	"Most	Debian	developers	don't
write	a	whole	lot	of	code	for	Debian.	We	just	test	things	to	make	sure	it	works
well	together.	It	would	be	offensive	to	some	of	the	actual	programmers	to	hear
that	some	of	the	Debian	folks	are	writing	the	programs	when	they're	actually
not."

He	added	that	many	of	the	packagers	are	also	programmers	in	other	projects.	In
his	case,	he	writes	Java	programs	during	the	day	for	a	company	that	makes
point-of-sale	terminals	for	stores.

Lewis-Moss	ended	up	with	this	job	in	the	time-honored	tradition	of	committees
and	volunteer	organizations	everywhere.	"I	reported	a	bug	in	X	Emacs	to
Debian.	The	guy	who	had	the	package	at	that	time	said,	'I	don't	want	this
anymore.	Do	you	want	it?'	I	guess	it	was	random.	It	was	sort	of	an	accident.	I
didn't	intend	to	become	involved	in	it,	but	it	was	something	I	was	interested	in.	I
figured	'Hell,	might	as	well.'"

The	Linux	development	effort	moves	slowly	forward	with	thousands	of	stories
like	Lewis-Moss's.	Folks	come	along,	check	out	the	code,	and	toss	in	a	few
contributions	that	make	it	a	bit	better	for	themselves.	The	mailing	list	debates
some	of	the	changes	if	they're	controversial	or	if	they'll	affect	many	people.	It's	a
very	efficient	system	in	many	ways,	if	you	can	stand	the	heat	of	the	debates.

Most	Americans	are	pretty	divorced	from	the	heated	arguments	that	boil	through
the	corridors	of	Washington.	The	view	of	the	House	and	Senate	floor	is	largely
just	for	show	because	most	members	don't	attend	the	debates.	The	real	decisions
are	made	in	back	rooms.

The	mailing	lists	that	form	the	core	of	the	different	free	software	projects	take	all
of	this	debate	and	pipe	it	right	through	to	the	members.	While	some	discussions
occur	in	private	letters	and	even	in	the	occasional	phone	call,	much	of	the
problem	and	controversy	is	dissected	for	everyone	to	read.	This	is	crucial
because	most	of	the	decisions	are	made	largely	by	consensus.

"Most	of	the	decisions	are	technical	and	most	of	them	will	have	the	right	answer
or	the	best	possible	one	at	the	moment,"	says	Lewis-Moss.	"Often	things	back
down	to	who	is	willing	to	do	the	work.	If	you're	willing	to	do	the	work	and	the
person	on	the	other	side	isn't	willing,	then	yours	is	the	right	one	by	definition."

While	the	mailing	list	looks	like	an	idealized	notion	of	a	congress	for	the	Linux
kernel	development,	it	is	not	as	perfect	as	it	may	seem.	Not	all	comments	are
taken	equally	because	friendships	and	political	alliances	have	evolved	through
time.	The	Debian	group	elected	a	president	to	make	crucial	decisions	that	can't
be	made	by	deep	argument	and	consensus.	The	president	doesn't	have	many
other	powers	in	other	cases.

While	the	Linux	and	GNU	worlds	are	dominated	by	their	one	great	Sun	King,
many	other	open	source	projects	have	adopted	a	more	modern	government
structure	that	is	more	like	Debian.	The	groups	are	still	fairly	ad	hoc	and
unofficial,	but	they	are	more	democratic.	There's	less	idolatry	and	less
dependence	on	one	person.

The	Debian	group	is	a	good	example	of	a	very	loose-knit	structure	with	less
reliance	on	the	central	leader.	In	the	beginning,	Ian	Murdock	started	the
distribution	and	did	much	of	the	coordination.	In	time,	the	mailing	list	grew	and
attracted	other	developers	like	Bruce	Perens.	As	Murdock	grew	busier,	he	started
handing	off	work	to	others.	Eventually,	he	handed	off	central	control	to	Perens,
who	slowly	delegated	more	of	the	control	until	there	was	no	key	maintainer	left.
If	someone	dies	in	a	bus	crash,	the	group	will	live	on.

Now	a	large	group	of	people	act	as	maintainers	for	the	different	packages.
Anyone	who	wants	to	work	on	the	project	can	take	responsibility	for	a	particular
package.	This	might	be	a	small	tool	like	a	game	or	a	bigger	tool	like	the	C
compiler.	In	most	cases,	the	maintainer	isn't	the	author	of	the	software	or	even	a
hard-core	programmer.	The	maintainer's	job	is	to	make	sure	that	the	particular
package	continues	to	work	with	all	the	rest.	In	many	cases,	this	is	a	pretty	easy
job.	Most	changes	in	the	system	don't	affect	simple	programs.	But	in	some	cases
it's	a	real	challenge	and	the	maintainer	must	act	as	a	liaison	between	Debian	and
the	original	programmer.	Sometimes	the	maintainers	fix	the	bugs	themselves.
Sometimes	they	just	report	them.	But	in	either	case,	the	maintainer	must	make
sure	that	the	code	works.

Every	once	and	a	bit,	Debian	takes	the	latest	stable	kernel	from	Torvalds's	team
and	mixes	it	together	with	all	of	the	other	packages.	The	maintainers	check	out
their	packages	and	when	everything	works	well,	Debian	presses	another	CD-
ROM	and	places	the	pile	of	code	on	the	net.	This	is	a	stable	"freeze"	that	the
Debian	group	does	to	make	sure	they've	got	a	stable	platform	that	people	can
always	turn	to.

"Making	a	whole	OS	with	just	a	crew	of	volunteers	and	no	money	is	a	pretty	big
achievement.	You	can	never	discount	that.	It's	easy	for	Red	Hat	to	do	it.	They're
all	getting	paid.	The	fact	is	that	Debian	makes	a	good	system	and	still	continues
to	do	so.	I	don't	think	that	there've	been	that	many	unpaid,	collaborative	projects
that	complex	before,"	says	Perens.

When	Perens	took	over	at	Debian	he	brought	about	two	major	changes.	The	first
was	to	create	a	nonprofit	corporation	called	Software	in	the	Public	Interest	and
arrange	for	the	IRS	to	recognize	it	as	a	bona	fide	charitable	organization.	People
and	companies	who	donate	money	and	equipment	can	take	them	off	their	taxes.

Perens	says	that	the	group's	budget	is	about	$10,000	a	year.	"We	pay	for
hardware	sometimes.	Although	a	lot	of	our	hardware	is	donated.	We	fly	people
to	conferences	so	they	can	promote	Debian.	We	have	a	trade	show	booth.	In
general	we	get	the	trade	show	space	from	the	show	for	free	or	severely
discounted.	We	also	have	the	conventional	PO	boxes,	accounting,	phone	calls.
The	project	doesn't	have	a	ton	of	money,	but	it	doesn't	spend	a	lot,	either."

The	Debian	group	also	wrote	the	first	guidelines	for	acceptable	open	source
software	during	Perens's	time	in	charge.	These	eventually	mutated	to	become	the
definition	endorsed	by	the	Open	Source	Initiative.	This	isn't	too	surprising,	since
Perens	was	one	of	the	founders	of	the	Open	Source	Initiative.

Debian's	success	has	inspired	many	others.	Red	Hat,	for	instance,	borrowed	a
significant	amount	of	work	done	by	Debian	when	they	put	together	their
distribution,	and	Debian	borrows	some	of	Red	Hat's	tools.	When	Red	Hat	went
public,	it	arranged	for	Debian	members	to	get	a	chance	to	buy	some	of	the
company's	stock	reserved	for	friends	and	family	members.	They	recognized	that
Debian's	team	of	package	maintainers	helped	get	their	job	done.

Debian's	constitution	and	strong	political	structure	have	also	inspired	Sun,	which
is	trying	to	unite	its	Java	and	Jini	customers	into	a	community.	The	company	is
framing	its	efforts	to	support	customers	as	the	creation	of	a	community	that's
protected	by	a	constitution.	The	old	paradigm	of	customer	support	is	being
replaced	by	a	more	active	world	of	customer	participation	and	representation.

Of	course,	Sun	is	keeping	a	close	hand	on	all	of	these	changes.	They	protect
their	source	code	with	a	Community	Source	License	that	places	crucial
restrictions	on	the	ability	of	these	community	members	to	stray.	There's	no	real
freedom	to	fork.	Sun's	not	willing	to	embrace	Debian's	lead	on	that	point,	in	part
because	they	say	they're	afraid	that	Microsoft	will	use	that	freedom	to	scuttle
Java.

19.2	APACHE'S	CORPORATE	CORE

............................

The	Apache	group	is	one	of	the	more	businesslike	development	teams	in	the	free
source	world.	It	emerged	in	the	mid-1990s	when	the	World	Wide	Web	was	just
blossoming.	In	the	early	years,	many	sites	relied	on	web	servers	like	the	free
version	that	came	from	the	NCSA,	the	supercomputer	center	at	the	University	of
Illinois	that	helped	spark	the	web	revolution	by	writing	a	server	and	a	browser.
This	code	was	great,	but	it	rarely	served	all	of	the	purposes	of	the	new
webmasters	who	were	starting	new	sites	and	building	new	tools	as	quickly	as
they	could.

Brian	Behlendorf,	one	of	the	founders	of	the	Apache	group,	remembers	the	time.
"It	wasn't	just	a	hobbyist	kind	of	thing.	We	had	need	for	commercial-quality
software	and	this	was	before	Netscape	released	its	software.	We	had	developed
our	own	set	of	patches	that	we	traded	like	baseball	cards.	Finally	we	said,	'We
had	so	many	paths	that	overlap.	Why	don't	we	create	our	own	version	and
continue	on	our	own.'"

These	developers	then	coalesced	into	a	core	group	and	set	up	a	structure	for	the
code.	They	chose	the	basic,	BSD-style	license	for	their	software,	which	allowed
anyone	to	use	the	code	for	whatever	purpose	without	distributing	the	source	code
to	any	changes.	Many	of	the	group	lived	in	Berkeley	then	and	still	live	in	the
area	today.	Of	course,	the	BSD-style	license	also	made	sense	for	many	of	the
developers	who	were	involved	in	businesses	and	often	didn't	want	to	jump	into
the	open	source	world	with	what	they	saw	as	Stallman's	absolutist	fervor.
Businesses	could	adopt	the	Apache	code	without	fear	that	some	license	would
force	them	to	reveal	their	source	code	later.	The	only	catch	was	that	they	couldn't
call	the	product	Apache	unless	it	was	an	unmodified	copy	of	something
approved	by	the	Apache	group.

Several	members	of	the	group	went	off	and	formed	their	own	companies	and
used	the	code	as	the	basis	for	their	products.	Sameer	Parekh	based	the
Stronghold	server	product	on	Apache	after	his	company	added	the	encryption
tools	used	to	protect	credit	card	information.	Others	just	used	versions	of	Apache
to	serve	up	websites	and	billed	others	for	the	cost	of	development.

In	1999,	the	group	decided	to	formalize	its	membership	and	create	a	not-for-
profit	corporation	that	was	devoted	to	advancing	the	Apache	server	source	code
and	the	open	source	world	in	general.	New	members	can	apply	to	join	the
corporation,	and	they	must	be	approved	by	a	majority	of	the	current	members.
This	membership	gets	together	and	votes	on	a	board	of	directors	who	make	the

substantive	decisions	about	the	group.

This	world	isn't	much	different	from	the	world	before	the	corporation.	A	mailing
list	still	carries	debate	and	acts	as	the	social	glue	for	the	group.	But	now	the
decision-making	process	is	formalized.	Before,	the	members	of	the	core	group
would	assign	responsibility	to	different	people	but	the	decisions	could	only	be
made	by	rough	consensus.	This	mechanism	could	be	bruising	and	fractious	if	the
consensus	was	not	easy.	This	forced	the	board	to	work	hard	to	develop	potential
compromises,	but	pushed	them	to	shy	away	from	tougher	decisions.	Now	the
board	can	vote	and	a	pure	majority	can	win.

This	seriousness	and	corporatization	are	probably	the	only	possible	steps	that	the
Apache	group	could	take.	They've	always	been	devoted	to	advancing	the
members'	interests.	Many	of	the	other	open	source	projects	like	Linux	were
hobbies	that	became	serious.	The	Apache	project	was	always	filled	with	people
who	were	in	the	business	of	building	the	web.	While	some	might	miss	the	small-
town	kind	of	feel	of	the	early	years,	the	corporate	structure	is	bringing	more
certainty	and	predictability	to	the	realm.	The	people	don't	have	to	wear	suits	now
that	it's	a	corporation.	It	just	ensures	that	tough	decisions	will	be	made	at	a
predictable	pace.

Still,	the	formalism	adds	plenty	of	rigidity	to	the	structure.	An	excited	newcomer
can	join	the	mailing	lists,	write	plenty	of	code,	and	move	mountains	for	the
Apache	group,	but	he	won't	be	a	full	member	before	he	is	voted	in.	In	the	past,
an	energetic	outsider	could	easily	convert	hard	work	into	political	clout	in	the
organization.	Now,	a	majority	of	the	current	members	could	keep	interlopers	out
of	the	inner	circle.	This	bureaucracy	doesn't	have	to	be	a	problem,	but	it	has	the
potential	to	fragment	the	community	by	creating	an	institution	where	some
people	are	more	equal	than	others.	Keeping	the	organization	open	in	practice
will	be	a	real	challenge	for	the	new	corporation.

1.	 T-SHIRTS

If	there's	a	pantheon	for	marketing	geniuses,	then	it	must	include	the	guy	who
realized	people	would	pay	$1	for	several	cents'	worth	of	sugar	water	if	it	came	in
a	shapely	bottle	blessed	by	the	brand	name	CocaCola.	It	might	also	include	the
guy	who	first	figured	out	that	adding	new	blue	crystals	to	detergent	would
increase	sales.	It	is	a	rare	breed	that	understands	how	to	get	people	to	spend

money	they	don't	need	to	spend.

The	next	induction	ceremony	for	this	pantheon	should	include	Robert	Young,	the
CEO	of	Red	Hat	Software,	who	helped	the	Linux	and	the	open	source	world
immeasurably	by	finding	a	way	to	charge	people	for	something	they	could	get
for	free.	This	discovery	made	the	man	rich,	which	isn't	exactly	what	the	free
software	world	is	supposed	to	do.	But	his	company	also	contributed	a	sense	of
stability	and	certainty	to	the	Linux	marketplace,	and	that	was	sorely	needed.
Many	hard-core	programmers,	who	know	enough	to	get	all	of	the	software	for
free,	are	willing	to	pay	$70	to	Red	Hat	just	because	it	is	easier.	While	some	may
be	forever	jealous	of	the	millions	of	dollars	in	Young's	pocket,	everyone	should
realize	that	bringing	Linux	to	a	larger	world	of	computer	illiterates	requires	good
packaging	and	hand-holding.	Free	software	wouldn't	be	anywhere	if	someone
couldn't	find	a	good	way	to	charge	for	it.

The	best	way	to	understand	why	Young	ranks	with	the	folks	who	discovered
how	to	sell	sugar	water	is	to	go	to	a	conference	like	LinuxExpo.	In	the	center	of
the	floor	is	the	booth	manned	by	Red	Hat	Software,	the	company	Young	started
in	Raleigh,	North	Carolina,	after	he	got	through	working	in	the	computer-leasing
business.	Young	is	in	his	fifties	now	and	manages	to	survive	despite	the	fact	that
most	of	his	company's	devotees	are	much	closer	to	13.	Red	Hat	bundles	together
some	of	the	free	software	made	by	the	community	and	distributed	over	the	Net
and	puts	it	on	one	relatively	easy-to-use	CD-ROM.	Anyone	who	wants	to	install
Linux	or	some	of	its	packages	can	simply	buy	a	disk	from	Red	Hat	and	push	a
bunch	of	keys.	All	of	the	information	is	on	one	CD-ROM,	and	it's	relatively
tested	and	pretty	much	ready	to	go.	If	things	go	wrong,	Red	Hat	promises	to
answer	questions	by	e-mail	or	telephone	to	help	people	get	the	product	working.

Red	Hat	sells	their	disk	at	prices	that	range	from	$29.95	to	$149.95.	That	buys
the	user	a	pretty	box,	three	CD-ROMs	including	some	demonstration	versions	of
other	software,	all	of	the	source	code,	a	manual,	and	some	telephone	or	e-mail
support.	That	is	pretty	much	like	the	same	stuff	that	comes	in	software	boxes
from	a	normal	company.	The	manual	isn't	as	nice	as	the	manuals	produced	by
Apple	or	Microsoft,	but	it's	not	too	bad.

The	big	difference	is	that	no	one	needs	to	buy	the	CD-ROM	from	Red	Hat.
Anyone	can	download	all	of	the	software	from	the	Net.	A	friend	of	mine,	Hal
Skinner,	did	it	yesterday	and	told	me,	"I	just	plugged	it	in	and	the	software
downloaded	everything	from	the	Net.	I	got	everything	in	the	Red	Hat	6.0

distribution,	and	it	didn't	cost	me	anything."

Of	course,	Red	Hat	isn't	hurt	too	much	by	folks	who	grab	copies	without	paying
for	them.	In	fact,	the	company	maintains	a	website	that	makes	it	relatively	easy
for	people	to	do	just	that.	Red	Hat	didn't	write	most	of	the	code.	They	also	just
grabbed	it	from	various	authors	throughout	the	Net	who	published	it	under	the
GNU	General	Public	License.	They	grabbed	it	without	paying	for	it,	so	they're
not	really	put	out	if	someone	grabs	from	them.

The	ability	to	snag	GPL'ed	software	from	around	the	Net	keeps	their
development	costs	much	lower	than	Sun,	Apple,	or	Microsoft.	They	never	paid
most	of	the	authors	of	the	code	they	ship.	They	just	package	it	up.	Anyone	else
can	just	go	find	it	on	the	Net	and	grab	it	themselves.	This	pretty	much	guarantees
that	Red	Hat	will	be	in	a	commodity	business.

To	make	matters	worse	for	Red	Hat,	the	potential	competitors	don't	have	to	go
out	onto	the	Net	and	reassemble	the	collection	of	software	for	themselves.	The
GPL	specifically	forbids	people	from	placing	limitations	on	redistributing	the
source	code.	That	means	that	a	potential	competitor	doesn't	have	to	do	much
more	than	buy	a	copy	of	Red	Hat's	disk	and	send	it	off	to	the	CD-ROM	pressing
plant.	People	do	this	all	the	time.	One	company	at	the	exposition	was	selling
copies	of	all	the	major	Linux	distributions	like	Red	Hat,	Slackware,	and
OpenBSD	for	about	$3	per	disk.	If	you	bought	in	bulk,	you	could	get	11	disks
for	$25.	Not	a	bad	deal	if	you're	a	consumer.

So,	on	one	side	of	the	floor,	Young	had	a	flashy	booth	filled	with	workers	talking
about	what	you	could	get	if	you	paid	$50	or	more	for	Red	Hat's	version	6.0	with
new	enhancements	like	GNOME.	Just	a	few	hundred	feet	away,	a	company	was
selling	ripoff	copies	of	the	same	CDs	for	$3.	Any	company	that	is	able	to	stay	in
business	in	a	climate	like	that	must	be	doing	something	right.

It's	not	much	different	from	the	supermarket.	Someone	can	pay	$1	or	more	for
two	liters	of	Coca-Cola,	or	they	can	walk	over	a	few	aisles	and	buy	Kool-Aid
and	raw	sugar.	It	may	be	much	cheaper	to	buy	the	raw	ingredients,	but	many
people	don't.

Young	is	also	smart	enough	to	use	the	competition	from	other	cheap	disk
vendors	to	his	advantage.	He	can't	do	anything	about	the	GPL	restrictions	that
force	him	to	share	with	knockoff	competitors,	so	he	makes	the	best	of	them.

"When	people	complain	about	how	much	we're	charging	for	free	software,	I	tell
them	to	just	go	to	CheapBytes.com,"	he	said	at	the	Expo.	This	is	just	one	of	the
companies	that	regularly	duplicates	the	CDs	of	Red	Hat	and	resells	them.	Red
Hat	often	gets	some	heat	from	people	saying	that	the	company	is	merely
profiting	off	the	hard	work	of	others	who've	shared	their	software	with	the	GPL.
What	gives	them	the	right	to	charge	so	much	for	other	people's	software?	But
Young	points	out	that	people	can	get	the	software	for	$3.	There	must	be	a
rational	reason	why	they're	buying	Red	Hat.

Of	course,	the	two	packages	aren't	exactly	equal.	Both	the	original	and	the
knockoff	CD-ROM	may	have	exactly	the	same	contents,	but	the	extras	are
different.	The	Red	Hat	package	comes	with	"support,"	a	rather	amorphous
concept	in	the	software	business.	In	theory,	Red	Hat	has	a	team	of	people	sitting
around	their	offices	diligently	waiting	to	answer	the	questions	of	customers	who
can't	get	Red	Hat	software	to	do	the	right	thing.

In	practice,	the	questions	are	often	so	hard	or	nebulous	that	even	the	support
team	can't	answer	them.	When	I	first	tried	to	get	Red	Hat	to	run	on	an	old	PC,
the	support	team	could	only	tell	me	that	they	never	promised	that	their	package
would	run	on	my	funky,	slightly	obscure	Cyrix	MediaGX	chip.	That	wasn't
much	help.	Others	probably	have	had	better	luck	because	they	were	using	a	more
standard	computer.	Of	course,	I	had	no	trouble	installing	Red	Hat	on	my	latest
machine,	and	I	didn't	even	need	to	contact	tech	support.

The	Red	Hat	packages	also	come	with	a	book	that	tries	to	answer	some	of	the
questions	in	advance.	This	manual	describes	the	basic	installation	procedure,	but
it	doesn't	go	into	any	detail	about	the	software	included	in	the	distribution.	If	you
want	to	know	how	to	run	the	database	package,	you	need	to	dig	into	the	online
support	provided	by	the	database's	developers.

Many	people	enjoy	buying	these	extra	packages	like	the	manual	and	the	support,
even	if	they	never	use	them.	Red	Hat	has	blossomed	by	providing	some	hand-
holding.	Sure,	some	programmers	could	download	the	software	from	the	Internet
on	their	own,	but	most	people	don't	want	to	spend	the	time	needed	to	develop	the
expertise.

When	I	say	"Red	Hat	software,"	I	really	mean	free	source	software	that	Red	Hat
picked	up	from	the	Net	and	knit	into	a	coherent	set	of	packages	that	should	be,	in
theory,	pretty	bug	free,	tested,	and	ready	for	use.	Red	Hat	is	selling	some	hand-

holding	and	filtering	for	the	average	user	who	doesn't	want	to	spend	time	poking
around	the	Net,	checking	out	the	different	versions	of	the	software,	and	ensuring
that	they	work	well	together.	Red	Hat	programmers	have	spent	some	time
examining	the	software	on	the	CD-ROM.	They've	tested	it	and	occasionally
improved	it	by	adding	new	code	to	make	it	run	better.

Red	Hat	also	added	a	custom	installation	utility	to	make	life	easier	for	people
who	want	to	add	Red	Hat	to	their	computer.[^12]	They	could	have	made	this
package	installation	tool	proprietary.	After	all,	Red	Hat	programmers	wrote	the
tool	on	company	time.	But	Young	released	it	with	the	GNU	General	Public
License,	recognizing	that	the	political	value	of	giving	something	back	was	worth
much	more	than	the	price	they	could	charge	for	the	tool.

[12]:	Er,	I	mean	to	say	"add	Linux"	or	"add	GNU/Linux."	"Red	Hat"	is	now	one
of	the	synonyms	for	free	software.

This	is	part	of	a	deliberate	political	strategy	to	build	goodwill	among	the
programmers	who	distribute	their	software.	Many	Linux	users	compare	the
different	companies	putting	together	free	source	software	CDROMs	and	test
their	commitment	to	the	free	software	ideals.	Debian,	for	instance,	is	very
popular	because	it	is	a	largely	volunteer	project	that	is	careful	to	only	include
certified	free	source	software	on	their	CD-ROMs.	Debian,	however,	isn't	run	like
a	business	and	it	doesn't	have	the	same	attitude.	This	volunteer	effort	and
enlightened	pursuit	of	the	essence	of	free	software	make	the	Debian	distribution
popular	among	the	purists.

Distributors	like	Caldera,	on	the	other	hand,	include	nonfree	software	with	their
disk.	You	pay	$29.95	to	$149.95	for	a	CD-ROM	and	get	some	nonfree	software
like	a	word	processor	tossed	in	as	a	bonus.	This	is	a	great	deal	if	you're	only
going	to	install	the	software	once,	but	the	copyright	on	the	nonfree	software
prevents	you	from	distributing	the	CD-ROM	to	friends.	Caldera	is	hoping	that
the	extras	it	throws	in	will	steer	people	toward	its	disk	and	get	them	to	choose
Caldera's	version	of	Linux.	Many	of	the	purists,	like	Richard	Stallman,	hate	this
practice	and	think	it	is	just	a	not	very	subtle	way	to	privatize	the	free	software.	If
the	average	user	isn't	free	to	redistribute	all	the	code,	then	there's	something	evil
afoot.	Of	course,	Stallman	or	any	of	the	other	software	authors	can't	do	anything
about	this	because	they	made	their	software	freely	distributable.

Young	is	trying	to	walk	the	line	between	these	two	approaches.	Red	Hat	is	very

much	in	the	business	of	selling	CD-ROMs.	The	company	has	a	payroll	with
more	than	a	handful	of	programmers	who	are	drawing	nonvolunteer	salaries	to
keep	the	distributions	fresh	and	the	code	clean.	But	he's	avoided	the	temptation
of	adding	not-so-free	code	to	his	disks.	This	gives	him	more	credibility	with	the
programmers	who	create	the	software	and	give	it	away.	In	theory,	Young	doesn't
need	to	ingratiate	himself	to	the	various	authors	of	GPL-protected	software
packages.	They've	already	given	the	code	away.	Their	power	is	gone.	In	practice,
he	gains	plenty	of	political	goodwill	by	playing	the	game	by	their	rules.

Several	companies	are	already	making	PCs	with	Linux	software	installed	at	the
factory.	While	they	could	simply	download	the	software	from	the	Net
themselves	and	create	their	own	package,	several	have	chosen	to	bundle	Red
Hat's	version	with	their	machines.	Sam	Ockman,	the	president	of	Penguin
Computing,	runs	one	of	those	companies.

Ockman	is	a	recent	Stanford	graduate	in	his	early	twenties	and	a	strong	devotee
of	the	Linux	and	GPL	world.	He	says	he	started	his	company	to	prove	that	Linux
could	deliver	solid,	dependable	servers	that	could	compete	with	the	best	that	Sun
and	Microsoft	have	to	offer.

Ockman	has	mixed	feelings	about	life	at	Stanford.	While	he	fondly	remembers
the	"golf	course-like	campus,"	he	says	the	classes	were	too	easy.	He	graduated
with	two	majors	despite	spending	plenty	of	time	playing	around	with	the	Linux
kernel.	He	says	that	the	computer	science	department's	hobbled	curriculum
drove	him	to	Linux.	"Their	whole	CS	community	is	using	a	stupid	compiler	for
C	on	the	Macintosh,"	he	says."Why	don't	they	start	you	off	on	Linux?	By	the
time	you	get	to	[course]	248,	you	could	hack	on	the	Linux	kernel	or	your	own
replacement	kernel.	It's	just	a	tragedy	that	you're	sitting	there	writing	virtual
kernels	on	a	Sun	system	that	you're	not	allowed	to	reboot."

In	essence,	the	computer	science	department	was	keeping	their	kids	penned	up	in
the	shallow	end	of	the	pool	instead	of	taking	them	out	into	the	ocean.	Ockman
found	the	ocean	on	his	own	time	and	started	writing	GPL-protected	code	and
contributing	to	the	political	emergence	of	free	software.

When	Ockman	had	to	choose	a	version	of	Linux	for	his	Penguin	computers,	he
chose	Red	Hat.	Bob	Young's	company	made	the	sale	because	it	was	playing	by
the	rules	of	the	game	and	giving	software	back	with	a	GPL.	Ockman	says,	"We
actually	buy	the	box	set	for	every	single	one.	Partially	because	the	customers

like	to	get	the	books,	but	also	to	support	Red	Hat.	That's	also	why	we	picked	Red
Hat.	They're	the	most	free	of	all	of	the	distributions."

Debian,	Ockman	concedes,	is	also	very	free	and	politically	interesting,	but	says
that	his	company	is	too	small	to	support	multiple	distributions.	"We	only	do	Red
Hat.	That	was	a	very	strategic	decision	on	our	part.	All	of	the	distributions	are
pretty	much	the	same,	but	there	are	slight	differences	in	this	and	that.	We	could
have	a	twelve-person	Debian	group,	but	it	would	just	be	a	nightmare	for	us	to
support	all	of	these	different	versions	of	Linux."

Of	course,	Penguin	Computing	could	have	just	bought	one	Red	Hat	CD-ROM
and	installed	their	software	on	all	of	the	machines	going	out	the	door.	That
would	have	let	them	cut	their	costs	by	about	$50.	The	GPL	lets	anyone	install	the
software	as	often	as	they	wish.	But	this	wouldn't	be	pure	savings	because
Ockman	is	also	offloading	some	of	his	own	work	when	he	bundles	a	Red	Hat
package	with	his	computers.	He	adds,	"Technically	the	box	set	I	include	allows
customers	to	call	Red	Hat,	but	no	one	ever	does,	nor	do	we	expect	them	or	want
them	to	call	anyone	but	us."	In	essence,	his	company	is	adding	some	extra
support	with	the	Red	Hat	box.

The	support	is	an	important	add-on	that	Young	is	selling,	but	he	realized	long
ago	that	much	more	was	on	sale.	Red	Hat	was	selling	an	image,	the	sense	of
belonging,	and	the	indeterminant	essence	of	cool.	Soda	manufacturers	realized
that	anyone	could	put	sugar	and	water	in	a	bottle,	but	only	the	best	could	rise
above	the	humdrum	nature	of	life	by	employing	the	best	artists	in	the	land	to
give	their	sugar	water	the	right	hip	feeling.	So	Young	invested	in	image.	His	T-
shirts	and	packages	have	always	been	some	of	the	most	graphically	sophisticated
on	the	market.	While	some	folks	would	get	girlfriends	or	neighbors	to	draw	the
images	that	covered	their	books	and	CDs,	Red	Hat	used	a	talented	team	to
develop	their	packaging.

Young	jokes	about	this.	He	said	he	was	at	a	trade	show	talking	to	a	small
software	company	that	was	trying	to	give	him	one	of	their	free	promotional	T-
shirts.	He	said,	"Why	don't	you	try	giving	away	the	source	code	and	selling	the
T-shirts?"

At	the	LinuxExpo,	Red	Hat	was	selling	T-shirts,	too.	One	slick	number	retailing
for	$19	just	said	"The	Revolution	of	Choice"	in	Red	Hat's	signature	old
typewriter	font.	Others	for	sale	at	the	company's	site	routinely	run	for	$15	or

more.	They	sucked	me	in.	When	I	ordered	my	first	Red	Hat	disk	from	them,	I
bought	an	extra	T-shirt	to	go	with	the	mix.

The	technology	folks	at	Red	Hat	may	be	working	with	some	cuttingedge
software	that	makes	the	software	easy	to	install,	but	the	marketing	group	was
stealing	its	plays	from	Nike,	Pepsi,	and	Disney.	They	weren't	selling	running
shoes,	sugar	water,	or	a	ride	on	a	roller	coaster--they	were	selling	an	experience.
Red	Hat	wasn't	repackaging	some	hacker's	science	project	from	the	Net,	it	was
offering	folks	a	ticket	to	a	revolution.	If	the	old	1960s	radicals	had	realized	this,
they	might	have	been	able	to	fund	their	movement	without	borrowing	money
from	their	square	parents.	Selling	enough	groovy,	tie-died	T-shirts	would	have
been	enough.[^13]

[13]:	Apple	is	an	old	hand	at	the	T-shirt	game,	and	internal	projects	create	T-
shirts	to	celebrate	milestones	in	development.	These	images	were	collected	in	a
book,	which	may	be	as	good	a	technical	history	of	Apple	as	might	exist.	Many
projects,	including	ones	that	failed,	are	part	of	the	record.

Many	of	the	other	groups	are	part	of	the	game.	The	OpenBSD	project	sold	out	of
their	very	fashionable	T-shirts	with	wireframe	versions	of	its	little	daemon	logo
soon	after	the	beginning	of	the	LinuxExpo.	They	continue	to	sell	more	T-shirts
from	their	website.	Users	can	also	buy	CD-ROMs	from	OpenBSD.

Several	attendees	wear	yellow	copyleft	shirts	that	hold	an	upsidedown	copyright
logo	[c_Copyleft.png]	arranged	so	the	open	side	points	to	the	left.

The	most	expensive	T-shirt	at	the	show	came	with	a	logo	that	imitated	one	of	the
early	marketing	images	of	the	first	Star	Wars	movie.	The	shirt	showed	Torvalds
and	Stallman	instead	of	Han	Solo	and	Luke	Skywalker	under	a	banner	headline
of	"OS	Wars."	The	shirt	cost	only	$100,	but	"came	with	free	admission	to	the
upcoming	Linux	convention	in	Atlanta."

The	corporate	suits,	of	course,	have	adjusted	as	best	they	can.	The	IBM	folks	at
the	show	wore	identical	khaki	outfits	with	nicely	cut	and	relatively	expensive
polo	shirts	with	IBM	logos.	A	regular	suit	would	probably	stick	out	less	than	the
crisp,	clean	attempt	to	split	the	difference	between	casual	cool	and	button-down
business	droid.

Of	course,	the	T-shirts	weren't	just	about	pretty	packaging	and	slick	images.	The
shirts	also	conveyed	some	information	about	someone's	political	affiliations	in

the	community	and	showed	something	about	the	person's	technical	tastes.	Sure,
someone	could	wear	an	OpenBSD	shirt	because	they	liked	the	cute	little	daemon
logo,	but	also	because	they	wanted	to	show	that	they	cared	about	security.	The
OpenBSD	project	began	because	some	users	wanted	to	build	a	version	of	UNIX
that	was	much	more	secure.	The	group	prides	itself	on	fixing	bugs	early	and
well.	Wearing	an	OpenBSD	shirt	proclaims	a	certain	alliance	with	this	team's
commitment	to	security.	After	all,	some	of	the	profits	from	the	shirts	went	to	pay
for	the	development	of	the	software.	Wearing	the	right	T-shirt	meant	choosing	an
alliance.	It	meant	joining	a	tribe.

Young	is	keenly	aware	that	much	of	his	target	market	is	13-year-old	boys	who
are	flexing	their	minds	and	independence	for	the	first	time.	The	same	images	of
rebellion	that	brought	James	Dean	his	stardom	are	painted	on	the	T-shirts.	Some
wear	shirts	proclaiming	TOTAL	WORLD	DOMINATION	SOON.	Raging
against	Microsoft	is	a	clich	that	is	avoided	as	much	as	it	is	still	used.	The	shirts
are	a	mixture	of	parody,	bluster,	wit,	and	confidence.	Of	course,	they're	usually
black.	Everyone	wears	black.

Ockman	looks	at	this	market	competition	for	T-shirts	and	sees	a	genius.	He	says,
"I	think	Bob	Young's	absolutely	brilliant.	Suddenly	he	realized	that	there's	no
future	in	releasing	mainframes.	He	made	a	jump	after	finding	college	kids	in
Carolina	[using	Linux].	For	him	to	make	that	jump	is	just	amazing.	He's	a
marketing	guy.	He	sat	down	and	figured	it	out.

"Every	time	I	hear	him	talk,"	Ockman	says	about	Young,	"he	tells	a	different
story	about	ketchup.	If	you	take	people	who've	never	had	ketchup	before	in	their
life	and	you	blindly	feed	them	ketchup,	they	have	no	taste	for	ketchup.	They
don't	like	it."	If	you	feed	them	ketchup	over	time,	they	begin	to	demand	it	on
their	hamburgers.

"No	one	who's	never	had	Coca-Cola	before	would	like	it,"	Ockman	continues.
"These	things	are	purely	a	branding	issue.	It	has	to	be	branded	for	cool	in	order
for	people	to	sit	down	and	learn	everything	they	have	to	know."

In	essence,	Young	looked	around	and	saw	that	a	bunch	of	scruffy	kids	were
creating	an	OS	that	was	just	as	good,	if	not	better,	than	the	major	OSs	costing
major	sums	of	money.	This	OS	was,	best	of	all,	free	for	all	comers.	The	OS	had	a
problem,	though.	The	scruffy	kids	never	marketed	their	software.	The	deeply
intelligent,	free-thinking	hackers	picked	up	on	how	cool	it	was,	but	the	rest	of

society	couldn't	make	the	jump.	The	scruffy	kids	didn't	bother	to	try	to	market	it
to	the	rest	of	society.	They	were	artists.

Most	people	who	looked	at	such	a	situation	would	have	concluded	that	this
strange	clan	of	techno-outsiders	was	doomed	to	inhabit	the	periphery	of	society
forever.	There	was	no	marketing	of	the	product	because	there	was	no	money	in
the	budget	and	there	would	never	be	money	in	the	budget	because	the	software
was	free.	Young	recognized	that	you	could	still	market	the	software	without
owning	it.	You	could	still	slap	on	a	veneer	of	cool	without	writing	the	code
yourself.	Sugar	water	costs	practically	nothing,	too.

Young's	plan	to	brand	the	OS	with	a	veneer	of	cool	produced	more	success	than
anyone	could	imagine.	Red	Hat	is	by	far	the	market	leader	in	providing	Linux	to
the	masses,	despite	the	fact	that	many	can	and	do	"steal"	a	low-cost	version.	Of
course,	"steal"	isn't	the	right	word,	because	Red	Hat	did	the	same	thing.
"Borrow"	isn't	right,	"grab"	is	a	bit	casual,	and	"join	in	everlasting	communion
with	the	great	free	software	continuum"	is	just	too	enthusiastic	to	be	cool.

In	August	1999,	Red	Hat	completed	an	initial	public	offering	of	the	shares	of	its
stock,	the	common	benchmark	for	success	in	the	cash-driven	world	of	Silicon
Valley.	Many	of	the	principals	at	Red	Hat	got	rich	when	the	stock	opened	at	$14
a	share	on	August	11	and	closed	the	day	at	$52.	Bob	Young,	the	CEO	of	Red
Hat,	started	the	day	with	a	bit	more	than	9	million	shares	or	15	percent	of	the
company.	Technically,	not	all	of	this	was	his	because	he	had	distributed	some
(3,222,746	shares,	to	be	exact)	to	his	wife,	Nancy,	and	put	some	more
(1,418,160)	in	various	trusts	for	his	children.	Still,	this	cut	adds	up	to	about	$468
million.	Marc	Ewing,	executive	vice	president	and	chief	technology	officer,	also
ended	up	with	a	similar	amount	of	money	divided	between	trusts	and	his	own
pocket.	Matthew	Sulzik,	the	president,	who	joined	in	November	1998,	got	a	bit
less	(2,736,248	shares)	in	his	pot,	but	he	was	a	relative	newcomer.	The	big
investors,	Greylock	IX	Limited	Partnership,	Benchmark	Capital	Partners	II,	and
Intel,	split	up	the	big	part	of	the	rest	of	the	shares.

Now,	what	happened	to	the	boys	who	wrote	the	code?	Did	Richard	Stallman	get
any	of	it?	Did	Linus	Torvalds?	Some	of	the	major	developers	like	Alan	Cox	and
David	Miller	already	work	for	Red	Hat,	so	they	probably	drew	shares	out	of	the
employee	pool.	There	are	thousands	of	names,	however,	who	aren't	on	anyone's
radar	screen.	They've	written	many	lines	of	code	for	naught.

Red	Hat	tried	to	alleviate	some	of	the	trouble	by	allocating	800,000	shares	to
"directors,	officers	and	employees	of	Red	Hat	and	to	open	source	software
developers	and	other	persons	that	Red	Hat	believes	have	contributed	to	the
success	of	the	open	source	software	community	and	the	growth	of	Red	Hat."
This	group,	occasionally	known	as	the	"friends	and	family,"	was	a	way	to	reward
buddies.	Red	Hat	drew	up	a	list	of	major	contributors	to	the	open	source
distribution	and	sent	out	invitations.

"Dear	open	source	community	member,"	began	the	e-mail	letter	that	Red	Hat
sent	to	about	1,000	people.

In	appreciation	of	your	contribution	to	the	open	source	community,	Red	Hat	is
pleased	to	offer	you	this	personal,	non-transferable,	opportunity..	..	Red	Hat
couldn't	have	grown	this	far	without	the	ongoing	help	and	support	of	the	open
source	community,	therefore,	we	have	reserved	a	portion	of	the	stock	in	our
offering	for	distribution	online	to	certain	members	of	the	open	source
community.	We	invite	you	to	participate.

Many	programmers	and	developers	were	touched	by	the	thoughtfulness.	The	list
probably	wasn't	long	enough	or	inclusive	enough	to	pull	everyone	into	the	circle,
but	it	did	do	a	good	job	of	spreading	the	wealth	around.	The	plan	began	to
backfire,	however,	when	ETrade	began	to	parcel	out	the	shares.	Everyone	who
made	it	onto	the	list	filled	out	a	form	listing	their	net	worth,	and	ETrade
attempted	to	decide	who	was	a	sophisticated	investor	and	who	wasn't.	Some
folks	who	had	little	money	(perhaps	because	they	spent	too	much	time	writing
free	software)	were	locked	out.

One	contributor,	C.	Scott	Ananian,	wrote	about	his	rejection	in	Salon	magazine,
"I	filled	out	the	eligibility	questionnaire	myself.	I	knew	they	were	trying	to	weed
out	inexperienced	investors,	so	on	every	question	that	related	to	experience,	I
asserted	the	maximum	possible.	I	knew	what	I	was	doing.	And	it	was	my	money,
anyway--I	had	a	God-given	right	to	risk	it	on	as	foolhardy	a	venture	as	I	liked."

The	article	drew	plenty	of	flack	and	murmurs	of	a	class	action	lawsuit	from	the
disenfranchised.	A	discussion	broke	out	on	Slashdot,	the	hardcore	site	for	nerds.
Some	defended	ETrade	and	pointed	out	that	a	Red	Hat	IPO	was	not	a	lock	or	a
guarantee	of	wealth.	Too	many	grandmothers	had	been	burned	by	slick-talking
stock	salesmen	in	the	past.	ETrade	had	to	block	out	the	little	guys	for	their	own
protection.	Stock	can	go	down	as	well	as	up.

Steve	Gilliard,	a	"media	operative"	at	the	website	NetSlaves,	wrote,	"If	the	Red
Hat	friends	and	family	group	were	judged	by	normal	standards,	there	is	no
brokerage	in	the	U.S.	which	would	let	many	of	them	buy	into	an	IPO.	In	many
cases,	they	would	be	denied	a	brokerage	account.	Poor	people	are	usually
encouraged	to	make	other	investments,	like	paying	off	Visa	and	Master	Card."

Others	saw	it	as	a	trick	to	weed	out	the	pool	and	make	sure	that	E*Trade	could
allocate	the	shares	to	its	buddies.	The	more	the	small	guys	were	excluded,	the
more	the	big	guys	would	get	for	their	funds.	In	the	end,	the	complaints	reached
some	ears.	More	people	were	able	to	sneak	in,	but	the	circle	was	never	big
enough	for	all.

20.1	WORLD	DOMINATION	PRETTY	SOON?

..................................

Red	Hat's	big	pool	of	money	created	more	than	jealousy	in	the	hearts	and	minds
of	the	open	source	world.	Jealousy	was	an	emotional	response.	Fear	of	a	new
Microsoft	was	the	rational	response	that	came	from	the	mind.	Red	Hat's	pool	of
cash	was	unprecedented	in	the	open	source	community.	People	saw	what	the	pile
of	money	and	the	stock	options	did	to	Bill	Gates.	Everyone	began	to	wonder	if
the	same	would	happen	to	Red	Hat.

On	the	face	of	it,	most	open	source	developers	have	little	to	worry	about.	All	the
code	on	the	Red	Hat	disk	is	covered	with	a	General	Protection	License	and	isn't
going	to	become	proprietary.	Robert	Young	has	been	very	open	about	his
promise	to	make	sure	that	everything	Red	Hat	ships	falls	under	the	GPL.	That
includes	the	distribution	tools	it	writes	in-house.

The	GPL	is	a	powerful	force	that	prevents	Red	Hat	from	making	many	unilateral
decisions.	There	are	plenty	of	distributions	that	would	like	to	take	over	the
mantle	of	the	most	popular	version	of	Linux.	It's	not	hard.	The	source	code	is	all
there.

But	more	savvy	insiders	whisper	about	a	velvet-gloved	version	of	Microsoft's
"embrace	and	extend."	The	company	first	gains	control	by	stroking	the	egos	and
padding	the	wallets	of	the	most	important	developers.

In	time,	other	Red	Hat	employees	will	gradually	become	the	most	important
developers.	They're	paid	to	work	on	open	source	projects	all	day.	They'll

gradually	supplant	the	people	who	have	day	jobs.	They'll	pick	up	mindshare.
Such	a	silent	coup	could	guarantee	that	Red	Hat	will	continue	to	receive	large
influxes	of	cash	from	people	who	buy	the	CD-ROMs.

There	are	parts	of	this	conspiracy	theory	that	are	already	true.	Red	Hat	does
dominate	the	United	States	market	for	Linux	and	it	controls	a	great	deal	of	the
mindshare.	Their	careful	growth	supported	by	an	influx	of	cash	ensured	a	strong
position	in	the	marketplace.

In	November	1999,	Red	Hat	purchased	Cygnus	Solutions,	the	other	major
commercial	developer	of	GPL-protected	software,	which	specialized	in
maintaining	and	extending	the	compiler,	GCC.	Red	Hat	had	235	employees	at
the	time	and	Cygnus	Solutions	had	181.	That's	a	huge	fraction	of	the	open	source
developers	under	one	roof.	The	Cygnus	press	release	came	with	the	headline,
RED	HAT	TO	ACQUIRE	CYGNUS	AND	CREATE	OPEN	SOURCE
POWERHOUSE.

To	make	matters	worse,	one	of	the	founders	of	Cygnus,	Michael	Tiemann,	likes
to	brag	that	the	open	source	software	prevents	competitors	from	rising	up	to
threaten	Cygnus.	The	GPL	guarantees	that	the	competitors	will	also	have	to
publish	their	source,	giving	Cygnus	a	chance	to	stay	ahead.	In	this	model,	any
company	with	the	money	and	stamina	to	achieve	market	dominance	isn't	going
to	be	knocked	down	by	some	kids	in	a	garage.

Those	are	scary	confluences.	Let's	imagine	that	the	conspiracy	theory	is
completely	borne	out.	Let's	imagine	that	all	of	the	other	distributions	wither
away	as	corporate	and	consumer	clients	rush	head	over	heels	to	put	Red	Hat	on
their	machines.	Red	Hat	becomes	the	default	in	much	the	same	way	that
Microsoft	is	the	default	today.	Will	Red	Hat	have	the	power	that	Microsoft	has
today?

Will	they	be	able	to	force	everyone	to	have	a	Red	Hat	Network	logon	button	on
their	desktop?	Perhaps.	Many	people	are	going	to	trust	Red	Hat	to	create	a	good
default	installation.	Getting	software	to	be	loaded	by	default	will	give	them	some
power.

Can	they	squeeze	their	partners	by	charging	different	rates	for	Linux?	Microsoft
is	known	to	offer	lower	Windows	prices	to	their	friends.	This	is	unlikely.	Anyone
can	just	buy	a	single	Red	Hat	CDROM	from	a	duplicator	like	CheapBytes.	This

power	play	won't	work.

Can	they	duplicate	the	code	of	a	rival	and	give	it	away	in	much	the	same	way
that	Microsoft	created	Internet	Explorer	and	"integrated"	it	into	their	browser?
You	bet	they	can.	They're	going	to	take	the	best	ideas	they	can	get.	If	they're
open	source,	they'll	get	sucked	into	the	Red	Hat	orbit.	If	they're	not,	then	they'll
get	someone	to	clone	them.

Can	they	force	people	to	pay	a	"Red	Hat	tax"	just	to	upgrade	to	the	latest
software?	Not	likely.	Red	Hat	is	going	to	be	a	service	company,	and	they're
going	to	compete	on	having	the	best	service	for	their	customers.	Their	real
competitor	will	be	companies	that	sell	support	contracts	like	LinuxCare.	Service
industries	are	hard	work.	Every	customer	needs	perfect	care	or	they'll	go
somewhere	else	next	time.	Red	Hat's	honeymoon	with	the	IPO	cash	will	only
last	so	long.	Eventually,	they're	going	to	have	to	earn	the	money	to	get	a	return
on	the	investment.	They're	going	to	be	answering	a	lot	of	phone	calls	and	e-
mails.

1.	 NEW

Most	of	this	book	frames	the	entire	free	source	movement	as	something	new	and
novel.	The	notion	of	giving	away	free	source	code	is	something	that	seems
strange	and	counterintuitive.	But	despite	all	of	the	gloss	and	excitement	about
serious	folks	doing	serious	work	and	then	just	giving	it	away	like	great
philanthropists,	it's	pretty	easy	to	argue	that	this	has	all	been	done	before.	The
software	world	is	just	rediscovering	secrets	that	the	rest	of	the	world	learned
long	ago.

Giving	things	away	isn't	a	radical	idea.	People	have	been	generous	since,	well,
the	snake	gave	Eve	that	apple.	Businesses	love	to	give	things	away	in	the	hope
of	snagging	customers.	Paper	towel	manufacturers	give	away	towel	hardware
that	only	accepts	paper	in	a	proprietary	size.	Food	companies	give	coolers	and
freezers	to	stores	if	the	stores	agree	not	to	stock	rival	brands	in	them.

In	fact,	most	industries	do	more	than	just	give	away	free	gifts	to	lure	customers.
Most	share	ideas,	strategies,	and	plans	between	competitors	because	cooperation
lets	them	all	blossom.	Stereo	companies	make	components	that	interoperate
because	they	adhere	to	the	same	standard.	Lawyers,	engineers,	and	doctors	are

just	some	of	the	people	who	constantly	trade	ideas	and	solutions	with	each	other
despite	the	fact	that	they	work	as	competitors.	A	broad,	central,	unowned	pool	of
knowledge	benefits	everyone	in	much	the	same	way	that	it	helps	the	free
software	community.

The	real	question	is	not	"Who	do	these	pseudo-commie	pinkos	think	they	are?"
It's	"What	took	the	software	industry	so	long	to	figure	this	out?"	How	did	the
programmers	who	are	supposedly	a	bunch	of	whip-smart,	hard-core	libertarians
let	a	bunch	of	lawyers	lead	them	down	a	path	that	put	them	in	a	cubicle	farm	and
prevented	them	from	talking	to	each	other?

Recipes	are	one	of	the	closest	things	to	software	in	the	material	world,	and	many
restaurants	now	share	them	widely.	While	chefs	once	treated	them	like	industrial
secrets,	they	now	frequently	give	copies	to	magazines	and	newspapers	as	a	form
of	publicity.	The	free	advertisement	is	worth	more	than	the	possibility	that
someone	will	start	cloning	the	recipe.	The	restaurants	recognized	that	they	were
selling	more	than	unique	food.	Ambiance,	service,	and	quality	control	are	often
more	in	demand	than	a	particular	recipe.

When	the	free	software	industry	succeeds	by	sharing	the	source	code	now,	it's
capitalizing	on	the	fact	that	most	people	don't	want	to	use	the	source	code	to	set
up	a	take-no-prisoners	rivalry.	Most	people	just	want	to	get	their	work	done.	The
cost	of	sharing	source	code	is	so	low	that	it	doesn't	take	much	gain	to	make	it
worth	the	trouble.	One	bug	fix	or	tiny	feature	could	pay	for	it.

21.1	SHAREWARE	IS	NOT	OPEN	SOURCE	AND	OPEN	SOURCE	ISN'T
FREE

..

The	software	industry	has	been	flirting	with	how	to	make	money	off	of	the	low
cost	of	distributing	its	product.	The	concept	of	shareware	began	long	before	the
ideological	free	software	movement	as	companies	and	individual	developers
began	sharing	the	software	as	a	cheap	form	of	advertisement.	Developers
without	the	capital	to	start	a	major	marketing	campaign	have	passed	around	free
versions	of	their	software.	People	could	try	it	and	if	it	met	their	needs,	they	could
pay	for	it.	Those	who	didn't	like	it	were	honor-bound	to	erase	their	version.

Shareware	continues	to	be	popular	to	this	day.	A	few	products	have	made	a	large
amount	of	money	with	this	approach,	but	most	have	made	very	little.	Some

people,	including	many	of	the	major	companies,	distribute	their	own	crippled
version	of	their	product	so	people	can	try	it.	Crucial	functions	like	the	ability	to
print	or	save	a	document	to	the	disk	are	usually	left	out	as	a	strong
encouragement	to	buy	the	real	version.

Of	course,	free	source	products	aren't	the	same	thing	as	shareware	because	most
shareware	products	don't	come	with	the	source	code.	Programmers	don't	have
the	ability	or	the	right	to	modify	them	to	do	what	they	want.	This	has	always
been	one	of	the	biggest	selling	points	to	the	high-end	marketplace	that	knows
how	to	program.

In	fact,	free	source	software	is	not	dirt	cheap	either.	Anyone	who's	been	around
the	open	software	community	for	a	time	realizes	that	you	end	up	having	to	pay
something	for	the	lunch.	Keeping	some	costs	hidden	from	the	consumer	isn't
new,	and	it	still	hasn't	gone	away	in	the	free	software	world.	The	costs	may	not
be	much	and	they	may	be	a	much	better	deal	than	the	proprietary	marketplace,
but	the	software	still	costs	something.

The	simplest	cost	is	time.	Free	software	is	often	not	as	polished	as	many
commercial	products.	If	you	want	to	use	many	of	the	tools,	you	must	study
manuals	and	learn	to	think	like	a	programmer.	Some	manuals	are	quite	nice,	but
many	are	cursory.	This	may	change	as	the	free	software	movement	aims	to
dominate	the	desktop,	but	the	manuals	and	help	aren't	as	polished	as	the
solutions	coming	out	of	Microsoft.	Of	course,	one	free	software	devotee	told	me
by	way	of	apology,	"Have	you	actually	tried	using	Microsoft's	manuals	or	help?
They	suck,	too."

Even	when	it	is	polished,	free	source	software	requires	time	to	use.	The	more
options	that	are	available,	the	more	time	it	takes	to	configure	the	software.	Free
source	gives	tons	of	options.

The	lack	of	polish	isn't	usually	a	problem	for	programmers,	and	it's	often	not	an
extra	cost	either.	Programmers	often	need	to	learn	a	system	before	they	find	a
way	to	revise	and	extend	it	to	do	what	their	boss	wants	it	to	do.	Learning	the	guts
of	a	free	software	package	isn't	much	of	an	extra	cost	because	they	would	be	just
trying	to	learn	the	guts	of	a	Microsoft	product	instead.	Plus,	the	source	code
makes	the	process	easier.

Still,	most	users	including	the	best	programmers	end	up	paying	a	company	like

Red	Hat,	Caldera,	or	a	group	like	OpenBSD	to	do	some	of	the	basic	research	in
building	a	Linux	system.	All	of	the	distribution	companies	charge	for	a	copy	of
their	software	and	throw	in	some	support.	While	the	software	is	technically	free,
you	pay	for	help	to	get	it	to	work.

If	the	free	source	code	is	protected	by	the	GNU	General	Public	License,	then
you	end	up	paying	again	when	you're	forced	to	include	your	changes	with	the
software	you	ship.	Bundling	things	up,	setting	up	a	server,	writing
documentation,	and	answering	users'	questions	take	time.	Sure,	it	may	be	fair,
good,	and	nice	to	give	your	additions	back	to	the	community,	but	it	can	be	more
of	a	problem	for	some	companies.	Let's	say	you	have	to	modify	a	database	to
handle	some	proprietary	process,	like	a	weird	way	to	make	a	chemical	or
manufacture	a	strange	widget.	Contributing	your	source	code	back	into	the
public	domain	may	reveal	something	to	a	competitor.	Most	companies	won't
have	this	problem,	but	being	forced	to	redistribute	code	always	has	costs.

Of	course,	the	cost	of	this	is	debatable.	Tivo,	for	instance,	is	a	company	that
makes	a	set-top	box	for	recording	television	content	on	an	internal	hard	disk.
The	average	user	just	sees	a	fancy,	easy-to-use	front	end,	but	underneath,	the
entire	system	runs	on	the	Linux	operating	system.	Tivo	released	a	copy	of	the
stripped-down	version	of	Linux	it	ships	on	its	machines	on	its	website,	fulfilling
its	obligation	to	the	GNU	GPL.	The	only	problem	I've	discovered	is	that	the	web
page	(www.tivo.com/linux/)	is	not	particularly	easy	to	find	from	the	home	page.
If	I	hadn't	known	it	was	there,	I	wouldn't	have	found	it.

Of	course,	companies	that	adopt	free	source	software	also	end	up	paying	in	one
way	or	another	because	they	need	to	hire	programmers	to	keep	the	software
running.	This	isn't	necessarily	an	extra	cost	because	they	would	have	hired
Microsoft	experts	anyway.	Some	argue	that	the	free	source	software	is	easier	to
maintain	and	thus	cheaper	to	use,	but	these	are	difficult	arguments	to	settle.

In	each	of	these	ways,	the	free	software	community	is	giving	away	something	to
spark	interest	and	then	finding	a	way	to	make	up	the	cost	later.	Some	in	the	free
software	community	sell	support	and	others	get	jobs.	Others	give	back	their
extensions	and	bug	fixes.	A	running	business	is	a	working	ecology	where
enough	gets	reinvested	to	pay	for	the	next	generation	of	development.	The	free
source	world	isn't	a	virtual	single	corporation	like	the	phone	company	or	the
cable	business,	but	it	can	be	thought	of	in	that	way.	Therefore,	the	free	software
isn't	much	different	from	the	free	toasters	at	the	banks,	the	free	lollipops	at	the

barber's,	or	the	free	drugs	from	the	neighborhood	pusher.

If	you	want	to	think	bigger,	it	may	be	better	to	see	the	free	software	world	as
closer	to	the	great	socialized	resources	like	the	ocean,	the	freeway	system,	or	the
general	utility	infrastructure.	These	treat	everyone	equally	and	provide	a
common	basis	for	travel	and	commerce.

Of	course,	that's	the	most	cynical	way	that	free	software	is	no	different	from
many	of	the	other	industries.	There	are	other	ways	that	the	free	source	vision	is
just	a	return	to	the	way	that	things	used	to	be	before	the	software	industry
mucked	them	up.	The	problem	is	that	a	mixture	of	licensing,	copyright,	and
patent	laws	have	given	the	software	industry	more	ways	to	control	their	product
than	virtually	any	other	industry.	The	free	source	movement	is	more	a	reaction
against	these	controls	than	a	brave	new	experiment.

21.2	WOULD	YOU	LICENSE	A	CAR	FROM	THESE	GUYS?

...

Comparing	the	software	industry	to	the	car	industry	is	always	a	popular	game.
Normally,	the	car	industry	looks	a	bit	poky	and	slow	off	the	mark	because	they
haven't	been	turning	out	new	products	that	are	twice	as	fast	and	twice	as	efficient
as	last	year's	products.	But	many	parts	of	the	car	industry	are	bright,	shining
examples	of	freedom	compared	to	their	software	equivalents.

Consider	the	Saturday	afternoon	mechanic	who	likes	to	change	the	oil,	put	in	a
new	carburetor,	swap	the	spark	plugs,	and	keep	the	car	in	running	order.	The	car
guy	can	do	all	of	these	things	without	asking	the	manufacturer	for	permission.
There's	nothing	illegal	about	taking	apart	an	engine	or	even	putting	an	entirely
new,	souped-up	engine	in	your	car.	The	environmental	protection	laws	may
prohibit	adding	engines	that	spew	pollutants,	but	the	manufacturer	is	out	of	the
loop.	After	all,	it's	your	car.	You	paid	for	it.

Software	is	something	completely	different.	You	don't	own	most	of	the	software
you	paid	for	on	your	computer.	You	just	own	a	"license"	to	use	it.	The	difference
is	that	the	license	can	be	revoked	at	any	time	if	you	don't	follow	the	rules,	and
some	of	the	rules	can	be	uncomfortable	or	onerous.	There's	nothing	wrong	with
this	mechanism.	In	the	right	hands,	it	can	be	very	pleasant.	The	Berkeley
Software	Distribution	license,	for	instance,	has	no	real	requirements	except	that
you	credit	the	university	for	its	contributions,	and	the	university	just	revoked	that

requirement.	The	GNU	Public	License	is	much	stricter,	but	only	if	you	want	to
change,	modify,	and	distribute	the	code.	In	that	case,	you're	only	prevented	from
keeping	these	changes	a	secret.	That's	not	a	big	problem	for	most	of	us.

Other	licenses	are	even	more	stricter.	One	Microsoft	license	prevents	the
programmer	from	trying	to	figure	out	how	the	software	works	inside	by	saying
"LICENSEE	may	not	reverse	engineer,	decompile	or	disassemble	Microsoft
Agent."	These	clauses	are	popular	and	found	in	many	software	licenses.	The
company	lawyers	argue	that	they	ostensibly	prevent	people	from	stealing	the
secrets	that	are	bound	up	in	the	software.

These	licenses	have	been	interpreted	in	different	ways.	The	video	game	maker
Accolade,	for	instance,	won	its	case	against	the	manufacturer	Sega	by	arguing
that	reverse	engineering	was	the	only	way	to	create	a	clone.	If	companies
couldn't	clone,	there	would	be	no	free	market.	On	the	other	hand,	Connectix	lost
some	of	the	early	court	battles	when	Sony	sued	them	for	creating	a	software
clone	of	the	PlayStation.	The	judge	decided	that	Connectix	had	violated	Sony's
copyright	when	they	made	a	copy	to	study	for	reverse	engineering.	In	February
2000,	an	appeals	court	struck	down	this	ruling,	freeing	Connectix	to	sell	the
emulator	again.	By	the	time	you	read	this,	the	legal	landscape	will	probably	have
changed	again.

In	practice,	license	clauses	like	this	only	hurt	the	honest	programmers	who	are
trying	to	deal	with	a	nasty	bug.	Most	people	don't	want	to	steal	secrets,	they	just
want	to	be	able	to	make	their	software	work	correctly.	Decompiling	or
disassembling	the	code	is	a	good	way	to	figure	out	exactly	what	is	going	on
inside	the	software.	It	can	save	hours	and	plenty	of	grief.

The	license	even	borders	on	the	absurd	because	the	phrase	"reverse	engineer"	is
so	ambiguous.	It	may	be	possible	to	argue	that	just	learning	to	use	a	piece	of
software	is	reverse	engineering	it.	Learning	how	a	feature	works	means	learning
to	predict	what	it	will	do.	In	many	cases,	the	bugs	and	the	glitches	in	software
mean	that	the	features	are	often	a	bit	unpredictable	and	only	a	bit	of	black-box
reverse	engineering	can	teach	us	how	they	work.	That's	not	much	different	from
learning	the	steps	that	happen	inside.	Fiddling	with	shrink-wrapped	software	is
like	fiddling	with	a	black	box.

Imagine	that	General	Motors	or	Ford	sold	their	cars	with	such	a	donot-reverse-
engineer	license.	They	would	either	weld	the	hood	shut	or	add	on	a	special	lock

and	only	give	the	keys	to	registered	dealers	who	would	sign	lots	of	forms	that
guaranteed	that	they	would	keep	the	workings	of	the	cars	secret.	No	one	could
change	the	spark	plugs,	chop	the	hood,	add	a	nitro	tank,	or	do	anything	with	the
car	except	drive	it	around	in	a	completely	boring	way.	Some	lawyers	at	the	car
companies	might	love	to	start	shipping	cars	with	such	a	license.	Think	how
much	more	they	could	charge	for	service!The	smart	executives	might	realize	that
they	were	hurting	their	biggest	fans,	the	people	who	liked	to	tune,	tweak,	fiddle,
and	futz	with	their	machines.	They	would	be	stripping	away	one	of	the	great
pleasures	of	their	devices	and	slowly	but	surely	turning	the	cars	into	commodity
items	that	put	the	owners	in	legal	strait-jackets.

Some	software	companies	take	the	licensing	requirements	to	even	greater
extremes.	One	of	the	most	famous	examples	is	the	Microsoft	Agent	software,
which	allows	a	programmer	to	create	little	animated	characters	that	might	give
instructions.	Some	versions	of	Microsoft	Office,	for	instance,	come	with	a
talking	paper	clip	that	points	out	new	and	improved	features.	Microsoft	released
this	technology	to	the	general	programmer	community	hoping	that	people	would
add	the	tools	to	their	software	and	create	their	own	talking	characters.

The	software	is	free	and	Microsoft	posts	a	number	of	nice	tools	for	using	the
code	on	their	website.	They	couldn't	leave	well	enough	alone,	though,	because
anyone	who	wants	to	use	the	tool	with	their	code	needs	to	print	out	and	file	a
separate	license	with	the	Microsoft	legal	staff.	Many	of	the	clauses	are	pretty
simple	and	do	useful	things	like	force	anyone	using	the	software	to	try	to	keep
their	versions	up	to	date.	But	the	most	insidious	one	ensures	that	no	one	will

"...use	the	Character	Animation	Data	and	Image	Files	to	disparage	Microsoft,	its
products	or	services	or	for	promotional	goods	or	for	products	which,	in
Microsoft's	sole	judgment,	may	diminish	or	otherwise	damage	Microsoft's
goodwill	in	the	SOFTWARE	PRODUCT	including	but	not	limited	to	uses	which
could	be	deemed	under	applicable	law	to	be	obscene	or	pornographic,	uses
which	are	excessively	violent,	unlawful,	or	which	purpose	is	to	encourage
unlawful	activities."

In	other	words,	if	you	want	to	make	the	cute	animated	cartoon	say	something
unkind	about	Microsoft,	Microsoft	can	simply	shut	you	down.	And	don't	even
think	about	creating	a	little	animated	marijuana	cigarette	for	your	Grateful	Dead
softwarepalooza.	It's	practically	illegal	just	to	think	bad	thoughts	in	the	vicinity
of	a	computer	running	Microsoft	Agent.

Most	software	licenses	are	not	as	bad	or	as	restrictive	as	the	Microsoft	Agent
license,	but	many	cause	their	own	share	of	grief.	Companies	continue	to	try	to
come	up	with	more	restrictive	solutions	for	combating	piracy,	and	in	the	end
they	bother	the	legitimate	users.	People	are	often	buying	new	computers	or
upgrading	a	hard	disk,	and	both	of	these	acts	require	making	a	copy	of	old
software.	Companies	that	make	it	too	difficult	to	do	these	things	end	up	rubbing
salt	in	the	wounds	of	legitimate	users	who	lose	a	hard	disk.

In	this	context,	the	free	source	world	isn't	a	new	flowering	of	mutual	respect	and
sharing,	it's	just	a	return	to	the	good	old	days	when	you	could	take	apart	what
was	yours.	If	you	bought	the	software,	you	can	fiddle	with	it.	This	isn't	the	Age
of	Aquarius,	it	is	the	second	coming	of	Mayberry	R.F.D.,	Home	Improvement,
and	the	Dukes	of	Hazzard.

21.3	OTHER	PROFESSIONS	WERE	OPEN	FROM	THE	START

...

This	comparison	doesn't	have	to	be	limited	to	the	car	guys	in	the	garage.	Many
other	professions	freely	share	ideas	and	operate	without	the	very	restrictive
covenants	of	the	software	industry.	The	legal	business	is	a	great	example	of	a
world	where	people	are	free	to	beg,	borrow,	and	steal	ideas	from	others.	If
someone	finds	a	neat	loophole,	they	can't	patent	it	or	prevent	others	from
exploiting	it.	Once	other	lawyers	hear	about	it,	they'll	be	filing	their	own
lawsuits	for	their	own	clients.	[^14]

[14]:	1The	legal	system	is	not	perfect.	Too	many	cases	are	now	filed	under	seal,
and	the	courts	are	too	willing	to	act	as	private	dispute	agencies	for	big
corporations.	When	the	law	is	locked	up	in	this	way,	it	is	not	a	great	example	for
the	free	software	world.

Consider	the	world	of	tobacco	liability.	Once	one	state	advanced	the	legal
opinion	that	the	tobacco	companies	were	liable	for	the	cost	of	treating	any
disease	that	might	emerge	from	smoking	cigarettes,	the	other	states	and	plenty	of
lawyers	were	able	to	jump	on	board.	Once	they	settled,	the	lawyers	turned	their
sights	on	the	gun	companies.	By	the	time	you	read	this,	they'll	probably	have
moved	on	to	the	fat	delivery	vehicle	manufacturers	in	the	fast-food	industry	and
the	stress	induction	groups,	aka	your	employer.	The	exercise	reduction	industry,
made	up	of	a	megalomaniacal	consortium	of	moviemakers,	television	producers,

and,	yes,	book	writers,	must	be	on	someone's	list.[^15]

[15]:	The	author	recommends	that	you	read	this	on	the	Stairmaster	or	a
stationary	bike,	but	only	after	checking	with	a	registered	doctor	and	consulting
with	a	licensed	exercise	specialist	who	is	thoroughly	familiar	with	your	medical
history.	These	medical	specialists	will	be	able	to	tune	your	workout	to	provide
the	optimal	fitness	benefits	so	you	can	live	long	enough	to	get	Alzheimer's
disease.

Free	source	folks	are	just	as	free	to	share	ideas.	Many	of	the	rival	Linux	and
BSD	distributions	often	borrow	code	from	each	other.	While	they	compete	for
the	hearts	and	minds	of	buyers,	they're	forced	by	the	free	source	rules	to	share
the	code.	If	someone	writes	one	device	driver	for	one	platform,	it	is	quickly
modified	for	another.

The	proprietary	software	world	moves	slowly	in	comparison.	They	keep	their
ideas	secret	and	people	spend	thousands	of	lawyer	years	on	projects	just	keeping
the	various	licenses	straight.	Code	is	shared,	but	only	after	lawyers	vet	the
contracts.

The	legal	industry	is	also	a	good	example	of	how	the	free	sharing	of	ideas,
techniques,	and	strategies	does	not	hurt	the	income	of	the	practitioners.	In	fact,
lawyers	have	managed	to	carve	themselves	a	very	nice	slice	of	the	nation's
income.	Most	are	not	as	rich	as	the	lucky	few	who	beat	the	tobacco	companies,
but	they	do	all	right.

21.4	COPYRIGHT,	TOOL	OF	DICTATORS

.................................

It	would	be	unfair	to	the	software	industry	to	portray	the	rest	of	society	as	much
more	sharing	and	giving.	Most	of	the	other	industries	are	frantically	using	the
legal	system	and	any	other	means	necessary	to	stay	ahead	of	their	competitors.
It's	just	part	of	doing	business.

One	of	the	best	examples	is	content	production,	which	is	led	by	mega-companies
like	Disney.	In	recent	years,	Hollywood	has	worked	hard	to	get	copyright	laws
changed	so	that	the	copyright	lasts	95	years	instead	of	75	years.	In	1998,
Congress	passed	the	Sonny	Bono	Copyright	Term	Extension	Act	of	1998
(CTEA)	that	kept	works	published	after	1923	from	passing	into	the	public

domain	until	2019.	The	industry	feels	that	this	gives	them	the	protection	to	keep
creating	new	items.	Creations	like	Mickey	Mouse	and	Snow	White	will	continue
to	live	in	the	very	safe	place	controlled	by	Disney	and	not	fall	into	the	evil	hands
of	the	public	domain.

Several	Harvard	professors,	Larry	Lessig,	Charles	Nesson,	and	Jonathan	Zittrain
of	the	Berkman	Center	for	Internet	&	Society	at	Harvard	Law	School,	and
Geoffrey	Stewart	of	the	Boston	law	firm	Hale	and	Dorr	filed	a	lawsuit	contesting
the	act	by	pointing	out	that	the	Constitution	provides	for	a	"limited"	term.
Artists,	authors,	and	creators	were	given	copyright	protection,	but	it	was	only	for
a	limited	amount	of	time.	Afterward,	the	society	could	borrow	and	use	the	work
freely.

There's	little	doubt	that	the	major	Hollywood	producers	recognize	the	value	of	a
well-stocked	collection	of	public	domain	literature.	Movies	based	on	works	by
William	Shakespeare,	Henry	James,	and	Jane	Austen	continue	to	roll	out	of	the
studios	to	the	welcoming	patrons	who	buy	tickets	despite	knowing	how	the	story
ends.	Disney	itself	built	its	movie	franchise	on	shared	fables	like	Sleeping
Beauty	or	Snow	White.	Very	few	of	Disney's	animated	films	(The	Lion	King
was	one	of	the	first	ones)	were	created	in-house	from	a	clean	piece	of	paper.
Most	were	market-tested	for	acceptance	by	their	years	in	the	public	domain.	Of
course,	Disney	only	pays	attention	to	this	fact	when	they're	borrowing	an	idea	to
create	their	own	version,	not	when	they're	defending	the	copyright	of	their	own
creations.	They	want	to	take,	not	give.

The	movie	industry,	like	the	proprietary	software	business,	seems	to	forget	just
how	valuable	a	shared	repository	of	ideas	and	solutions	can	be.	In	this	context,
the	free	source	movement	isn't	an	explosion	of	creative	brilliance	or	a
renaissance	of	cooperation,	it's	just	a	return	to	the	good	old	days	when	Congress
wouldn't	slavishly	answer	the	whims	of	the	content	industry.	If	a	theater	owner
wanted	to	put	on	a	Shakespeare	play,	the	text	was	in	the	public	domain.	If
someone	wanted	to	rewrite	Jane	Austen	and	create	the	movie	Clueless,	they
were	free	to	do	so.	In	the	good	old	days,	copyright	faded	after	a	limited	amount
of	time	and	the	public	got	something	back	for	granting	a	monopoly	to	the	artist.
In	the	good	old	days,	the	artist	got	something	back,	too,	when	the	monopoly	of
other	artists	faded	away.

It's	not	like	this	brave	new	world	of	total	copyright	protection	has	generated
superior	content.	The	so-called	original	movies	aren't	that	different.	All	of	the

action	movies	begin	with	some	death	or	explosion	in	the	first	two	minutes.	They
all	run	through	a	few	car	chases	that	lead	to	the	dramatic	final	confrontation.	The
television	world	is	filled	with	30-minute	sitcoms	about	a	bunch	of	young	kids
trying	to	make	it	on	their	own.	It's	sort	of	surprising	that	Hollywood	continues	to
suggest	that	the	copyright	laws	actually	promote	creativity.

It's	not	hard	to	believe	that	we	might	be	better	off	if	some	of	the	characters	were
protected	by	an	open	source	license.	Superman	and	Batman	have	both	gone
through	several	decades	of	character	morphing	as	the	artists	and	writers	assigned
to	the	strips	change.	Of	course,	that	change	occurred	under	the	strict	control	of
the	corporation	with	the	copyright.

The	thousands	of	fan	novels	and	short	stories	are	better	examples.	Many	fans	of
movies	like	Star	Trek	or	Star	Wars	often	write	their	own	stories	using	the
protected	characters	without	permission.	Most	of	the	time	the	studios	and
megalithic	corporations	holding	the	copyright	look	the	other	way.	The	work
doesn't	make	much	money	and	is	usually	born	out	of	love	for	the	characters.	The
lawyers	who	have	the	job	of	defending	the	copyrights	are	often	cool	enough	to
let	it	slide.

Each	of	these	novels	provides	some	insight	into	the	characters	and	also	the
novelist.	While	not	every	novelist	is	as	talented	as	the	original	authors,	it	can	still
be	fun	to	watch	the	hands	of	another	mold	the	characters	and	shape	his	or	her
destiny.	The	world	of	the	theater	has	always	accepted	the	notion	that	directors
and	actors	will	fiddle	with	plays	and	leave	their	own	marks	on	them.	Perhaps	it
wouldn't	be	so	bad	if	writers	could	have	the	same	latitude	after	the	original
author	enjoyed	a	short	period	of	exclusivity.

There	are	many	ways	in	which	the	free	software	world	is	strange	and	new	to
society,	but	sharing	ideas	without	limitations	is	not	one	of	them.	Almost	all
businesses	let	people	tinker	and	change	the	products	they	buy.	The	software
industry	likes	to	portray	itself	as	a	bunch	of	libertarians	who	worship	the	free
market	and	all	of	its	competition.	In	reality,	the	leading	firms	are	riding	a	wave
of	power-grabbing	that	has	lasted	several	decades.	The	firms	and	their	lawyers
have	consistently	interpreted	their	rules	to	allow	them	to	shackle	their	customers
with	stronger	and	stronger	bonds	designed	to	keep	them	loyal	and	everspending.

This	is	all	part	of	a	long	progression	that	affects	all	industries.	Linus	Torvalds
explained	his	view	of	the	evolution	when	he	told	the	San	Jose	Mercury-News,

"Regardless	of	open	source,	programs	will	become	really	cheap.	Any	industry
goes	through	three	phases.	First,	there's	the	development	of	features	people	need.
Then	there's	the	frills-andupgrade	phase,	when	people	buy	it	because	it	looks
cool.	Then	there's	the	everybody-takes-it-for-granted	phase.	This	is	when	it
becomes	a	commodity.	Well,	we're	still	in	the	look-cool-and-upgrade	stage.	In	10
or	15	years	you'll	be	happy	with	software	that's	5	years	old.	Open	source	is	one
sign	that	we're	moving	in	that	direction."

In	this	light,	the	free	software	revolution	isn't	really	a	revolution	at	all.	It's	just
the	marketplace	responding	to	the	overly	greedy	approaches	of	some	software
companies.	It's	just	a	return	to	the	good	old	days	when	buying	something	meant
that	you	owned	it,	not	that	you	just	signed	on	as	a	sort	of	enlightened	slave	of	the
system.

1.	 NATIONS

Microsoft	is	an	American	company.	Bill	Gates	lives	in	Washington	State	and	so
do	most	of	the	programmers	under	his	dominion.	The	software	they	write	gets
used	around	the	globe	in	countries	big	and	small,	and	the	money	people	pay	for
the	software	comes	flooding	back	to	the	Seattle	area,	where	it	buys	huge	houses,
designer	foods,	and	lots	of	serious	and	very	competitive	consumption.	Through
the	years,	this	sort	of	economic	imperialism	has	built	the	great	cities	of	Rome,
London,	Tokyo,	Barcelona,	and	many	other	minor	cities.	History	is	just	a	long
series	of	epochs	when	some	company	comes	up	with	a	clever	mechanism	for
moving	the	wealth	of	the	world	home	to	its	cities.	Britain	relied	on	opium	for	a
while.	Rome,	it	might	be	said,	sold	a	legal	system.	Spain	trafficked	in	pure	gold
and	silver.	Microsoft	is	selling	structured	information	in	one	of	the	most	efficient
schemes	yet.

Of	course,	these	periods	of	wealth-building	invariably	come	to	an	abrupt	end
when	some	army,	which	is	invariably	described	as	"ragtag,"	shows	up	to	pillage
and	plunder.	The	Mongolian	hordes,	the	Visigoths,	and	the	Vikings	are	just	a	few
of	the	lightweight,	lean	groups	that	appeared	over	the	horizon	and	beat	the
standing	army	of	the	fat	and	complacent	society.	This	was	the	cycle	of	boom	and
doom	that	built	and	trashed	empire	after	dynasty	after	great	society.

Perhaps	it's	just	a	coincidence	that	Linus	Torvalds	has	Viking	blood	in	him.
Although	he	grew	up	in	Finland,	he	comes	from	the	minority	of	the	population
for	whom	Swedish	is	the	native	tongue.	The	famous	neutrality	during	World	War
II,	the	lumbering	welfare	states,	the	Nobel	Peace	Prize,	and	the	bays	filled	with
hiding	Russian	submarines	give	the	impression	that	the	Viking	way	is	just	a
thing	of	the	past,	but	maybe	some	of	the	old	hack	and	sack	is	still	left	in	the
bloodlines.

The	Linux	movement	isn't	really	about	nations	and	it's	not	really	about	war	in
the	old-fashioned	sense.	It's	about	nerds	building	software	and	letting	other	nerds
see	how	cool	their	code	is.	It's	about	empowering	the	world	of	programmers	and
cutting	out	the	corporate	suits.	It's	about	spending	all	night	coding	on	wonderful,
magnificent	software	with	massive	colonnades,	endless	plazas,	big	brass	bells,
and	huge	steam	whistles	without	asking	a	boss	"Mother,	may	I?"	It's	very
individualistic	and	peaceful.

That	stirring	romantic	vision	may	be	moving	the	boys	in	the	trenches,	but	the
side	effects	are	beginning	to	be	felt	in	the	world	of	global	politics.	Every	time

Linux,	FreeBSD,	or	OpenBSD	is	installed,	several	dollars	don't	go	flowing	to
Seattle.	There's	a	little	bit	less	available	for	the	Microsoft	crowd	to	spend	on
mega-mansions,	SUVs,	and	local	taxes.	The	local	library,	the	local	police	force,
and	the	local	schools	are	going	to	have	a	bit	less	local	wealth	to	tax.	In	essence,
the	Linux	boys	are	sacking	Seattle	without	getting	out	of	their	chairs	or	breaking
a	sweat.	You	won't	see	this	battle	retold	on	those	cable	channels	that	traffic	in
war	documentaries,	but	it's	unfolding	as	we	speak.

The	repercussions	go	deeper.	Microsoft	is	not	just	a	Seattle	firm.	Microsoft	is	an
American	company	and	whatever	is	good	for	Microsoft	is	usually	good,	at	least
in	some	form,	for	the	United	States.	There	may	be	some	fraternal	squabbling
between	Microsoft	and	Silicon	Valley,	but	the	United	States	is	doing	quite	well.
The	info	boom	is	putting	millions	to	work	and	raising	trillions	in	taxes.

The	free	software	revolution	undermines	this	great	scheme	in	two	very	insidious
ways.	The	first	is	subtle.	No	one	officially	has	much	control	over	a	free	software
product,	and	that	means	that	no	country	can	claim	it	as	its	own.	If	Bill	Gates	says
that	the	Japanese	version	of	Windows	will	require	a	three-button	mouse,	then
Japan	will	have	to	adjust.	But	Torvalds,	Stallman,	and	the	rest	can't	do	a	darn
thing	about	anyone.	People	can	just	reprogram	their	mouse.	If	being	boss	means
making	people	jump,	then	no	one	in	the	free	software	world	is	boss	of	anything.
Free	source	code	isn't	on	anyone's	side.	It's	more	neutral	than	Switzerland	was	in
World	War	II.	The	United	States	can	only	take	solace	in	the	fact	that	many	of	the
great	free	source	minds	choose	to	live	in	its	boundaries.

The	second	effect	is	more	incendiary.	Free	software	doesn't	pay	taxes.	In	the	last
several	centuries,	governments	around	the	world	have	spent	their	days	working
out	schemes	to	tax	every	transaction	they	can	find.	First,	there	were	just	tariffs
on	goods	crossing	borders,	then	the	bold	went	after	the	income,	and	now	the
sales	tax	and	the	VAT	are	the	crowning	achievement.	Along	the	way,	the
computer	with	its	selfless	ability	to	count	made	this	possible.	But	how	do	you
tax	something	that's	free?	How	do	you	take	a	slice	out	of	something	that	costs
nothing?

These	are	two	insidious	effects.	The	main	job	of	governments	is	to	tax	people.
Occasionally,	one	government	will	lust	after	the	tax	revenue	of	another	and	a
war	will	break	out	that	will	force	people	to	choose	sides.	The	GPL	and	the	BSD
licenses	destroy	this	tax	mechanism,	and	no	one	knows	what	this	will	bring.

One	of	the	best	places	to	see	this	destabilization	is	in	the	efforts	of	the	United
States	government	to	regulate	the	flow	of	encryption	software	around	the	globe.
Open	source	versions	of	encryption	technology	are	oozing	through	the	cracks	of
a	carefully	developed	mechanism	for	restricting	the	flow	of	the	software.	The
U.S.	government	has	tried	to	keep	a	lid	on	the	technology	behind	codes	and
ciphers	since	World	War	II.	Some	argue	that	the	United	States	won	World	War	II
and	many	of	the	following	wars	by	a	judicious	use	of	eavesdropping.
Codebreakers	in	England	and	Poland	cracked	the	German	Enigma	cipher,	giving
the	Allies	a	valuable	clue	about	German	plans.	The	Allies	also	poked	holes	in
the	Japanese	code	system	and	used	this	to	win	countless	battles.	No	one	has
written	a	comprehensive	history	of	how	code-breaking	shifted	the	course	of	the
conflicts	in	Vietnam,	Korea,	or	the	Middle	East,	but	the	stories	are	bound	to	be
compelling.

In	recent	years,	the	job	of	eavesdropping	on	conversations	around	the	world	has
fallen	on	the	National	Security	Agency,	which	is	loath	to	lose	the	high	ground
that	gave	the	United	States	so	many	victories	in	the	past.	Cheap	consumer
cryptographic	software	threatened	the	agency's	ability	to	vacuum	up	bits	of
intelligence	throughout	the	world,	and	something	needed	to	be	done.	If	good
scrambling	software	was	built	into	every	copy	of	Eudora	and	Microsoft	Word,
then	many	documents	would	be	virtually	unreadable.	The	United	States	fought
the	threat	by	regulating	the	export	of	all	encryption	source	code.	The	laws
allowed	the	country	to	regulate	the	export	of	munitions,	and	scrambling	software
was	put	in	that	category.

These	regulations	have	caused	an	endless	amount	of	grief	in	Silicon	Valley.	The
software	companies	don't	want	someone	telling	them	what	to	write.	Clearing
some	piece	of	software	with	a	bureaucrat	in	Washington,	D.C.,	is	a	real	pain	in
the	neck.	It's	hard	enough	to	clear	it	with	your	boss.	Most	of	the	time,	the
bureaucrat	won't	approve	decent	encryption	software,	and	that	means	the	U.S.
company	has	a	tough	choice:	it	can	either	not	export	its	product,	or	build	a
substandard	one.

There	are	branches	of	the	U.S.	government	that	would	like	to	go	further.	The
Federal	Bureau	of	Investigation	continues	to	worry	that	criminals	will	use	the
scrambling	software	to	thwart	investigations.	The	fact	that	encryption	software
can	also	be	used	by	average	folks	to	protect	their	money	and	privacy	has
presented	a	difficult	challenge	to	policy	analysts	from	the	FBI.	From	time	to
time,	the	FBI	raises	the	specter	of	just	banning	encryption	software	outright.

The	software	industry	has	lobbied	long	and	hard	to	lift	these	regulations,	but
they've	had	limited	success.	They've	pointed	out	that	much	foreign	software	is	as
good	as	if	not	better	than	American	encryption	software.	They've	screamed	that
they	were	losing	sales	to	foreign	competitors	from	places	like	Germany,
Australia,	and	Canada,	competitors	who	could	import	their	software	into	the
U.S.	and	compete	against	American	companies.	None	of	these	arguments	went
very	far	because	the	interests	of	the	U.S.	intelligence	community	always	won
when	the	president	had	to	make	a	decision.

The	free	source	code	world	tripped	into	this	debate	when	a	peace	activist	named
Phil	Zimmerman	sat	down	one	day	and	wrote	a	program	he	called	Pretty	Good
Privacy,	or	simply	PGP.	Zimmerman's	package	was	solid,	pretty	easy	to	use,	and
free.	To	make	matters	worse	for	the	government,	Zimmerman	gave	away	all	of
the	source	code	and	didn't	even	use	a	BSD	or	GPL	license.	It	was	just	out	there
for	all	the	world	to	see.

The	free	source	code	had	several	effects.	First,	it	made	it	easy	for	everyone	to
learn	how	to	build	encryption	systems	and	add	the	features	to	their	own
software.	Somewhere	there	are	probably	several	programmers	being	paid	by
drug	dealers	to	use	PGP's	source	code	to	scramble	their	data.	At	least	one	person
trading	child	pornography	was	caught	using	PGP.

Of	course,	many	legitimate	folks	embraced	it.	Network	Solutions,	the	branch	of
SAIC,	the	techno	powerhouse,	uses	digital	signatures	generated	by	PGP	to
protect	the	integrity	of	the	Internet's	root	server.	Many	companies	use	PGP	to
protect	their	e-mail	and	proprietary	documents.	Banks	continue	to	explore	using
tools	like	PGP	to	run	transaction	networks.	Parents	use	PGP	to	protect	their	kids'
e-mail	from	stalkers.

The	free	source	code	also	opened	the	door	to	scrutiny.	Users,	programmers,	and
other	cryptographers	took	apart	the	PGP	code	and	looked	for	bugs	and	mistakes.
After	several	years	of	poking,	everyone	pretty	much	decided	that	the	software
was	secure	and	safe.

This	type	of	assurance	is	important	in	cryptography.	Paul	Kocher,	an	expert	in
cryptography	who	runs	Cryptography	Research	in	San	Francisco,	explains	that
free	source	software	is	an	essential	part	of	developing	cryptography."You	need
source	code	to	test	software,	and	careful	testing	is	the	only	way	to	eliminate
security	problems	in	crypto-systems,"	he	says.	"We	need	everyone	to	review	the

design	and	code	to	look	for	weaknesses."

Today,	security	products	that	come	with	open	source	code	are	the	most	trusted	in
the	industry.	Private	companies	like	RSA	Data	Security	or	Entrust	can	brag	about
the	quality	of	their	in-house	scientists	or	the	number	of	outside	contractors
who've	audited	the	code,	but	nothing	compares	to	letting	everyone	look	over	the
code.

When	Zimmerman	launched	PGP,	however,	he	knew	it	was	an	explicitly
political	act	designed	to	create	the	kind	of	veil	of	privacy	that	worried	the
eavesdroppers.	He	framed	his	decision,	however,	in	crisp	terms	that	implicitly
gave	each	person	the	right	to	control	their	thoughts	and	words.	"It's	personal.	It's
private.	And	it's	no	one's	business	but	yours,"	he	wrote	in	the	introduction	to	the
manual	accompanying	the	software.	"You	may	be	planning	a	political	campaign,
discussing	your	taxes,	or	having	an	illicit	affair.	Or	you	may	be	doing	something
that	you	feel	shouldn't	be	illegal,	but	is.	Whatever	it	is,	you	don't	want	your
private	electronic	mail	(e-mail)	or	confidential	documents	read	by	anyone	else.
There's	nothing	wrong	with	asserting	your	privacy.	Privacy	is	as	apple-pie	as	the
Constitution."

Initially,	Zimmerman	distributed	PGP	under	the	GPL,	but	backed	away	from	that
when	he	discovered	that	the	GPL	didn't	give	him	much	control	over
improvements.	In	fact,	they	proliferated	and	it	made	it	hard	to	keep	track	of	who
created	them.	Today,	the	source	code	comes	with	a	license	that	is	very	similar	to
the	BSD	license	and	lets	people	circulate	the	source	code	as	much	as	they	want.

"I	place	no	restraints	on	your	modifying	the	source	code	for	your	own	use,"	he
writes	in	the	accompanying	documentation,	and	then	catches	himself."However,
do	not	distribute	a	modified	version	of	PGP	under	the	name	'PGP'	without	first
getting	permission	from	me.	Please	respect	this	restriction.	PGP's	reputation	for
cryptographic	integrity	depends	on	maintaining	strict	quality	control	on	PGP's
cryptographic	algorithms	and	protocols."

Zimmerman's	laissez-faire	attitude,	however,	doesn't	mean	that	the	software	is
available	with	no	restrictions.	A	holding	company	named	Public	Key	Partners
controlled	several	fundamental	patents,	including	the	ones	created	by	Ron
Rivest,	Adi	Shamir,	and	Len	Adleman.	Zimmerman's	PGP	used	this	algorithm,
and	technically	anyone	using	the	software	was	infringing	the	patent.

While	"infringing	on	a	patent"	has	a	certain	legal	gravitas,	its	real	effects	are
hard	to	quantify.	The	law	grants	the	patent	holders	the	right	to	stop	anyone	from
doing	what	is	spelled	out	in	the	patent,	but	it	only	allows	them	to	use	a	lawsuit	to
collect	damages.	In	fact,	patent	holders	can	collect	triple	damages	if	they	can
prove	that	the	infringers	knew	about	the	patent.	These	lawsuits	can	be	quite	a
hassle	for	a	big	company	like	Microsoft,	because	Microsoft	is	selling	a	product
and	making	a	profit.	Finding	a	number	to	multiply	by	three	is	easy	to	do.	But	the
effects	of	the	lawsuits	on	relatively	poor,	bearded	peace	activists	who	aren't
making	money	is	harder	to	judge.	What's	three	times	zero?	The	lawsuits	make
even	less	sense	against	some	guy	who's	using	PGP	in	his	basement.

Still,	the	threat	of	a	lawsuit	was	enough	of	a	cudgel	to	worry	Zimmerman.	The
costs,	however,	put	a	limit	on	what	PKP	could	demand.	In	the	end,	the	two
parties	agreed	that	PGP	could	be	distributed	for	non-commercial	use	if	it	relied
upon	a	toolkit	known	as	RSAREF	made	by	PKP's	sister	company,	RSA	Data
Security.	Apparently,	this	would	encourage	people	to	use	RSAREF	in	their
commercial	products	and	act	like	some	free	advertising	for	the	toolkit.

The	patent	lawsuit,	however,	was	really	a	minor	threat	for	Zimmerman.	In	1994,
the	U.S.	government	started	investigating	whether	Zimmerman	had	somehow
exported	encryption	software	by	making	it	available	on	the	Internet	for
download.	While	Zimmerman	explicitly	denounced	violating	the	laws	and	took
pains	to	keep	the	software	inside	the	country,	a	copy	leaked	out.	Some	suggest	it
was	through	a	posting	on	the	Net	that	inadvertently	got	routed	throughout	the
world.	Was	Zimmerman	responsible?	A	branch	of	the	U.S.	Customs	launched	a
criminal	investigation	in	the	Northern	District	of	California	to	find	out.

Of	course,	determining	how	the	source	code	got	out	of	the	country	was	a	nearly
impossible	exercise.	Unless	Zimmerman	confessed	or	somehow	kept	some
incriminating	evidence	around,	the	prosecutors	faced	a	tough	job	painting	him	as
a	lawbreaker.	The	software	was	available	for	free	to	anyone	inside	the	country,
and	that	meant	that	everyone	had	at	least	an	opportunity	to	break	the	law.	There
were	no	purchase	records	or	registration	records.	No	one	knew	who	had	PGP	on
their	disk.	Maybe	someone	carried	it	across	the	border	after	forgetting	that	the
source	code	was	on	a	hard	disk.	Maybe	a	foreigner	deliberately	came	into	the
U.S.	and	carried	it	out.	Who	knows?	Zimmerman	says	it	blew	across	the	border
"like	dandelion	seeds	blowing	in	the	wind."

To	make	matters	worse	for	the	forces	in	the	U.S.	government	that	wanted	to

curtail	PGP,	the	patent	held	by	RSA	wasn't	filed	abroad	due	to	different
regulations.	Foreigners	could	use	the	software	without	care,	and	many	did.	This
was	the	sort	of	nightmare	that	worried	the	parts	of	the	U.S.	intelligence-
gathering	branch	that	relied	upon	wholesale	eavesdropping.

Eventually,	the	criminal	investigation	amounted	to	nothing.	No	indictments	were
announced.	No	trials	began.	Soon	after	the	investigation	ended,	Zimmerman
helped	form	a	company	to	create	commercial	versions	of	PGP.	While	the	free
versions	continue	to	be	available	today	and	are	in	widespread	use	among
individuals,	companies	often	turn	to	PGP	for	commercial	products	that	come
with	a	license	from	PKP.	When	the	RSA	patent	expires	in	September	2000,	the
people	will	be	free	to	use	PGP	again.[^16]

[16]:	The	GNU	project	has	already	worked	around	many	of	these	impediments.
Their	Privacy	Guard	package	(GNU	PG)	is	released	under	the	GNU	license.

Zimmerman's	experiences	show	how	free	source	code	turned	into	a	real	thorn	in
the	side	of	the	U.S.	government.	Businesses	can	be	bought	or	at	least	leaned	on.
Merchandise	needs	to	flow	through	stores	and	stores	have	to	obey	the	law.	Red
tape	can	ruin	everything.	But	free	software	that	floats	like	dandelion	seeds	can't
be	controlled.	People	can	give	it	to	each	other	and	it	flows	like	speech.	Suddenly
it's	not	a	product	that's	being	regulated,	but	the	free	exchange	of	ideas	between
people,	ideas	that	just	happen	to	be	crystallized	as	a	computer	program.

Of	course,	a	bureaucracy	has	never	met	something	it	couldn't	regulate,	or	at	least
something	it	couldn't	try	to	regulate.	Zimmerman's	experience	may	have	proved
to	some	that	governments	are	just	speed	bumps	on	the	infobahn	of	the	future,	but
others	saw	it	as	a	challenge.	Until	the	end	of	1999,	the	U.S.	government	has	tried
to	tighten	up	the	restrictions	on	open	source	versions	of	encryption	technology
floating	around	the	world.	The	problem	was	that	many	countries	around	the
globe	explicitly	exempt	open	source	software	from	the	restrictions,	and	the
United	States	has	lobbied	to	tighten	these	loopholes.

The	best	place	to	begin	this	story	may	be	in	the	trenches	where	system
administrators	for	the	U.S.	government	try	to	keep	out	hackers.	Theo	de	Raadt,
the	leader	of	the	OpenBSD	team,	likes	to	brag	that	the	U.S.	government	uses
OpenBSD	on	its	secure	internal	network.	The	system	designers	probably	made
that	choice	because	OpenBSD	has	been	thoroughly	audited	for	security	holes
and	bugs	by	both	the	OpenBSD	team	and	the	world	at	large.	They	want	the	best

code,	and	it's	even	free.

"They're	running	Network	Flight	Recorder,"	de	Raadt	says.	"It's	a	super	sniffing
package	and	an	intrusion	detection	system.	They	can	tell	you	if	bad	traffic
happens	on	your	private	little	network	that	the	firewall	should	have	stopped.
They	have	OpenBSD	running	NFR	on	every	network.	They	run	an	IPSEC	vpn
back	to	a	main	network	information	center	where	they	look	and	do	traffic
analysis."

That	is,	the	departments	watch	for	bad	hackers	by	placing	OpenBSD	boxes	at
judicious	points	to	scan	the	traffic	and	look	for	incriminating	information.	These
boxes,	of	course,	must	remain	secure.	If	they're	compromised,	they're	worthless.
Turning	to	something	like	OpenBSD,	which	has	at	least	been	audited,	makes
sense.

"They	catch	a	lot	of	system	administrators	making	mistakes.	It's	very	much	a
proactive	result.	They	can	see	that	a	sys	admin	has	misconfigured	a	firewall,"	he
says.

Normally,	this	would	just	be	a	simple	happy	story	about	the	government	getting
a	great	value	from	an	open	source	operating	system.	They	paid	nothing	for	it	and
got	the	results	of	a	widespread,	open	review	looking	for	security	holes.

De	Raadt	lives	in	Canada,	not	the	United	States,	and	he	develops	OpenBSD
there	because	the	laws	on	the	export	of	encryption	software	are	much	more
lenient.	For	a	time,	Canada	did	not	try	to	control	any	mass	market	software.
Recently,	it	added	the	requirement	that	shrinkwrapped	software	receive	a	license,
but	the	country	seems	willing	to	grant	licenses	quite	liberally.	Software	that	falls
into	the	public	domain	is	not	restricted	at	all.	While	OpenBSD	is	not	in	the
public	domain,	it	does	fit	that	definition	as	set	out	by	the	rules.	The	software	is
distributed	with	no	restrictions	or	charge.	By	the	end	of	1999,	senior	officials
realized	that	the	stop	crypt	policy	was	generating	too	many	ironic	moments.

This	is	just	another	example	of	how	free	source	software	throws	the	traditional-
instincts	regulatory	system	for	a	loop.	Companies	sell	products,	and	products	are
regulated.	Public	domain	information,	on	the	other	hand,	is	speech	and	speech	is
protected,	at	least	by	the	U.S.	Constitution.	Relying	on	Canada	for	network
security	of	the	Internet	was	too	much.

In	January	2000,	the	U.S.	government	capitulated.	After	relentless	pressure	from

the	computer	industry,	the	government	recognized	that	high-quality	encryption
software	like	OpenBSD	was	common	throughout	the	world.	It	also	recognized
that	the	quality	was	so	good	that	many	within	the	United	States	imported	it.	The
government	loosened	restrictions	and	practically	eliminated	them	for	open
source	software.	While	many	people	are	still	not	happy	with	the	new	regulations,
open	source	encryption	software	can	now	flow	out	of	the	United	States.	The
distributors	need	only	notify	the	U.S.	government	about	where	the	software	is
available.	The	commercial,	proprietary	encryption	software	was	not	as	lucky.
The	regulations	are	now	substantially	easier	on	the	corporations	but	they	still
require	substantial	review	before	an	export	license	is	granted.

The	difference	in	treatment	probably	did	not	result	from	any	secret	love	for
Linux	or	OpenBSD	lurking	in	the	hearts	of	the	regulators	in	the	Bureau	of
Export	Affairs	at	the	Department	of	Commerce.	The	regulators	are	probably
more	afraid	of	losing	a	lawsuit	brought	by	Daniel	Bernstein.	In	the	latest
decision	released	in	May	1999,	two	out	of	three	judges	on	an	appeals	panel
concluded	that	the	U.S.	government's	encryption	regulations	violated	Bernstein's
rights	of	free	speech.	The	government	argued	that	source	code	is	a	device	not
speech.	The	case	is	currently	being	appealed.	The	new	regulations	seem	targeted
to	specifically	address	the	problems	the	court	found	with	the	current	regulations.

Encryption	software	is	just	the	beginning	of	the	travails	as	the	government	tries
to	decide	what	to	do	about	the	free	exchange	of	source	code	on	the	Net.	Taxes
may	be	next.	While	people	joke	that	they	would	be	glad	to	pay	10	percent	sales
tax	on	the	zero	dollars	they've	spent	on	GNU	software,	they're	missing	some	of
the	deeper	philosophical	issues	behind	taxation.	Many	states	don't	officially	tax
the	sale	of	an	object;	they	demand	the	money	for	the	use	of	it.	That	means	if	you
buy	a	stereo	in	Europe,	you're	still	supposed	to	pay	some	"use	tax"	when	you
turn	it	on	in	a	state.	The	states	try	to	use	this	as	a	cudgel	to	demand	sales	tax
revenue	from	out-of-state	catalog	and	mail-order	shops,	but	they	haven't	gotten
very	far.	But	this	hasn't	stopped	them	from	trying.

What	tax	could	be	due	on	a	piece	of	free	software?	Well,	the	state	could	simply
look	at	the	software,	assign	a	value	to	it,	and	send	the	user	a	bill.	Many	states	do
just	that	with	automobiles.	You	might	have	a	rusted	clunker,	but	they	use	the
Blue	Book	value	of	a	car	to	determine	the	tax	for	the	year	and	each	year	they
send	a	new	bill.	This	concept	proved	to	be	so	annoying	to	citizens	of	Virginia
that	Jim	Gilmore	won	the	election	for	governor	with	a	mandate	to	repeal	it.	But
just	because	he	removed	it	doesn't	mean	that	others	will	leave	the	issue	alone.

If	governments	ever	decide	to	try	to	tax	free	software,	the	community	might	be
able	to	fight	off	the	request	by	arguing	that	the	tax	is	"paid"	when	the
government	also	uses	the	free	software.	If	7	out	of	100	Apache	servers	are
located	in	government	offices,	then	the	government	must	be	getting	7	percent
returned	as	tax.

One	of	the	most	difficult	problems	for	people	is	differentiating	between	wealth
and	money.	The	free	software	movement	creates	wealth	without	moving	money.
The	easy	flow	of	digital	information	makes	this	possible.	Some	folks	can	turn
this	into	money	by	selling	support	or	assisting	others,	but	most	of	the	time	the
wealth	sits	happily	in	the	public	domain.

Today,	the	Internet	boom	creates	a	great	pool	of	knowledge	and	intellectual
wealth	for	the	entire	society.	Some	people	have	managed	to	convert	this	into
money	by	creating	websites	or	tools	and	marketing	them	successfully,	but	the
vast	pool	of	intellectual	wealth	remains	open	and	accessible	to	all.	Who	does	this
belong	to?	Who	can	tax	this?	Who	controls	it?	The	most	forward-thinking
countries	will	resist	the	urge	to	tax	it,	but	how	many	will	really	be	able	to	keep
on	resisting?

1.	 WEALTH

The	writer,	P.	J.	O'Rourke,	once	pointed	out	that	wealth	is	a	particularly
confusing	concept	to	understand.	It	had	nothing	to	do	with	being	born	in	the
right	place.	Africa	is	filled	with	diamonds,	gold,	platinum,	oil,	and	thousands	of
other	valuable	resources,	while	Japan	has	hardly	anything	underground	except
subway	tunnels	and	anthrax	from	strange	cults.	Yet	Japan	is	still	far	wealthier
even	after	the	long	swoon	of	their	postbubble	economy.

O'Rourke	also	pointed	out	that	wealth	has	nothing	to	do	with	raw	brains.	The
Russians	play	chess	as	a	national	sport	while	Brentwood	is	filled	with	dim	bulbs
like	the	folks	we	saw	during	the	O.	J.	Simpson	murder	trial.	Yet	poverty	is
endemic	in	Russia,	while	Brentwood	flourishes.	Sure,	people	wait	in	line	for
food	in	Brentwood	like	they	did	in	Soviet	Russia,	but	this	is	only	to	get	a	table	at
the	hottest	new	restaurant.

Wealth	is	a	strange	commodity,	and	understanding	it	keeps	economists	busy.
Governments	need	to	justify	their	existence	in	some	way,	and	lately	people	in	the

United	States	use	their	perception	of	the	"economy"	as	a	measure	of	how	well
the	government	is	doing.	But	many	of	their	attempts	to	use	numbers	to	measure
wealth	and	prosperity	are	doomed	to	failure.	One	year,	the	economists	seem	to
be	frantically	battling	deflation,	then	they	turn	around	and	rattle	on	and	on	about
inflation.	They	gave	up	trying	to	measure	the	money	supply	to	follow	inflation
and	seem,	at	times,	to	be	flying	the	economy	by	the	seat	of	their	pants.	Of
course,	they're	not	really	in	charge.	One	minute	you	can't	have	growth	without
inflation.	The	next	minute	you	can.	It's	all	a	bit	like	ancient	days	of	tribal	living
when	the	high	priest	was	responsible	for	dreaming	up	reasons	why	the	volcano
did	or	did	not	erupt.	Some	days	the	money	supply	smiles	upon	us,	and	on	other
days,	she	is	very,	very	angry.

Wealth	in	the	free	software	world	is	an	even	slippier	concept.	There's	not	even
any	currency	to	use	to	keep	score.	Let's	say	we	wanted	to	know	or	at	least
guesstimate	whether	the	free	source	world	was	wealthy.	That's	not	too	hard.
Most	of	the	guys	hacking	the	code	just	want	to	drink	caffeinated	beverages,	play
cool	games,	and	write	more	code.	The	endless	stream	of	faster	and	faster
computer	boxes	makes	this	as	close	to	a	perfect	world	as	there	could	be.	To
make	matters	better,	new	T-shirts	with	clever	slogans	keep	appearing.	It's	a	nerd
utopia.	It's	Shangri-La	for	folks	who	dig	computers.

Of	course,	deciding	whether	or	not	someone	is	wealthy	is	not	really	an
interesting	question	of	economics.	It's	more	about	self-esteem	and	happiness.
Someone	who	has	simple	needs	can	feel	pretty	wealthy	in	a	shack.	Spoiled	kids
will	never	be	happy	no	matter	how	big	their	palace.	There	are	plenty	of	content
people	in	the	free	software	world,	but	there	are	also	a	few	who	won't	be	happy
until	they	have	source	code	to	a	huge,	wonderful,	bug-free	OS	with	the	most
features	on	the	planet.	They	want	total	world	domination.

A	more	intriguing	question	is	whether	the	free	source	world	is	wealthier	than	the
proprietary	source	world.	This	starts	to	get	tricky	because	it	puts	Apples	up
against	oranges	and	tries	to	make	complicated	comparisons.	Bill	Gates	is
incredibly	wealthy	in	many	senses	of	the	word.	He's	got	billions	of	dollars,	a
huge	house,	dozens	of	cars,	servants,	toys,	and	who	knows	what	else.	Even	his
employees	have	their	own	private	jets.	All	of	the	trappings	of	wealth	are	there.
Linus	Torvalds,	on	the	other	hand,	says	he's	pretty	happy	with	about	$100,000	a
year,	although	several	IPOs	will	probably	leave	him	well	off.	Microsoft	has
thousands	of	programmers	who	are	paid	well	to	write	millions	of	lines	of	code	a
year.	Most	open	source	programmers	aren't	paid	much	to	create	what	they	do.	If

money	were	a	good	measure,	then	the	proprietary	source	world	would	win
hands-down.

But	money	is	the	answer	only	if	you	want	piles	of	paper	with	pictures	of	famous
Americans	on	them.	Several	countries	in	Latin	America	generate	huge	piles	of
money	from	drugs,	oil,	and	other	natural	resources,	but	the	countries	remain
quite	poor.	The	leaders	who	end	up	with	most	of	the	money	might	like	the	huge
disparity,	but	it	has	very	distinct	limitations.	When	it	comes	time	for	college	or
medical	care,	the	very	rich	start	flying	up	to	the	United	States.	Johns	Hopkins,	a
hospital	in	Baltimore	near	where	I	live,	provides	wonderful	medical	service	to
the	poor	who	live	in	the	surrounding	neighborhood.	It	also	has	a	special	wing
with	plush	suites	for	rich	people	who	fly	in	for	medical	treatment.	Many	are
potentates	and	high	government	officials	from	poor	countries	around	the	world.

People	in	the	United	States	can	enjoy	the	synergies	of	living	near	other	well-
educated,	creative,	empowered,	and	engaged	citizens.	People	in	poor	societies
can't	assume	that	someone	else	will	design	great	roads,	build	airlines,	create	cool
coffee	shops,	invent	new	drugs,	or	do	anything	except	get	by	on	the	few	scraps
that	slip	through	the	cracks	to	the	great	unwashed	poor.	The	ultrarich	in	Latin
America	may	think	they're	getting	a	great	deal	by	grabbing	all	the	pie,	until	they
get	sick.	Then	they	turn	around	and	fly	to	hospitals	like	Johns	Hopkins,	a	place
where	the	poor	of	Baltimore	also	enjoy	quite	similar	treatment.	Wealth	is
something	very	different	from	cash.

Most	folks	in	the	free	source	world	may	not	have	big	bank	accounts.	Those	are
just	numbers	in	a	computer	anyway,	and	everyone	who	can	program	knows	how
easy	it	is	to	fill	a	computer	with	numbers.	But	the	free	source	world	has	good
software	and	the	source	code	that	goes	along	with	it.	How	many	times	a	day
must	Bill	Gates	look	at	the	blue	screen	of	death	that	splashes	across	a	Windows
computer	monitor	when	the	Windows	software	crashes?	How	many	times	does
Torvalds	watch	Linux	crash?	Who's	better	off?	Who's	wealthier?

The	question	might	be	asked,	"Is	your	software	better	than	it	was	four	years
ago?"	That	is,	does	your	software	do	a	better	job	of	fetching	the	mail,	moving
the	data,	processing	the	words,	or	spreading	the	sheets?	Is	it	more	intuitive,	more
powerful,	more	stable,	more	featurerich,	more	interesting,	more	expressive,	or
just	better?

The	answers	to	these	questions	can't	be	measured	like	money.	There's	no

numerical	quotient	that	can	settle	any	of	these	questions.	There	will	always	be
some	folks	who	are	happy	with	their	early-edition	DOS	word	processor	and	don't
see	the	need	to	reinvent	the	wheel.	There	are	others	who	are	still	unhappy
because	their	desktop	machine	can't	read	their	mind.

For	the	devoted	disciples	of	the	open	software	mantra,	the	software	in	the	free
source	world	is	infinitely	better.	Richard	Stallman	feels	that	the	GNU	code	is
better	than	the	Microsoft	code	just	because	he	has	the	source	code	and	the
freedom	to	do	what	he	wants	with	it.	The	freedom	is	more	important	to	him	than
whatever	super-duper	feature	comes	out	of	the	Microsoft	teams.	After	all,	he	can
add	any	feature	he	wants	if	he	has	access	to	the	basic	source	code.	Living
without	the	source	code	means	waiting	like	a	good	peon	for	the	nice	masters
from	the	big	corporation	to	bless	us	with	a	bug	fix.

There's	no	question	that	people	like	Stallman	love	life	with	source	code.	A
deeper	question	is	whether	the	free	source	realm	offers	a	wealthier	lifestyle	for
the	average	computer	user.	Most	people	aren't	programmers,	and	most
programmers	aren't	even	the	hard-core	hackers	who	love	to	fiddle	with	the
UNIX	kernel.	I've	rarely	used	the	source	code	to	Linux,	Emacs,	or	any	of	the
neat	tools	on	the	Net,	and	many	times	I've	simply	recompiled	the	source	code
without	looking	at	it.	Is	this	community	still	a	better	deal?

There	are	many	ways	of	looking	at	the	question.	The	simplest	is	to	compare
features.	It's	hard	to	deny	that	the	free	software	world	has	made	great	strides	in
producing	something	that	is	easy	to	use	and	quite	adaptable.	The	most	current
distributions	at	the	time	I'm	writing	this	come	with	a	variety	of	packages	that
provide	all	of	the	functionality	of	Microsoft	Windows	and	more.	The	editors	are
good,	the	browser	is	excellent,	and	the	availability	of	software	is	wonderful.	The
basic	Red	Hat	or	Caldera	distribution	provides	a	very	rich	user	interface	that	is
better	in	many	ways	than	Windows	or	the	Mac.	Some	of	the	slightly	specialized
products	like	video	software	editors	and	music	programs	aren't	as	rich-looking,
but	this	is	bound	to	change	with	time.	It	is	really	a	very	usable	world.

Some	grouse	that	comparing	features	like	this	isn't	fair	to	the	Mac	or	Windows
world.	The	GNOME	toolkit,	they	point	out,	didn't	come	out	of	years	of	research
and	development.	The	start	button	and	the	toolbar	look	the	same	because	the
GNOME	developers	were	merely	copying.	The	GNU/Linux	world	didn't	create
their	own	OS,	they	merely	cloned	all	of	the	hard	commercial	research	that
produced	UNIX.	It's	always	easier	to	catch	up,	but	pulling	ahead	is	hard.	The

folks	who	want	to	stay	on	the	cutting	edge	need	to	be	in	the	commercial	world.
It's	easy	to	come	up	with	a	list	of	commercial	products	and	tools	that	haven't
been	cloned	by	an	open	source	dude	at	the	time	of	this	writing:	streaming	video,
vector	animation,	the	full	Java	API,	speech	recognition,	three	dimensional	CAD
programs,	speech	synthesis,	and	so	forth.	The	list	goes	on	and	on.	The	hottest
innovations	will	always	come	from	well	capitalized	start-ups	driven	by	the	carrot
of	wealth.

Others	point	out	that	the	free	software	world	has	generated	more	than	its	share	of
innovation.	Most	of	the	Internet	was	built	upon	non-proprietary	standards
developed	by	companies	with	Department	of	Defense	contracts.	Stallman's
Emacs	continues	to	be	one	of	the	great	programs	in	the	world.	Many	of	the
projects	like	Apache	are	the	first	place	where	new	ideas	are	demonstrated.
People	who	want	to	mock	up	a	project	find	it	easier	to	extend	free	source
software.	These	ideas	are	often	reborn	as	commercial	products.	While	free
source	users	may	not	have	access	to	the	latest	commercial	innovations,	they	have
plenty	of	their	own	emerging	from	the	open	software	world.	GNOME	isn't	just	a
Windows	clone--it	comes	with	thousands	of	neat	extensions	and	improvements
that	can't	be	found	in	Redmond.

Stallman	himself	says	the	GNU	project	improved	many	pieces	of	software	when
they	rewrote	them.	He	says,	"We	built	on	their	work,	to	the	extent	that	we	could
legally	do	so	(since	we	could	not	use	any	of	their	code),	but	that	is	the	way
progress	is	made.	Almost	every	GNU	program	that	replaces	a	piece	of	Unix
includes	improvements."

Another	way	to	approach	the	question	is	to	look	at	people's	behavior.	Some
argue	that	companies	like	Red	Hat	or	organizations	like	Debian	prove	that
people	need	and	want	some	of	the	commercial	world's	handholding.	They	can't
afford	to	simply	download	the	code	and	fiddle	with	it.	Most	people	aren't	high
school	students	doing	time	for	being	young.	They've	got	jobs,	families,	and
hobbies.	They	pay	because	paying	brings	continuity,	form,	structure,	and	order
to	the	free	source	world.	Ultimately,	these	Red	Hat	users	aren't	Stallman
disciples,	they're	commercial	sheep	who	are	just	as	dependent	on	Red	Hat	as	the
Windows	customers	are	on	Microsoft.

The	counter-argument	is	that	this	insight	overlooks	a	crucial	philosophical
difference.	The	Red	Hat	customers	may	be	slaves	like	the	Microsoft	customers,
but	they	still	have	important	freedoms.	Sure,	many	Americans	are	wage	slaves	to

an	employer	who	pays	them	as	little	as	possible,	but	they	do	have	the	freedom	to
go	be	wage	slaves	of	another	employer	if	they	choose.	Old-fashioned	slaves
faced	the	whip	and	death	if	they	tried	to	take	that	route.

Most	Linux	users	don't	need	to	rewrite	the	source,	but	they	can	still	benefit	from
the	freedom.	If	everyone	has	the	freedom,	then	someone	will	come	along	with
the	ability	to	do	it	and	if	the	problem	is	big	enough,	someone	probably	will.	In
other	words,	only	one	person	has	to	fly	the	X-wing	fighter	down	the	trench	and
blow	up	the	Death	Star.

Some	point	out	that	the	free	source	world	is	fine-if	you've	got	the	time	and	the
attention	to	play	with	it.	The	source	code	only	helps	those	who	want	to	spend	the
time	to	engage	it.	You've	got	to	read	it,	study	it,	and	practice	it	to	get	any	value
from	it	at	all.	Most	of	us,	however,	just	want	the	software	to	work.	It's	like	the
distinction	between	people	who	relax	by	watching	a	baseball	game	on	television
and	those	who	join	a	league	to	play.	The	spectators	are	largely	passive,	waiting
for	the	action	to	be	served	up	to	them.	The	league	players,	on	the	other	hand,
don't	get	anything	unless	they	practice,	stretch,	push,	and	hustle.	They	need	to	be
fully	engaged	with	the	game.	All	of	us	like	an	occasional	competition,	but	we
often	need	a	soft	couch,	a	six-pack,	and	the	remote	control.	Free	software	is	a
nice	opportunity	to	step	up	to	the	plate,	but	it's	not	true	refreshment	for	the
masses.

Which	is	a	better	world?	A	polished	Disneyland	where	every	action	is	scripted,
or	a	pile	of	Lego	blocks	waiting	for	us	to	give	them	form?	Do	we	want	to	be
entertained	or	do	we	want	to	interact?	Many	free	software	folks	would	point	out
that	free	software	doesn't	preclude	you	from	settling	into	the	bosom	of	some
corporation	for	a	long	winter's	nap.	Companies	like	Caldera	and	Linuxcare	are
quite	willing	to	hold	your	hand	and	give	you	the	source	code.	Many	other
corporations	are	coming	around	to	the	same	notion.	Netscape	led	the	way,	and
many	companies	like	Apple	and	Sun	will	follow	along.	Microsoft	may	even	do
the	same	thing	by	the	time	you	read	this.

Money	isn't	the	same	as	wealth,	and	the	nature	of	software	emphasizes	some	of
the	ways	in	which	this	is	true.	Once	someone	puts	the	hours	into	creating
software,	it	costs	almost	nothing	to	distribute	it	to	the	world.	The	only	real	cost
is	time	because	raw	computer	power	and	caffeinated	beverages	are	very
inexpensive.

23.1	WEALTH	AND	POVERTY

.......................

George	Gilder	laid	out	the	gap	between	wealth	and	money	in	his	influential	book
Wealth	and	Poverty.	The	book	emerged	in	1981	just	before	Ronald	Reagan	took
office,	and	it	became	one	of	the	philosophical	touchstones	for	the	early	years	of
the	administration.	At	the	time,	Gilder's	words	were	aimed	at	a	world	where
socialist	economies	had	largely	failed	but	capitalists	had	never	declared	victory.
The	Soviet	Union	was	sliding	deeper	into	poverty.	Sweden	was	heading	for
some	of	the	highest	interest	rates	imaginable.	Yet	the	newspapers	and	colleges	of
the	United	States	refused	to	acknowledge	the	failure.	Gilder	wanted	to	dispel	the
notion	that	capitalism	and	socialism	were	locked	into	some	eternal	yin/yang
battle.	In	his	mind,	efficient	markets	and	decentralized	capital	allocation	were	a
smashing	success	compared	to	the	plodding	bureaucracy	that	was	strangling	the
Soviet	Union.

Although	Gilder	spoke	generally	about	the	nature	of	wealth,	his	insights	are
particularly	good	at	explaining	just	why	things	went	so	right	for	the	open
software	world.	"Capitalism	begins	with	giving,"	he	says,	and	explains	that
societies	flourish	when	people	are	free	to	put	their	money	where	they	hope	it	will
do	the	best.	The	investments	are	scattered	like	seeds	and	only	some	find	a	good
place	to	grow.	Those	capitalists	who	are	a	mixture	of	smart	and	lucky	gain	the
most	and	then	plow	their	gains	back	into	the	society,	repeating	the	process.	No
one	knows	what	will	succeed,	so	encouraging	the	bold	risk-takers	makes	sense.

Gilder's	chapter	on	gift-giving	is	especially	good	at	explaining	the	success	of	the
free	software	world.	Capitalism,	he	explains,	is	not	about	greed.	It's	about	giving
to	people	with	the	implicit	knowledge	that	they'll	return	the	favor	severalfold.	He
draws	heavily	on	anthropology	and	the	writings	of	academics	like	Claude	L	vi-
Strauss	to	explain	how	the	best	societies	create	capital	through	gifts	that	come
with	the	implicit	debt	that	people	give	something	back.	The	competition	between
people	to	give	better	and	better	gifts	drives	society	to	develop	new	things	that
improve	everyone's	life.

Gilder	and	others	have	seen	the	roots	of	capital	formation	and	wealth	creation	in
this	gift-giving.	"The	unending	offerings	of	entrepreneurs,	investing	capital,
creating	products,	building	businesses,	inventing	jobs,

accumulating	inventories--all	long	before	any	return	is	received,	all	without
assurance	that	the	enterprise	will	not	fail--constitute	a	pattern	of	giving	that
dwarfs	in	extent	and	in	essential	generosity	any	primitive	rite	of	exchange.
Giving	is	the	vital	impulse	and	moral	center	of	capitalism,"	he	writes.

The	socialists	who've	railed	against	the	injustices	and	brutalities	of	market
capitalism	at	work	would	disagree	with	the	strength	of	his	statement,	but	there
are	plenty	of	good	examples.	The	American	Civil	War	was	the	battle	between
the	northern	states	where	workers	were	occasionally	chained	to	looms	during
their	shifts	and	the	southern	states	where	the	workers	were	always	slaves.	In	the
end,	the	least	cruel	society	won,	in	part	because	of	the	strength	of	its	industry
and	its	ability	to	innovate.	Companies	that	discovered	this	fact	flourished	and
those	that	didn't	eventually	failed.	By	the	end	of	the	20th	century,	the	demand	for
labor	in	the	United	States	was	so	high	that	companies	were	actively	competing
in	offering	plush	treatment	for	their	workers.

The	free	software	world,	of	course,	is	a	perfect	example	of	the	altruistic	nature	of
the	potlatch.	Software	is	given	away	with	no	guarantee	of	any	return.	People	are
free	to	use	the	software	and	change	it	in	any	way.	The	GNU	Public	License	is
not	much	different	from	the	social	glue	that	forces	tribe	members	to	have	a	larger
party	the	next	year	and	give	back	even	more.	If	someone	ends	up	creating
something	new	or	interesting	after	using	GPL	code	as	a	foundation,	then	they
become	required	to	give	the	code	back	to	the	tribe.

Of	course,	it's	hard	to	get	much	guidance	from	Gilder	over	whether	the	GPL	is
better	than	the	BSD	license.	He	constantly	frames	investment	as	a	"gift"	to	try	to
deemphasize	the	greed	of	capitalism.	Of	course,	anyone	who	has	been	through	a
mortgage	foreclosure	or	a	debt	refinancing	knows	that	the	banks	don't	act	as	if
they've	given	away	a	gift.	There	are	legal	solutions	for	strong-arming	the	folks
who	don't	give	back	enough.	He	was	trying	to	get	readers	to	forget	these	tactics	a
bit	and	get	them	to	realize	that	after	all	of	the	arms	are	broken,	the	bank	is	still
left	with	whatever	the	loan	produced.	There	were	no	ultimate	guarantees	that	all
of	the	money	would	come	back.

Gilder	smooths	over	this	with	a	sharply	drawn	analogy.	Everyone,	he	says,	has
experienced	the	uncomfortable	feeling	that	comes	from	getting	a	gift	that	is	the
wrong	size,	the	wrong	style,	or	just	wrong	altogether.	"Indeed,	it	is	the	very
genius	of	capitalism	that	it	recognizes	the	difficulty	of	successful	giving,
understands	the	hard	work	and	sacrifice	entailed	in	the	mandate	to	help	one's

fellow	men,	and	offers	a	practical	way	of	living	a	life	of	effective	charity,"	he
writes.	It's	not	enough	to	give	a	man	a	fish,	because	teaching	him	to	fish	is	a
much	better	gift.	A	fish	farm	that	hires	a	man	and	gives	him	stock	options	may
be	offering	the	highest	form	of	giving	around.

Gilder	does	note	that	the	cycle	of	gifts	alone	is	not	enough	to	build	a	strong
economy.	He	suggests	that	the	bigger	and	bigger	piles	of	coconuts	and	whale
blubber	were	all	that	emerged	from	the	endless	rounds	of	potlatching.	They	were
great	for	feasting,	but	the	piles	would	rot	and	go	stale	before	they	were
consumed.	The	successful	society	reinterpreted	the	cycle	of	gifts	as	investment
and	dividends,	and	the	introduction	of	money	made	it	possible	for	people	to
easily	move	the	returns	from	one	investment	to	the	start	of	another.	This	liquidity
lets	the	cycles	be	more	and	more	efficient	and	gives	people	a	place	to	store	their
wealth.

Of	course,	Gilder	admits	that	money	is	only	a	temporary	storage	device.	It's	just
a	tool	for	translating	the	wealth	of	one	sector	of	the	economy	into	the	wealth	of
another.	It's	just	a	wheelbarrow	or	an	ox	cart.	If	society	doesn't	value	the
contributions	of	the	capitalists,	the	transfer	will	fail.	If	the	roads	are	too	rocky	or
blocked	by	too	many	toll	collectors,	the	carts	won't	make	the	trip.

At	first	glance,	none	of	this	matters	to	the	free	software	world.	The	authors	give
away	their	products,	and	as	long	as	someone	pays	a	minimal	amount	for	storage
the	software	will	not	decay.	The	web	is	filled	with	source	code	repositories	and
strongholds	that	let	people	store	away	their	software	and	let	others	download	it
at	will.	These	cost	a	minimal	amount	to	keep	up	and	the	cost	is	dropping	every
day.	There's	no	reason	to	believe	that	the	original	work	of	Stallman	will	be	lost
to	the	disease,	pestilence,	wear,	and	decay	that	have	cursed	physical	objects	like
houses,	clothes,	and	food.

But	despite	the	beautiful	permanence	of	software,	everyone	knows	that	it	goes
bad.	Programmers	don't	use	the	term	"bit	rot"	for	fun.	As	operating	systems
mature	and	other	programs	change,	the	old	interfaces	start	to	slowly	break	down.
One	program	may	depend	upon	the	operating	system	to	print	out	a	file	in
response	to	a	command.	Then	a	new	version	of	the	printing	code	is	revved	up	to
add	fancier	fonts	and	more	colors.	Suddenly	the	interface	doesn't	work	exactly
right.	Over	time,	these	thousands	of	little	changes	can	ruin	the	heart	of	a	good
program	in	much	the	same	way	worms	can	eat	the	hull	of	a	wooden	ship.

The	good	news	is	that	free	source	software	is	well	positioned	to	fix	these
problems.	Distributing	the	source	code	with	the	software	lets	others	do	their	best
to	keep	the	software	running	in	a	changing	environment.	John	Gilmore,	for
instance,	says	that	he	now	embraces	the	GPL	because	earlier	experiments	with
totally	free	software	created	versions	without	accompanying	source	code.

The	bad	news	is	that	Gilder	has	a	point	about	capital	formation.	Richard
Stallman	did	a	great	job	writing	Emacs	and	GCC,	but	the	accolades	weren't	as
easy	to	spend	as	cash.	Stallman	was	like	the	guy	with	a	pile	of	whale	meat	in	his
front	yard.	He	could	feast	for	a	bit,	but	you	can	only	eat	so	much	whale	meat.
Stallman	could	edit	all	day	and	night	with	Emacs.	He	could	revel	in	the	neat
features	and	cool	Emacs	LISP	hacks	that	friends	and	disciples	would	contribute
back	to	the	project.	But	he	couldn't	translate	that	pile	of	whale	meat	into	a	free
OS	that	would	let	him	throw	away	UNIX	and	Windows.

While	Stallman	didn't	have	monetary	capital,	he	did	have	plenty	of	intellectual
capital.	By	1991,	his	GNU	project	had	built	many	well	respected	tools	that	were
among	the	best	in	their	class.	Torvalds	had	a	great	example	of	what	the	GPL
could	do	before	he	chose	to	protect	his	Linux	kernel	with	the	license.	He	also
had	a	great	set	of	tools	that	the	GNU	project	created.

The	GNU	project	and	the	Free	Software	Foundation	were	able	to	raise	money
just	on	the	strength	of	their	software.	Emacs	and	GCC	opened	doors.	People
gave	money	that	flowed	through	to	the	programmers.	While	there	was	no	cash
flow	from	software	sales,	the	project	found	that	it	could	still	function	quite	well.

Stallman's	reputation	also	can	be	worth	more	than	money	when	it	opens	the	right
doors.	He	continues	to	be	blessed	by	the	implicit	support	of	MIT,	and	many
young	programmers	are	proud	to	contribute	their	work	to	his	projects.	It's	a
badge	of	honor	to	be	associated	with	either	Linux	or	the	Free	Software
Foundation.	Programmers	often	list	these	details	on	their	r	sum	s,	and	the	facts
have	weight.

The	reputation	also	helps	him	start	new	projects.	I	could	write	the	skeleton	of	a
new	double-rotating,	buzzword-enhanced	editor,	label	it	"PeteMACS,"	and	post
it	to	the	Net	hoping	everyone	would	love	it,	fix	it,	and	extend	it.	It	could	happen.
But	I'm	sure	that	Stallman	would	find	it	much	easier	to	grab	the	hearts,	minds,
and	spare	cycles	of	programmers	because	he's	got	a	great	reputation.	That	may
not	be	as	liquid	as	money,	but	it	can	be	better.

The	way	to	transfer	wealth	from	project	to	project	is	something	that	the	free
software	world	doesn't	understand	well,	but	it	has	a	good	start.	Microsoft	struck
it	rich	with	DOS	and	used	that	money	to	build	Windows.	Now	it	has	been
frantically	trying	to	use	this	cash	cow	to	create	other	new	businesses.	They	push
MSN,	the	Microsoft	Network,	and	hope	it	will	stomp	AOL.	They've	built	many
content-delivery	vehicles	like	Slate	and	MSNBC.	They've	created	data-
manipulation	businesses	like	Travelocity.	Bill	Gates	can	simply	dream	a	dream
and	put	10,000	programmers	to	work	creating	it.	He	has	serious	intellectual
liquidity.

In	this	sense,	the	battle	between	free	and	proprietary	software	development	is
one	between	pure	giving	and	strong	liquidity.	The	GPL	world	gives	with	no
expectation	of	return	and	finds	that	it	often	gets	a	return	of	a	thousand	times
back	from	a	grateful	world	of	programmers.	The	proprietary	world,	on	the	other
hand,	can	take	its	profits	and	redirect	them	quickly	to	take	on	another	project.	It's
a	battle	of	the	speed	of	easy,	unfettered,	open	source	cooperation	versus	the
lightning	speed	of	money	flowing	to	make	things	work.

Of	course,	companies	like	Red	Hat	lie	in	a	middle	ground.	The	company	charges
money	for	support	and	plows	this	money	back	into	improving	the	product.	It
pays	several	engineers	to	devote	their	time	to	improving	the	entire	Linux
product.	It	markets	its	work	well	and	is	able	to	charge	a	premium	for	what
people	are	able	to	get	for	free.

No	one	knows	if	the	way	chosen	by	companies	like	Red	Hat	and	Caldera	and
groups	like	the	Free	Software	Foundation	is	going	to	be	successful	in	the	long
run.	Competition	can	be	a	very	effective	way	of	driving	down	the	price	of	a
product.	Some	worry	that	Red	Hat	will	eventually	be	driven	out	of	business	by
cheap	$2	CDs	that	rip	off	the	latest	distribution.	For	now,	though,	the	success	of
these	companies	shows	that	people	are	willing	to	pay	for	hand-holding	that
works	well.

A	deeper	question	is	whether	the	open	or	proprietary	model	does	a	better	job	of
creating	a	world	where	we	want	to	live.	Satisfying	our	wants	is	the	ultimate
measure	of	a	wealthy	society.	Computers,	cyberspace,	and	the	Internet	are
rapidly	taking	up	a	larger	and	larger	part	of	people's	time.	Television	viewership
is	dropping,	often	dramatically,	as	people	turn	to	life	online.	The	time	spent	in
cyberspace	is	going	to	be	important.	_1	Stallman	wrote	in	BYTE	magazine	in
1986,	I'm	trying	to	change	the	way	people	approach	knowledge	and	information

in	general.	I	think	that	to	try	to	own	knowledge,	to	try	to	control	whether	people
are	allowed	to	use	it,	or	to	try	to	stop	other	people	from	sharing	it,	is	sabotage.	It
is	an	activity	that	benefits	the	person	that	does	it	at	the	cost	of	impoverishing	all
of	society.	One	person	gains	one	dollar	by	destroying	two	dollars'	worth	of
wealth.

No	one	knows	what	life	online	will	look	like	in	5	or	10	years.	It	will	certainly
include	web	pages	and	e-mail,	but	no	one	knows	who	will	pay	how	much.	The
cost	structures	and	the	willingness	to	pay	haven't	been	sorted	out.	Some
companies	are	giving	away	some	products	so	they	can	make	money	with	others.
Many	are	frantically	giving	away	everything	in	the	hope	of	attracting	enough
eyeballs	to	eventually	make	some	money.

The	proprietary	model	rewards	risk-takers	and	gives	the	smartest,	fastest
programmers	a	pile	of	capital	they	can	use	to	play	the	game	again.	It	rewards	the
ones	who	satisfy	our	needs	and	gives	them	cash	they	can	use	to	build	newer	and
bigger	models.	The	distribution	of	power	is	pretty	meritocratic,	although	it	can
break	down	when	monopolies	are	involved.

But	the	open	source	solution	certainly	provides	good	software	to	everyone	who
wants	to	bother	to	try	to	use	it.	The	free	price	goes	a	long	way	to	spreading	its
bounty	to	a	wide	variety	of	people.	No	one	is	excluded	and	no	one	is	locked	out
of	contributing	to	the	commonweal	because	they	don't	have	the	right	pedigree,
education,	racial	heritage,	or	hair	color.	Openness	is	a	powerful	tool.

Richard	Stallman	told	me,	"Why	do	you	keep	talking	about	'capital'?	None	of
this	has	anything	to	do	with	capital.	Linus	didn't	need	capital	to	develop	a	kernel,
he	just	wrote	it.	We	used	money	to	hire	hackers	to	work	on	the	kernel,	but
describing	that	as	capital	is	misleading.

"The	reason	why	free	software	is	such	a	good	idea	is	that	developing	software
does	not	really	need	a	lot	of	money.	If	we	cannot	'raise	capital'	the	way	the
proprietary	software	companies	do,	that	is	not	really	a	problem.

"We	do	develop	a	lot	of	free	software.	If	a	theory	says	we	can't,	you	have	to	look
for	the	flaws	in	the	theory."

One	of	the	best	ways	to	illustrate	this	conundrum	is	to	look	at	the	experiences	of
the	workers	at	Hotmail	after	they	were	acquired	by	Microsoft.	Sure,	many	of
them	were	overjoyed	to	receive	so	much	for	their	share	in	an	organization.	Many

might	even	do	the	same	thing	again	if	they	had	the	choice.	Many,	though,	are
frustrated	by	their	new	position	as	corporate	citizens	whose	main	job	is
augmenting	Microsoft's	bottom	line.

One	Hotmail	founder	told	the	PBS	Online	columnist	Robert	Cringely,	"All	we
got	was	money.	There	was	no	recognition,	no	fun.	Microsoft	got	more	from	the
deal	than	we	did.	They	knew	nothing	about	the	Internet.	MSN	was	a	failure.	We
had	10	million	users,	yet	we	got	no	respect	at	all	from	Redmond.	Bill	Gates
specifically	said,	'Don't	screw-up	Hotmail,'	yet	that's	what	they	did."

1.	 FUTURE

David	Henkel-Wallace	sat	quietly	in	a	chair	in	a	Palo	Alto	coffee	shop
explaining	what	he	did	when	he	worked	at	the	free	software	firm	Cygnus.	He
brought	his	new	daughter	along	in	a	baby	carriage	and	kept	her	parked
alongside.	Cygnus,	of	course,	is	one	of	the	bigger	successes	in	the	free	software
world.	He	helped	make	some	real	money	building	and	sustaining	the	free
compiler,	GCC,	that	Richard	Stallman	built	and	gave	away.	Cygnus	managed	to
make	the	real	money	even	after	they	gave	away	all	of	their	work.

In	the	middle	of	talking	about	Cygnus	and	open	source,	he	points	to	his	child	and
says,	"What	I'm	really	worried	about	is	she'll	grow	up	in	a	world	where	software
continues	to	be	as	buggy	as	it	is	today."	Other	parents	might	be	worried	about	the
economy,	gangs,	guns	in	schools,	or	the	amount	of	sex	in	films,	but	Henkel-
Wallace	wants	to	make	sure	that	random	software	crashes	start	to	disappear.

He's	done	his	part.	The	open	source	movement	thrives	on	the	GCC	compiler,	and
Cygnus	managed	to	find	a	way	to	make	money	on	the	process	of	keeping	the
compiler	up	to	date.	The	free	operating	systems	like	Linux	or	FreeBSD	are	great
alternatives	for	people	today.	They're	small,	fast,	and	very	stable,	unlike	the	best
offerings	of	Microsoft	or	Apple.	If	the	open	software	movement	continues	to
succeed	and	grow,	his	child	could	grow	up	into	a	world	where	the	blue	screen	of
death	that	terrorizes	Microsoft	users	is	as	foreign	to	them	as	manual	typewriters.

No	one	knows	if	the	open	software	world	will	continue	to	grow.	Some	people	are
very	positive	and	point	out	that	all	the	features	that	made	it	possible	for	the	free
OSs	to	bloom	are	not	going	away.	If	anything,	the	forces	of	open	exchange	and
freedom	will	only	accelerate	as	more	people	are	drawn	into	the	mix.	More

people	mean	more	bug	fixes,	which	means	better	software.

Others	are	not	so	certain,	and	this	group	includes	many	of	the	people	who	are
deeply	caught	up	in	the	world	of	open	source.	Henkel-Wallace,	for	instance,	isn't
so	sure	that	the	source	code	makes	much	difference	when	99	percent	of	the
people	don't	program.	Sure,	Cygnus	had	great	success	sharing	source	code	with
the	programmers	who	used	GCC,	but	all	of	those	guys	knew	how	to	read	the
code.	What	difference	will	the	source	code	make	to	the	average	user	who	just
wants	to	read	his	e-mail?	Someone	who	can't	read	the	source	code	isn't	going	to
contribute	much	back	to	the	project	and	certainly	isn't	going	to	put	much	value	in
getting	it.	A	proprietary	company	like	Microsoft	may	be	able	to	maintain	a	broad
base	of	loyalty	just	by	offering	better	hand-holding	for	the	folks	who	can't
program.

Free	software	stands	at	an	interesting	crossroads	as	this	book	is	being	written.	It
won	over	a	few	hackers	in	garages	in	the	early	1990s.	By	the	mid-1990s,
webmasters	embraced	it	as	a	perfectly	good	option.	Now	everyone	wonders
whether	it	will	conquer	the	desktop	in	the	next	century.

It's	always	tempting	for	an	author	to	take	the	classic	TV	news	gambit	and	end
the	story	with	the	earnest	punt	phrase,	"Whether	this	will	happen	remains	to	be
seen.	"That	may	be	the	most	fair	way	to	approach	reporting	the	news,	but	it's	not
as	much	fun.	I'm	going	to	boldly	predict	that	open	source	software	will	win	the
long-term	war	against	proprietary	companies,	but	it	will	be	a	bloody	war	and	it
will	be	more	costly	than	people	expect.	Over	the	next	several	years,	lawyers	will
spend	hours	arguing	cases;	people	will	spend	time	in	jail;	and	fortunes	will	be
lost	to	the	struggle.

While	it	seems	difficult	to	believe,	some	people	have	already	spent	time	in	jail
for	their	part	in	the	free	software	revolution.	Kevin	Mitnick	was	arrested	in	1995
amid	accusations	that	he	stole	millions	if	not	billions	of	dollars'	worth	of	source
code.	There	was	no	trial,	nor	even	a	bail	hearing.	Finally,	after	almost	five	years
in	prison,	Mitnick	pled	guilty	to	some	charges	and	received	a	sentence	that	was
only	a	few	months	longer	than	the	time	he	served	while	waiting	for	a	trial.
Mitnick	was	accused	of	stealing	millions	of	dollars	from	companies	by	breaking
into	computers	and	stealing	copies	of	their	source	code.

In	the	statement	he	made	following	his	release,	he	said,	"..	.	my	crimes	were
simple	crimes	of	trespass.	I've	acknowledged	since	my	arrest	in	February	1995

that	the	actions	I	took	were	illegal,	and	that	I	committed	invasions	of	privacy--I
even	offered	to	plead	guilty	to	my	crimes	soon	after	my	arrest."

He	continued,	"The	fact	of	the	matter	is	that	I	never	deprived	the	companies
involved	in	this	case	of	anything.	I	never	committed	fraud	against	these
companies.	And	there	is	not	a	single	piece	of	evidence	suggesting	that	I	did	so."

This	trespass,	of	course,	would	be	breaking	the	rules.	The	irony	is	that	in	1999,
Sun	announced	that	it	was	sharing	its	source	code	with	the	world.	They	begged
everyone	to	look	at	it	and	probe	it	for	weaknesses.	The	tide	of	opinion	changed
and	Sun	changed	with	it.

Of	course,	breaking	into	a	company's	computer	system	will	always	be	bad,	but
it's	hard	to	view	Mitnick's	alleged	crimes	as	a	terrible	thing.	Now	that	source
code	is	largely	free	and	everyone	digs	public	sharing,	he	begins	to	look	more	like
a	moonshine	manufacturer	during	Prohibition.	The	free	source	revolution	has
given	him	a	rakish	charm.	Who	knows	if	he	deserves	it,	but	the	zeitgeist	has
changed.

There	are	more	arrests	on	the	way.	In	January	2000,	a	young	Norwegian	man
was	detained	by	the	Norwegian	police	who	wanted	to	understand	his	part	in	the
development	of	software	to	unscramble	the	video	data	placed	on	DVD	disks.
Motion	picture	producers	who	released	their	movies	in	this	format	were	worried
that	a	tool	known	as	DeCSS,	which	was	floating	around	the	Internet,	would
make	it	easier	for	pirates	to	make	unlicensed	copies	of	their	movies.

The	man,	Jan	Johansen,	did	not	write	the	tool,	but	merely	helped	polish	and
circulate	it	on	the	Net.	News	reports	suggest	an	anonymous	German	programmer
did	the	actual	heavy	lifting.

Still,	Johansen	made	a	great	target	for	the	police,	who	never	officially	arrested
him,	although	they	did	take	him	in	for	questioning.

At	this	writing,	it's	not	clear	if	Johansen	officially	broke	any	laws.	Some	argue
that	he	violated	the	basic	strictures	against	breaking	and	entering.	Others	argue
that	he	circulated	trade	secrets	that	were	not	legimately	obtained.

Still	others	see	the	motion	picture	industry's	response	as	an	effort	to	control	the
distribution	of	movies	and	the	machines	that	display	them.	A	pirate	doesn't	need
to	use	the	DeCSS	tool	to	unlock	the	data	on	a	DVD	disk.	They	just	make	a

verbatim	copy	of	the	disk	without	bothering	with	the	encryption.	That	leads
others	to	suspect	that	the	true	motive	is	to	sharply	limit	the	companies	that
produce	machines	that	can	display	DVD	movies.

One	group	that	is	locked	out	of	the	fray	is	the	Linux	community.	While	software
for	playing	DVD	movies	exists	for	Macintoshes	and	PCs,	there's	none	for	Linux.
DeCSS	should	not	be	seen	as	a	hacker's	tool,	but	merely	a	device	that	allows
Linux	users	to	watch	the	legitimate	copies	of	the	DVDs	that	they	bought.
Locking	out	Linux	is	like	locking	in	Apple	and	Microsoft.

The	battle	between	the	motion	picture	community	and	the	Linux	world	is	just
heating	up	as	I	write	this.	There	will	be	more	lawsuits	and	prehaps	more	jail	time
ahead	for	the	developers	who	produced	DeCSS	and	the	people	who	shared	it
through	their	websites.

Most	of	the	battles	are	not	so	dramatic.	They're	largely	technical,	and	the	free
source	world	should	win	these	easily.	Open	source	solutions	haven't	had	the
same	sophisticated	graphical	interface	as	Apple	or	Windows	products.	Most	of
the	programmers	who	enjoy	Linux	or	the	various	versions	of	BSD	don't	need	the
graphical	interface	and	may	not	care	about	it.	The	good	news	is	that	projects	like
KDE	and	GNOME	are	great	tools	already.	The	open	source	world	must	continue
to	tackle	this	area	and	fight	to	produce	something	that	the	average	guy	can	use.

The	good	news	is	that	open	source	software	usually	wins	most	technical	battles.
The	free	versions	of	UNIX	are	already	much	more	stable	than	the	products
coming	from	Microsoft	and	Apple,	and	it	seems	unlikely	that	this	will	change.
The	latest	version	of	Apple's	OS	has	free	versions	of	BSD	in	its	core.	That	battle
is	won.	Microsoft's	version	of	NT	can	beat	these	free	OSs	in	some	extreme
cases,	but	these	are	getting	to	be	rarer	by	the	day.	Sun's	Solaris	is	still	superior	in
some	ways,	but	the	company	is	sharing	the	source	code	with	its	users	in	a	way
that	emulates	the	open	source	world.	More	attention	means	more	programmers
and	more	bug	fixes.	Technical	struggles	are	easy	for	open	source	to	win.

Microsoft's	greatest	asset	is	the	installed	base	of	Windows,	and	it	will	try	to	use
this	to	the	best	of	its	ability	to	defeat	Linux.	At	this	writing,	Microsoft	is	rolling
out	a	new	version	of	the	Domain	Name	Server	(DNS),	which	acts	like	a
telephone	book	for	the	Internet.	In	the	past,	many	of	the	DNS	machines	were
UNIX	boxes	because	UNIX	helped	define	the	Internet.	Windows	2000	includes
new	extensions	to	DNS	that	practically	force	offices	to	switch	over	to	Windows

machines	to	run	DNS.	Windows	2000	just	won't	work	as	well	with	an	old	Linux
or	UNIX	box	running	DNS.

This	is	a	typical	strategy	for	Microsoft	and	one	that	is	difficult,	but	not
impossible,	for	open	source	projects	to	thwart.	If	the	cost	of	these	new	servers	is
great	enough,	some	group	of	managers	is	going	to	create	its	own	open	source
clone	of	the	modified	DNS	server.	This	has	happened	time	and	time	again,	but
not	always	with	great	success.	Linux	boxes	come	with	Samba,	a	program	that
lets	Linux	machines	act	as	file	servers.	It	works	well	and	is	widely	used.	Another
project,	WINE,	started	with	the	grand	design	of	cloning	all	of	the	much	more
complicated	Windows	API	used	by	programmers.	It	is	a	wonderful	project,	but	it
is	far	from	finished.	The	size	and	complexity	make	a	big	difference.

Despite	these	tactics,	Microsoft	(and	other	proprietary	companies)	will	probably
lose	their	quest	to	dominate	the	standards	on	the	Internet.	They	can	only	devote	a
few	programmers	to	each	monopolistic	grab.	The	free	software	world	has	many
programmers	willing	to	undertake	projects.	The	numbers	are	now	great	enough
that	the	cloners	should	be	able	to	handle	anything	Microsoft	sends	its	way.

The	real	battles	will	be	political	and	legal.	While	the	computer	world	seems	to
move	at	a	high	speed	with	lots	of	constant	turnover,	there's	plenty	of	inertia	built
into	the	marketplace.	Many	people	were	rather	surprised	to	find	that	there	was
plenty	of	COBOL,	FORTRAN,	and	other	old	software	happily	running	along
without	any	idea	of	how	to	store	a	date	with	more	than	two	digits.	While	Y2K
incidents	fell	far	short	of	the	media's	hype,	the	number	of	systems	that	required
reprogramming	was	still	much	larger	than	conventional	wisdom	predicted.	IBM
continues	to	sell	mainframes	to	customers	who	started	buying	mainframes	in	the
1960s.	Once	people	choose	one	brand	or	product	or	computer	architecture,	they
often	stay	with	it	forever.

This	is	bad	news	for	the	people	who	expect	the	free	OSs	to	take	over	the	desktop
in	the	next	5	or	10	years.	Corporate	managers	who	keep	the	machines	on
people's	desktops	hate	change.	Change	means	reeducation.	Change	means
installing	new	software	throughout	the	plant.	Change	means	teaching	folks	a
new	set	of	commands	for	running	their	word	processors.	Change	means	work.
People	who	manage	the	computer	networks	in	offices	get	graded	on	the	number
of	glitches	that	stop	workflow.	Why	abandon	Microsoft	now?

If	Microsoft	has	such	an	emotional	stranglehold	on	the	desktop	and	the	computer

industry	takes	forever	to	change,	will	free	software	ever	grow	beyond	the	10
million	or	so	desktops	owned	by	programmers	and	their	friends?

Its	strongest	lever	will	be	price.	Freedom	is	great,	but	corporations	respond
better	to	a	cost	that	is	close	to,	if	not	exactly,	zero.	Big	companies	like	Microsoft
are	enormous	cash	engines.	They	need	a	huge	influx	of	cash	to	pay	the	workers,
and	they	can't	let	their	stock	price	slip.	Microsoft's	revenues	increased	with	a
precision	that	is	rare	in	corporate	America.	Some	stock	analysts	joke	that	the
stock	price	suggests	that	Microsoft's	revenues	will	grow	faster	than	10	percent
forever.	In	the	past,	the	company	accomplished	this	by	absorbing	more	and	more
of	the	market	while	finding	a	way	to	charge	more	and	more	for	the	software	they
supply.	Businesses	that	lived	quite	well	with	Windows	95	are	now	running
Windows	NT.	Businesses	that	ran	NT	are	now	using	special	service	packs	that
handle	network	management	and	data	functions.	The	budget	for	computers	just
keeps	going	up,	despite	the	fact	that	hardware	costs	go	down.

Something	has	to	give.	It's	hard	to	know	how	much	of	a	lever	the	price	will	be.	If
the	revenue	at	Microsoft	stops	growing,	then	the	company's	stock	price	could
take	a	sharp	dive.	The	company	manages	continually	to	produce	greater	and
greater	revenues	each	quarter	with	smooth	precision.	The	expectation	of	the
growth	is	built	into	the	price.	Any	hiccup	could	bring	the	price	tumbling	down.

The	biggest	question	is	how	much	people	are	willing	to	pay	to	continue	to	use
Microsoft	products.	Retooling	an	office	is	an	expensive	proposition.	The	cost	of
buying	new	computers	and	software	is	often	smaller	than	the	cost	of	reeducation.
While	the	free	software	world	is	much	cheaper,	shifting	is	not	an	easy
proposition.	Only	time	will	tell	how	much	people	are	willing	to	pay	for	their
reluctance	to	change.

The	first	cracks	are	already	obvious.	Microsoft	lost	the	server	market	to	Apache
and	Linux	on	the	basis	of	price	and	performance.	Web	server	managers	are
educated	computer	users	who	can	make	their	own	decisions	without	having	to
worry	about	the	need	to	train	others.	Hidden	computers	like	this	are	easy	targets,
and	the	free	software	world	will	gobble	many	of	them	up.	More	users	mean
more	bug	fixes	and	propagations	of	better	code.

The	second	crack	in	Microsoft's	armor	will	be	appliance	computers.	Most	people
want	to	browse	the	web	and	exchange	some	e-mail.	The	basic	distribution	from
Red	Hat	or	FreeBSD	is	good	enough.	Many	people	are	experimenting	with

creating	computers	that	are	defined	by	the	job	they	do,	not	the	operating	system
or	the	computer	chip.	Free	source	packages	should	have	no	trouble	winning
many	battles	in	this	arena.	The	price	is	right	and	the	manufacturers	have	to	hire
the	programmers	anyway.

The	third	breach	will	be	young	kids.	They	have	no	previous	allegiances	and	are
eager	to	learn	new	computer	technology.	Microsoft	may	ask	"Where	do	you
want	to	go	today?"	but	they	don't	want	to	talk	with	someone	whose	answer	is
"The	guts	of	your	OS."The	best	and	brightest	13-year-olds	are	already	the
biggest	fans	of	free	software.	They	love	the	power	and	the	complete	access.

The	fourth	crack	will	be	the	large	installations	in	businesses	that	are	interested	in
competitive	bidding.	Microsoft	charges	a	bundle	for	each	seat	in	a	company,	and
anyone	bidding	for	these	contracts	will	be	able	to	charge	much	less	if	they	ship	a
free	OS.	It's	not	uncommon	for	a	company	to	pay	more	than	a	million	dollars	to
Microsoft	for	license	fees.	There's	plenty	of	room	for	price	competition	when	the
bill	gets	that	high.	Companies	that	don't	want	to	change	will	be	hard	to	move
from	Windows,	but	ones	that	are	price-sensitive	will	be	moved.

Of	course,	free	software	really	isn't	free.	A	variety	of	companies	offering	Linux
support	need	to	charge	something	to	pay	their	bills.	Distributions	like	Red	Hat	or
FreeBSD	may	not	cost	much,	but	they	often	need	some	customization	and	hand-
holding.	Is	a	business	just	trading	one	bill	for	another?	Won't	Linux	support	end
up	costing	the	same	thing	as	Microsoft's	product?

Many	don't	think	so.	Microsoft	currently	wastes	billions	of	dollars	a	year
expanding	its	business	in	unproductive	ways	that	don't	yield	new	profits.	It	spent
millions	writing	a	free	web	browser	to	compete	with	Netscape's	and	then	they
just	gave	it	away.	They	probably	gave	up	millions	of	dollars	and	untold
bargaining	chips	when	they	twisted	the	arms	of	competitors	into	shunning
Netscape.	The	company's	successful	products	pay	for	these	excursions.	At	the
very	least,	a	free	OS	operation	would	avoid	these	costs.

Free	OS	systems	are	inherently	cheaper	to	run.	If	you	have	the	source,	you	might
be	able	to	debug	the	problem	yourself.	You	probably	can't,	but	it	doesn't	hurt	to
try.	Companies	running	Microsoft	products	can't	even	try.	The	free	flow	of
information	will	help	keep	costs	down.

Of	course,	there	are	also	hard	numbers.	An	article	in	Wired	by	Andrew	Leonard

comes	with	numbers	originally	developed	by	the	Gartner	Group.	A	25-person
office	would	cost	$21,453	to	outfit	with	Microsoft	products	and	$5,544.70	to
outfit	with	Linux.	This	estimate	is	a	bit	conservative.	Most	of	the	Linux	cost	is
debatable	because	it	includes	almost	$3,000	for	10	service	calls	to	a	Linux
consultant	and	about	$2,500	for	Applixware,	an	office	suite	that	does	much	of
the	same	job	as	Microsoft	Office.	A	truly	cheap	and	technically	hip	office	could
make	do	with	the	editor	built	into	Netscape	and	one	of	the	free	spreadsheets
available	for	Linux.	It's	not	hard	to	imagine	someone	doing	the	same	job	for
about	$3,	which	is	the	cost	of	a	cheap	knockoff	of	Red	Hat's	latest	distribution.

Of	course,	it's	important	to	realize	that	free	software	still	costs	money	to	support.
But	so	does	Microsoft's.	The	proprietary	software	companies	also	charge	to
answer	questions	and	provide	reliable	information.	It's	not	clear	that	Linux
support	is	any	more	expensive	to	offer.

Also,	many	offices	large	and	small	keep	computer	technicians	on	hand.	There's
no	reason	to	believe	that	Linux	technicians	will	be	any	more	or	less	expensive
than	Microsoft	technicians.	Both	answer	questions.	Both	keep	the	systems
running.	At	least	the	Linux	tech	can	look	at	the	source	code.

The	average	home	user	and	small	business	user	will	be	the	last	to	go.

These	users	will	be	the	most	loyal	to	Microsoft	because	they	will	find	it	harder
than	anyone	else	to	move.	They	can't	afford	to	hire	their	own	Linux	gurus	to
redo	the	office,	and	they	don't	have	the	time	to	teach	themselves.

These	are	the	main	weaknesses	for	Microsoft,	and	the	company	is	already	taking
them	seriously.	I	think	many	underestimate	how	bloody	the	battle	is	about	to
become.	If	free	source	software	is	able	to	stop	and	even	reverse	revenue	growth
for	Microsoft,	there	are	going	to	be	some	very	rich	people	with	deep	pockets
who	feel	threatened.	Microsoft	is	probably	going	to	turn	to	the	same	legal	system
that	gave	it	such	grief	and	find	some	wedge	to	drive	into	the	Linux	community.
Their	biggest	weapon	will	be	patents	and	copyright	to	stop	the	cloners.

Any	legal	battle	will	be	an	interesting	fight.	On	the	one	hand,	the	free	software
community	is	diverse	and	spread	out	among	many	different	entities.	There's	no
central	office	and	no	one	source	that	could	be	brought	down.	This	means
Microsoft	would	fight	a	war	on	many	fronts,	and	this	is	something	that's
emotionally	and	intellectually	taxing	for	anyone,	no	matter	how	rich	or

powerful.

On	the	other	hand,	the	free	software	community	has	no	central	reservoir	of
money	or	strength.	Each	small	group	could	be	crippled,	one	by	one,	by	a	nasty
lawsuit.	Groups	like	OpenBSD	are	always	looking	for	donations.	The	Free
Software	Foundation	has	some	great	depth	and	affection,	but	its	budget	is	a	tiny
fraction	of	Sun's	or	Microsoft's.	Legal	bills	are	real,	and	lawyers	have	a	way	of
making	them	blossom.	There	may	be	hundreds	of	different	targets	for	Microsoft,
but	many	of	them	won't	take	much	firepower	to	knock	out.

The	free	software	community	is	not	without	some	deep	pockets	itself.	Many	of
the	traditional	hardware	companies	like	IBM,	Compaq,	Gateway,	Sun,	Hewlett-
Packard,	and	Apple	can	make	money	by	selling	either	hardware	or	software.
They've	been	hurt	in	recent	years	by	Microsoft's	relentless	domination	of	the
desktop.	Microsoft	negotiated	hard	contracts	with	each	of	the	companies	that
controlled	what	the	user	saw.	The	PC	manufacturers	received	little	ability	to
customize	their	product.	Microsoft	turned	them	into	commodity	manufacturers
and	stripped	away	their	control.	Each	of	these	companies	should	see	great
potential	in	moving	to	a	free	OS	and	adopting	it.	There	is	no	extra	cost,	no
strange	meetings,	no	veiled	threats,	no	arm-twisting.

Suddenly,	brands	like	Hewlett-Packard	or	IBM	can	mean	something	when
they're	slapped	on	a	PC.	Any	goofball	in	a	garage	can	put	a	circuit	board	in	a	box
and	slap	on	Microsoft	Windows.	A	big	company	like	HP	or	IBM	could	do	extra
work	to	make	sure	the	Linux	distribution	on	the	box	worked	well	with	the
components	and	provided	a	glitch-free	existence	for	the	user.

The	hardware	companies	will	be	powerful	allies	for	the	free	software	realm
because	the	companies	will	be	the	ones	who	benefit	economically	the	most	from
the	free	software	licenses.	When	all	of	the	software	is	free,	no	one	controls	it	and
this	strips	away	many	of	Microsoft's	traditional	ways	of	applying	leverage.
Microsoft,	for	instance,	knocked	the	legs	out	from	underneath	Netscape	by
giving	away	Internet	Explorer	for	free.	Now	the	free	software	world	is	using	the
same	strategy	against	Microsoft.	It's	hard	for	them	to	undercut	free	for	most
users.

The	university	system	is	a	less	stable	ally.	While	the	notion	of	free	exchange	of
information	is	still	floating	around	many	of	the	nation's	campuses,	the	places	are
frighteningly	corporate	and	profit-minded.	Microsoft	has	plenty	of	cash	at	its

disposal	and	it	hasn't	been	shy	about	spreading	it	around	places	like	MIT,
Harvard,	and	Stanford.	The	computer	science	departments	on	those	campuses
are	the	recipients	of	brand-new	buildings	compliments	of	Bill	Gates.	These	gifts
are	hard	to	ignore.

Microsoft	will	probably	avoid	a	direct	confrontation	with	the	academic	tradition
of	the	institutions	and	choose	to	cut	their	prices	as	low	as	necessary	to	dominate
the	desktops.	Universities	will	probably	be	given	"free,"	tax-deductible
donations	of	software	whenever	they	stray	far	from	the	Microsoft-endorsed
solution.	Lab	managers	and	people	who	make	decisions	about	the	computing
infrastructure	of	the	university	will	probably	get	neat	"consulting"	contracts	from
Microsoft	or	its	buddies.	This	will	probably	not	mean	total	domination,	but	it
will	buy	a	surprisingly	large	amount	of	obedience.

Despite	these	gifts,	free	software	will	continue	to	grow	on	the	campuses.
Students	often	have	little	cash	and	Microsoft	doesn't	get	any	great	tax	deduction
by	giving	gifts	to	individual	students	(that's	income).	The	smartest	kids	in	the
dorms	will	continue	to	run	Linux.	Many	labs	do	cutting-edge	work	that	requires
customized	software.	These	groups	will	naturally	be	attracted	to	free	source	code
because	it	makes	their	life	easier.	It	will	be	difficult	for	Microsoft	to	counteract
the	very	real	attraction	of	free	software.

Of	course,	Microsoft	is	not	without	its	own	arms.	Microsoft	still	has	patent	law
on	its	side,	and	this	may	prove	to	be	a	very	serious	weapon.	The	law	allows	the
patent	holder	the	exclusive	right	to	determine	who	uses	an	idea	or	invention	over
the	course	of	the	patent,	which	is	now	20	years	from	the	first	filing	date.	That
means	the	patent	holder	can	sue	anyone	who	makes	a	product	that	uses	the
invention.	It	also	means	that	the	patent	holder	can	sue	someone	who	simply
cobbles	up	the	invention	in	his	basement	and	uses	the	idea	without	paying
anything	to	anyone.	This	means	that	even	someone	who	distributes	the	software
for	free	or	uses	the	software	can	be	liable	for	damages.

In	the	past,	many	distrusted	the	idea	of	software	patents	because	the	patent
system	wasn't	supposed	to	allow	you	to	lay	claim	to	the	laws	of	nature.	This
interpretation	fell	by	the	wayside	as	patent	lawyers	argued	successfully	that
software	combined	with	a	computer	was	a	separate	machine	and	machines	were
eligible	for	protection.

Today,	it	is	quite	easy	to	get	patent	protection	for	new	ideas	on	how	to	structure	a

computer	network,	an	operating	system,	or	a	software	tool.	The	only	requirement
is	that	they're	new	and	nonobvious.	Microsoft	has	plenty	of	these.

If	things	go	perfectly	for	Microsoft,	the	company	will	be	able	to	pull	out	one	or
two	patents	from	its	huge	portfolio	and	use	these	to	sue	Red	Hat,	Walnut	Creek,
and	a	few	of	the	other	major	distributors.	Ideally,	this	patent	would	cover	some
crucial	part	of	the	Linux	or	BSD	operating	system.	After	the	first	few	legal	bills
started	arriving	on	the	desk	of	the	Red	Hat	or	Walnut	Creek	CEO,	the	companies
would	have	to	settle	by	quitting	the	business.	Eventually,	all	of	the	distributors	of
Linux	would	crumble	and	return	to	the	small	camps	in	the	hills	to	lick	their
wounds.	At	least,	that's	probably	the	dream	of	some	of	Microsoft's	greatest	legal
soldiers.

This	maneuver	is	far	from	a	lock	for	Microsoft	because	the	free	software	world
has	a	number	of	good	defenses.	The	first	is	that	the	Linux	and	BSD	world	do	a
good	job	of	publicizing	their	advances.	Any	patent	holder	must	file	the	patent
before	someone	else	publishes	their	ideas.	The	Linux	discussion	groups	and
source	distributions	are	a	pretty	good	public	forum.	The	ideas	and	patches	often
circulate	publicly	long	before	they	make	their	way	into	a	stable	version	of	the
kernel.	That	means	that	the	patent	holders	will	need	to	be	much	farther	ahead
than	the	free	software	world.

Linux	and	the	free	software	world	are	often	the	cradle	of	new	ideas.	University
students	use	open	source	software	all	the	time.	It's	much	easier	to	do	way	cool
things	if	you've	got	access	to	the	source.	Sure,	Microsoft	has	some	smart
researchers	with	great	funding,	but	can	they	compete	with	all	the	students?

Microsoft's	ability	to	dominate	the	patent	world	may	be	hurt	by	the	nature	of	the
game.	Filing	the	application	first	or	publishing	an	idea	first	is	all	that	matters	in
the	patent	world.	Producing	a	real	product	is	hard	work	that	is	helped	by	the	cash
supply	of	Microsoft.	Coming	up	with	ideas	and	circulating	them	is	much	easier
than	building	real	tools	that	people	can	use.

The	second	defense	is	adaptability.	The	free	software	distributions	can	simply
strip	out	the	offending	code.	The	Linux	and	BSD	disks	are	very	modular	because
they	come	from	a	variety	of	different	sources.	The	different	layers	and	tools
come	from	different	authors,	so	they	are	not	highly	integrated.	This	makes	it
possible	to	remove	one	part	without	ruining	the	entire	system.

Stallman's	GNU	project	has	been	dealing	with	patents	for	a	long	time	and	has
some	experience	programming	around	them.	The	GNU	Zip	program,	for
instance,	was	written	to	avoid	the	patents	on	the	Lempel-Ziv	compression
algorithm	claimed	by	UNISYS	and	IBM.	The	software	is	well-written	and	it
works	as	well	as,	if	not	better	than,	the	algorithm	it	replaces.	Now	it's	pretty
standard	on	the	web	and	very	popular	because	it	is	open	source	and	patent-free.
It's	the	politically	correct	compression	algorithm	to	use	because	it's	open	to
everyone.

It	will	be	pretty	difficult	for	a	company	like	Microsoft	to	find	a	patent	that	will
allow	it	to	deal	a	fatal	blow	to	either	the	Linux	or	BSD	distributions.	The	groups
will	just	clip	out	the	offending	code	and	then	work	around	it.

Microsoft's	greatest	hope	is	to	lock	up	the	next	generation	of	computing	with
patents.	New	technologies	like	streaming	multimedia	or	Internet	audio	are	still
up	for	grabs.	While	people	have	been	studying	these	topics	in	universities	for
some	time,	the	Linux	community	is	further	behind.	Microsoft	will	try	to
dominate	these	areas	with	crucial	patents	that	affect	how	operating	systems	deal
with	this	kind	of	data.	Their	success	at	this	is	hard	to	predict.	In	any	event,	while
they	may	be	able	to	cripple	the	adoption	of	some	new	technologies	like
streaming	multimedia,	they	won't	be	able	to	smash	the	entire	world.

The	third	and	greatest	defense	for	the	free	source	ideology	is	a	loophole	in	the
patent	law	that	may	also	help	many	people	in	the	free	software	world.	It	is	not
illegal	to	use	a	patented	idea	if	you're	in	the	process	of	doing	some	research	on
how	to	improve	the	state	of	the	art	in	that	area.	The	loophole	is	very	narrow,	but
many	users	of	free	software	might	fall	within	it.	All	of	the	distributions	come
with	source	code,	and	many	of	the	current	users	are	programmers	experimenting
with	the	code.	Most	of	these	programmers	give	their	work	back	to	the	project
and	this	makes	most	of	their	work	pretty	noncommercial.	The	loophole	probably
wouldn't	protect	the	corporations	that	are	using	free	software	simply	because	it	is
cheap,	but	it	would	still	be	large	enough	to	allow	innovation	to	continue.	A	non-
commercial	community	built	up	around	research	could	still	thrive	even	if
Microsoft	manages	to	come	up	with	some	patents	that	are	very	powerful.

The	world	of	patents	can	still	constrain	the	world	of	free	software.	Many
companies	work	hard	on	developing	new	technology	and	then	rely	upon	patents
to	guarantee	them	a	return	on	investment.	These	companies	have	trouble
working	well	with	the	free	software	movement	because	there's	no	revenue

stream	to	use.	A	company	like	Adobe	can	integrate	some	neat	new	streaming
technology	or	compression	algorithm	and	add	the	cost	of	a	patent	license	to	the
price	of	the	product.	A	free	software	tool	can't.

This	does	not	preclude	the	free	software	world	from	using	some	ideas	or
software.	There's	no	reason	why	Linux	can't	run	proprietary	application	software
that	costs	money.	Perhaps	people	will	sell	licenses	for	some	distributions	and
patches.	Still,	the	users	must	shift	mental	gears	when	they	encounter	these
packages.

There	are	no	easy	solutions	to	patent	problems.	The	best	news	is	that	proprietary,
patented	technology	rarely	comes	to	dominate	the	marketplace.	There	are	often
ways	to	work	around	solutions,	and	other	engineers	are	great	at	finding	them.
Sure,	there	will	be	the	occasional	brilliant	lightbulb,	transistor,	radio,	or	other
solution	that	is	protected	by	a	broad	patent,	but	these	will	be	relatively	rare.

There	are	a	few	things	that	the	open	source	community	can	do	to	protect
themselves	against	patents.	Right	now,	many	of	the	efforts	at	developing	open
source	solutions	come	after	technology	emerges.	For	instance,	developing
drivers	for	DVD	disks	is	one	of	the	current	challenges	at	the	time	that	I'm
writing	this	chapter	even	though	the	technology	has	been	shipping	with	many
midpriced	computers	for	about	a	year.

There	is	no	reason	why	some	ivory-tower,	blue-sky	research	can't	take	place	in	a
patent-free	world	of	open	source.	Many	companies	already	allow	their
researchers	to	attend	conferences	and	present	papers	on	their	open	work	and
classify	this	as	"precompetitive"	research.	Standards	like	JPEG	or	MPEG	emerge
from	committees	that	pledge	not	to	patent	their	work.	There	is	no	reason	why
these	loose	research	groups	can't	be	organized	around	a	quasi-BSD	or	GNU
license	that	forces	development	to	be	kept	in	the	open.

These	research	groups	will	probably	be	poorly	funded	but	much	more	agile	than
the	corporate	teams	or	even	the	academic	teams.	They	might	be	organized
around	a	public	newsgroup	or	mailing	list	that	is	organized	for	the	purpose	of
publicly	disclosing	ideas.	Once	they're	officially	disclosed,	no	patents	can	be
issued	on	them.	Many	companies	like	IBM	and	Xerox	publish	paper	journals	for
defensive	purposes.

Still,	the	debate	about	patents	will	be	one	that	will	confound	the	entire	software

industry	for	some	time.	Many	for-profit,	proprietary	firms	are	thrown	for	a	loop
by	some	of	the	patents	granted	to	their	competitors.	The	open	source	world	will
have	plenty	of	allies	who	want	to	remake	the	system.

The	patents	are	probably	the	most	potent	legal	tool	that	proprietary	software
companies	can	use	to	threaten	the	open	source	world.	There	is	no	doubt	that	the
companies	will	use	it	to	fend	off	low-rent	competition.

One	of	the	biggest	challenges	for	the	free	software	community	will	be
developing	the	leadership	to	undertake	these	battles.	It	is	one	thing	to	mess
around	in	a	garage	with	your	buddies	and	hang	out	in	some	virtual	he-
man/Microsoft-haters	clubhouse	cooking	up	neat	code.	It's	a	very	different
challenge	to	actually	achieve	the	world	domination	that	the	Linux	world	muses
about.	When	I	started	writing	the	book,	I	thought	that	an	anthem	for	the	free
software	movement	might	be	Spinal	Tap's	"Flower	People."	Now	I	think	it's
going	to	be	Buffalo	Springfield's	"For	What	It's	Worth,"	which	warns,	"There's
something	happening	here	/	What	it	is	ain't	exactly	clear."

Tim	O'Reilly	emphasizes	this	point.	When	asked	about	some	of	the	legal	battles,
he	said,	"There's	definitely	going	to	be	a	war	over	this	stuff.	When	I	look	back	at
previous	revolutions,	I	realize	how	violent	they	became.	They	threatened	to	burn
Galileo	at	the	stake.	They	said	'Take	it	back,'	and	he	backed	down.	But	it	didn't
make	any	difference	in	the	end.	But	just	because	there's	a	backlash	doesn't	mean
that	open	source	won't	win	in	the	long	run."

Companies	like	Microsoft	don't	let	markets	and	turf	just	slip	away.	They	have	a
large	budget	for	marketing	their	software.	They	know	how	to	generate	positive
press	and	plenty	of	fear	in	the	hearts	of	managers	who	must	make	decisions.
They	understand	the	value	of	intellectual	property,	and	they	aren't	afraid	of
dispatching	teams	of	lawyers	to	ensure	that	their	markets	remain	defended.

The	open	source	community,	however,	is	not	without	a	wide	variety	of	strengths,
although	it	may	not	be	aware	of	them.	In	fact,	this	diffuse	power	and	lack	of	self-
awareness	and	organization	is	one	of	its	greatest	strengths.	There	is	no	powerful
leadership	telling	the	open	source	community	"Thou	shalt	adopt	these	libraries
and	write	to	this	API."	The	people	in	the	trenches	are	testing	code,	proposing
solutions,	and	getting	their	hands	dirty	while	making	decisions.	The	realm	is	not
a	juggernaut,	a	bandwagon,	a	dreadnought,	or	an	unstoppable	freight	train
roaring	down	the	track.	It's	creeping	kudzu,	an	algae	bloom,	a	teenage	fad,	and	a

rising	tide	mixed	together.

The	strength	of	the	free	price	shouldn't	be	underestimated.	While	the	cost	isn't
really	nothing	after	you	add	up	the	price	of	paying	Red	Hat,	Slackware,	SuSE,
Debian,	or	someone	else	to	provide	support,	it's	still	much	cheaper	than	the
proprietary	solutions	on	the	market.	Price	isn't	the	only	thing	on	people's	minds,
but	it	will	always	be	an	important	one.

In	the	end,	though,	I	think	the	free	software	world	will	flourish	because	of	the
ideals	it	embraces.	The	principles	of	open	debate,	broad	circulation,	easy	access,
and	complete	disclosure	are	like	catnip	to	kids	who	crackle	with	intelligence.
Why	would	anyone	want	to	work	in	a	corporate	cubicle	with	a	Dilbert	boss	when
you	can	spend	all	night	hacking	on	the	coolest	tools?	Why	would	you	want	to
join	some	endless	corporate	hierarchy	when	you	can	dive	in	and	be	judged	on
the	value	of	your	code?	For	these	reasons,	the	free	software	world	can	always
count	on	recruiting	the	best	and	the	brightest.

This	process	will	continue	because	the	Dilbert-grade	bosses	aren't	so	dumb.	I
know	more	than	a	few	engineers	and	early	employees	at	startup	firms	who
received	very	small	stock	allowances	at	IPO	time.	One	had	written	three	of	the
six	systems	that	were	crucial	to	the	company's	success	on	the	web.	Yet	he	got
less	than	1	percent	of	the	shares	allocated	to	the	new	CEO	who	had	just	joined
the	company.	The	greed	of	the	non-programming	money	changers	who	plumb
the	venture	capital	waters	will	continue	to	poison	the	experience	of	the
programmers	and	drive	many	to	the	world	of	free	software.	If	they're	not	going
to	get	anything,	they	might	as	well	keep	access	to	the	code	they	write.

The	open	source	ideals	are	also	strangely	empowering	because	they	force
everyone	to	give	up	their	will	to	power	and	control.	Even	if	Richard	Stallman,
Linus	Torvalds,	Eric	Raymond,	and	everyone	else	in	the	free	software	world
decides	that	you're	a	scumbag	who	should	be	exiled	to	Siberia,	they	can't	take
away	the	code	from	you.	That	freedom	is	a	very	powerful	drug.

The	free	software	movement	is	rediscovering	the	same	notions	that	drove	the
American	colonists	to	rebel	against	the	forces	of	English	oppression.	The	same
words	that	flowed	through	the	pens	of	Thomas	Paine,	Thomas	Jefferson,	and
Benjamin	Franklin	are	just	as	important	today.	The	free	software	movement
certifies	that	we	are	all	created	equal,	with	the	same	rights	to	life,	liberty,	and	the
pursuit	of	bug-free	code.	This	great	nation	took	many	years	to	evolve	and	took

many	bad	detours	along	the	way,	but	in	the	end,	the	United	States	tends	to	do	the
right	thing.

The	free	software	movement	has	many	flaws,	blemishes,	and	weaknesses,	but	I
believe	that	it	will	also	flourish	over	the	years.	It	will	take	wrong	turns	and
encounter	great	obstacles,	but	in	the	end	the	devotion	to	liberty,	fraternity,	and
equality	will	lead	it	to	make	the	right	decisions	and	will	outstrip	all	of	its
proprietary	competitors.

In	the	end,	the	lure	of	the	complete	freedom	to	change,	revise,	extend,	and
improve	the	source	code	of	a	project	is	a	powerful	drug	that	creative	people	can't
resist.	Shrink-wrapped	software's	ease-of-use	and	prepackaged	convenience	are
quite	valuable	for	many	people,	but	its	world	is	static	and	slow.

In	the	end,	the	power	to	write	code	and	change	it	without	hiring	a	team	of
lawyers	to	parse	agreements	between	companies	ensures	that	the	free	software
world	will	gradually	win.	Corporate	organization	provides	money	and	stability,
but	in	technology	the	race	is	usually	won	by	the	swiftest.

In	the	end,	free	software	creates	wealth,	not	cash,	and	wealth	is	much	better	than
cash.	You	can't	eat	currency	and	you	can't	build	a	car	with	gold.	Free	software
does	things	and	accomplishes	tasks	without	crashing	into	the	blue	screen	of
death.	It	empowers	people.	People	who	create	it	and	share	it	are	building	real
infrastructure	that	everyone	can	use.	The	corporations	can	try	to	control	it	with
intellectual	property	laws.	They	can	buy	people,	hornswoggle	judges,	and	co-opt
politicians,	but	they	can't	offer	more	than	money.

In	the	end,	information	wants	to	be	free.	Corporations	want	to	believe	that
software	is	a	manufactured	good	like	a	car	or	a	toaster.	They	want	to	pretend	it	is
something	that	can	be	consumed	only	once.	In	reality,	it	is	much	closer	to	a	joke,
an	idea,	or	gossip.	Who's	managed	to	control	those?

For	all	of	these	reasons,	this	grand	free-for-all,	this	great	swapfest	of	software,
this	wonderful	nonstop	slumber	party	of	cooperative	knowledge	creation,	this
incredible	science	project	on	steroids	will	grow	in	strange	leaps	and	unexpected
bounds	until	it	swallows	the	world.	There	will	be	battles,	there	will	be	armies,
there	will	be	spies,	there	will	be	snakes,	there	will	be	court	cases,	there	will	be
laws,	there	will	be	martyrs,	there	will	be	heroes,	and	there	will	be	traitors.	But	in
the	end,	information	just	wants	to	be	free.	That's	what	we	love	about	it.

1.	 GLOSSARY

Apache	License	A	close	cousin	of	the	BSD	License.	The	software	comes	with
few	restrictions,	and	none	prevent	you	from	taking	a	copy	of	Apache,	modifying
it,	and	selling	binary	versions.	The	only	restriction	is	that	you	can't	call	it
Apache.	For	instance,	C2Net	markets	a	derivative	of	Apache	known	as
Stronghold.

AppleScript	A	text	language	that	can	be	used	to	control	the	visual	interface	of	the
Macintosh.	It	essentially	says	things	like	"Open	that	folder	and	double	click	on
Adobe	Photoshop	to	start	it	up.	Then	open	the	file	named	'Pete's	Dog's	Picture.'"
architecture	Computer	scientists	use	the	word	"architecture"	to	describe	the	high-
level,	strategic	planning	of	a	system.	A	computer	architect	may	decide,	for
instance,	that	a	new	system	should	come	with	three	multiplier	circuits	but	not
four	after	analyzing	the	sequence	of	arithmetic	operations	that	a	computer	will
likely	be	called	upon	to	execute.	If	there	are	often	three	multiplications	that
could	be	done	concurrently,	then	installing	three	multiplier	circuits	would
increase	efficiency.	Adding	a	fourth,	however,	would	be	a	waste	of	effort	if	there
were	few	occasions	to	use	it.	In	most	cases,	the	term	"computer	architect"
applies	only	to	hardware	engineers.	All	sufficiently	complicated	software
projects,	however,	have	an	architect	who	makes	the	initial	design	decisions.

Artistic	License	A	license	created	to	protect	the	original	PERL	language.	Some
users	dislike	the	license	because	it	is	too	complex	and	filled	with	loopholes.
Bruce	Perens	writes,	"The	Artistic	License	requires	you	to	make	modifications
free,	but	then	gives	you	a	loophole	(in	Section	7)	that	allows	you	to	take
modifications	private	or	even	place	parts	of	the	Artistic-licensed	program	in	the
public	domain!"

BeOS	An	operating	system	created	by	the	Be,	a	company	run	by	exApple
executive	Jean	Louis	Gass	e.

BSD	An	abbreviation	for	Berkeley	Software	Distribution,	a	package	first
released	by	Bill	Joy	in	the	1970s.	The	term	has	come	to	mean	both	a	class	of
UNIX	that	was	part	of	the	distribution	and	also	the	license	that	protects	this
software.	There	are	several	free	versions	of	BSD	UNIX	that	are	well-accepted
and	well-supported	by	the	free	source	software	community.	OpenBSD,	NetBSD,
and	FreeBSD	are	three	of	them.	Many	commercial	versions	of	UNIX,	like	Sun's

Solaris	and	NeXT's	OS,	can	trace	their	roots	to	this	distribution.	The	BSD	was
originally	protected	by	a	license	that	allowed	anyone	to	freely	copy	and	modify
the	source	code	as	long	as	they	gave	some	credit	to	the	University	of	California
at	Berkeley.	Unlike	the	GNU	GPL,	the	license	does	not	require	the	user	to
release	the	source	code	to	any	modifications.

BSD	License	The	original	license	for	BSD	software.	It	placed	few	restrictions	on
what	you	did	with	the	code.	The	important	terms	forced	you	to	keep	the
copyright	intact	and	credit	the	University	of	California	at	Berkeley	when	you
advertise	a	product.	The	requirement	to	include	credit	is	now	removed	because
people	realized	that	they	often	needed	to	publish	hundreds	of	acknowledgments
for	a	single	CD-ROM.	Berkeley	removed	the	term	in	the	hopes	that	it	would	set
a	good	example	for	the	rest	of	the	community.

copyleft	Another	term	that	is	sometimes	used	as	a	synonym	for	the	GNU	General
Public	License.

Debian	Free	Software	Guidelines	See	Open	Source.	(www.debian.org)

driver	Most	computers	are	designed	to	work	with	optional	devices	like	modems,
disk	drives,	printers,	cameras,	and	keyboards.	A	driver	is	a	piece	of	software	that
translates	the	signals	sent	by	the	device	into	a	set	of	signals	that	can	be
understood	by	the	operating	system.	Most	operating	systems	are	designed	to	be
modular,	so	these	drivers	can	be	added	as	an	afterthought	whenever	a	user
connects	a	new	device.	They	are	usually	designed	to	have	a	standard	structure	so
other	software	will	work	with	them.	The	driver	for	each	mouse,	for	instance,
translates	the	signals	from	the	mouse	into	a	standard	description	that	includes	the
position	of	the	mouse	and	its	direction.	Drivers	are	an	important	point	of	debate
in	the	free	software	community	because	volunteers	must	often	create	the	drivers.
Most	manufacturers	write	the	drivers	for	Windows	computers	because	these
customers	make	up	the	bulk	of	their	sales.	The	manufacturers	often	avoid
creating	drivers	for	Linux	or	BSD	systems	because	they	perceive	the	market	to
be	small.	Some	manufacturers	also	cite	the	GNU	GPL	as	an	impediment	because
they	feel	that	releasing	the	source	code	to	their	drivers	publishes	important
competitive	information.

FreeBSD	The	most	popular	version	of	BSD.	The	development	team,	led	by
Jordan	Hubbard,	works	hard	to	provide	an	easy-to-use	tool	for	computers
running	the	Intel	x86	architecture.	In	recent	years,	they've	tried	to	branch	out

into	other	lines.	(www.freebsd.org)

Free	Software	Foundation	An	organization	set	up	by	Richard	Stallman	to	raise
money	for	the	creation	of	new	free	software.	Stallman	donates	his	time	to	the
organization	and	takes	no	salary.	The	money	is	spent	on	hiring	programmers	to
create	new	free	software.

GIMP	The	GNU	Image	Manipulation	Program,	which	can	manipulate	image
files	in	much	the	same	way	as	Adobe	Photoshop.	(www.gimp.org)

GNOME	The	GNU	Network	Object	Model	Environment,	which	might	be
summarized	as	"All	of	the	functionality	of	Microsoft	Windows	for	Linux."	It's
actually	more.	There	are	many	enhancements	that	make	the	tool	easier	to	use	and
more	flexible	than	the	prototype	from	Redmond.	See	also	KDE,	another	package
that	accomplishes	much	of	the	same.	(www.gnome.org)

GNU	A	recursive	acronym	that	stands	for	"GNU	is	Not	UNIX."	The	project	was
started	by	Richard	Stallman	in	the	1980s	to	fight	against	the	tide	of	proprietary
software.	The	project	began	with	several	very	nice	programs	like	GNU	Emacs
and	GCC,	the	C	compiler	that	was	protected	by	Stallman's	GNU	General
Purpose	License.	It	has	since	grown	to	issue	software	packages	that	handle	many
different	tasks	from	games	(GNU	Chess)	to	privacy	(GNU	Privacy	Guard).	See
also	GPL	and	Free	Software	Foundation	(www.gnu.org).	Its	main	goal	is	to
produce	a	free	operating	system	that	provides	a	user	with	the	ability	to	do
everything	they	want	with	software	that	comes	with	the	source	code.

GNU/Linux	The	name	some	people	use	for	Linux	as	a	way	of	giving	credit	to	the
GNU	project	for	its	leadership	and	contribution	of	code.

GPL	An	abbreviation	that	stands	for	"General	Purpose	License."	This	license
was	first	written	by	Richard	Stallman	to	control	the	usage	of	software	created	by
the	GNU	project.	A	user	is	free	to	read	and	modify	the	source	code	of	a	GPL-
protected	package,	but	the	user	must	agree	to	distribute	any	changes	or
improvements	if	they	distribute	the	software	at	all.	Stallman	views	the	license	as
a	way	to	force	people	to	share	their	own	improvements	and	contribute	back	to
the	project	if	they	benefit	from	the	project's	hard	work.	See	also	BSD.

higher-level	languages	Modern	computer	programmers	almost	always	write	their
software	in	languages	like	C,	Java,	Pascal,	or	Lisp,	which	are	known	as	higher-
level	languages.	The	word	"higher"	is	a	modifier	that	measures	the	amount	of

abstraction	available	to	a	programmer.	A	high-level	language	might	let	a
programmer	say,	"Add	variable	revenues	to	variable	losses	to	computer	profits."
A	high-level	language	would	be	able	to	figure	out	just	where	to	find	the
information	about	the	profits	and	the	losses.	A	low-level	programming	language
would	require	the	software	author	to	point	directly	to	a	location	in	the	memory
where	the	data	could	be	found.

KDE	The	K	desktop	environment	is	another	toolkit	that	offers	much	of	the	same
functionality	as	Windows.	It	is	controversial	because	it	originally	used	some
proprietary	software	and	some	users	needed	a	license.	See	also	GNOME,	a
similar	package	that	is	distributed	under	the	GNU	GPL.	(www.kde.org)

kernel	The	core	of	an	OS	responsible	for	juggling	the	different	tasks	and
balancing	all	of	the	demands.	Imagine	a	short-order	cook	who	scrambles	eggs,
toasts	bread,	chops	food,	and	somehow	manages	to	get	an	order	out	in	a	few
minutes.	A	kernel	in	an	OS	juggles	the	requests	to	send	information	to	a	printer,
display	a	picture	on	the	screen,	get	data	from	a	website,	and	a	thousand	other
tasks.

Linux	The	name	given	to	the	core	of	the	operating	system	started	by	Linus
Torvalds	in	1991.	The	word	is	now	generally	used	to	refer	to	an	entire	bundle	of
free	software	packages	that	work	together.	Red	Hat	Linux,	for	instance,	is	a	large
bundle	of	software	including	packages	written	by	many	other	unrelated	projects.

Mozilla	Public	License	A	cousin	of	the	Netscape	Public	License	that	was	created
to	protect	the	public	contributions	to	the	source	tree	of	the	Mozilla	project.
Netscape	cannot	relicense	the	modifications	to	code	protected	by	the	MPL,	but
they	can	do	it	to	the	NPL.	See	also	Netscape	Public	License.

NetBSD	One	of	the	original	free	distributions	of	BSD.	The	team	focuses	on
making	sure	that	the	software	works	well	on	a	wide	variety	of	hardware
platforms,	including	relatively	rare	ones	like	the	Amiga.	(www.netbsd.org)

Netscape	Public	License	A	license	created	by	Netscape	when	the	company
decided	to	release	their	browser	as	open	source.	The	license	is	similar	to	the
BSD	License,	but	it	provides	special	features	to	Netscape.	They're	allowed	to
take	snapshots	of	the	open	source	code	and	turn	them	back	into	a	private,
proprietary	project	again.	Bruce	Perens,	one	of	the	unpaid	consultants	who
helped	Netscape	draft	the	license,	says	that	the	provision	was	included	because

Netscape	had	special	contracts	with	companies	to	provide	a	proprietary	tool.	See
also	Mozilla	Public	License.

OpenBSD	One	of	the	three	major	versions	of	BSD	available.	The	development
team,	led	by	Theo	de	Raadt,	aims	to	provide	the	best	possible	security	by
examining	the	source	code	in	detail	and	looking	for	potential	holes.
(www.openbsd.org)	open	source	A	broad	term	used	by	the	Open	Source
Initiative	(www.opensource.org)	to	embrace	software	developed	and	released
under	the	GNU	General	Public	License,	the	BSD	license,	the	Artistic	License,
the	X	Consortium,	and	the	Netscape	License.	It	includes	software	licenses	that
put	few	restrictions	on	the	redistribution	of	source	code.	The	Open	Source
Initiative's	definition	was	adapted	from	the	Debian	Free	Software	Guidelines.
The	OSI's	definition	includes	10	criteria,	which	range	from	insisting	that	the
software	and	the	source	code	must	be	freely	redistributable	to	insisting	that	the
license	not	discriminate.

Open	Source	Initiative	A	group	created	by	Eric	Raymond,	Sam	Ockman,	Bruce
Perens,	Larry	Augustin,	and	more	than	a	few	others.	The	group	checks	licenses
to	see	if	they	match	their	definition	of	open	source.	If	the	license	fits,	then	it	can
wear	the	term	"certified	by	the	OSI."

Symmetric	Multi-Processing	Much	of	the	recent	work	in	operating	system	design
is	focused	on	finding	efficient	ways	to	run	multiple	programs	simultaneously	on
multiple	CPU	chips.	This	job	is	relatively	straightforward	if	the	different	pieces
of	software	run	independently	of	each	other.	The	complexity	grows	substantially
if	the	CPUs	must	exchange	information	to	coordinate	their	progress.	The	kernel
must	orchestrate	the	shuffle	of	information	so	that	each	CPU	has	enough
information	to	continue	its	work	with	a	minimum	amount	of	waiting	time.
Finding	a	good	way	to	accomplish	this	SMP	is	important	because	many	of	the
new	machines	appearing	after	2000	may	come	with	multiple	processors.

UNIX	An	operating	system	created	at	AT&T	Bell	Labs	by	Ken	Thompson	and
Dennis	Ritchie.	The	system	was	originally	designed	to	support	multiple	users	on
a	variety	of	different	hardware	platforms.	Most	programs	written	for	the	system
accept	ASCII	text	and	spit	out	ASCII	text,	which	makes	it	easy	to	chain	them
together.	The	original	name	was	"unics,"	which	was	a	pun	on	the	then-popular
system	known	as	Multics.

1.	 BIBLIOGRAPHY

Abelson,	Reed.	"Among	U.S.	Donations,	Tons	of	Worthless	Drugs."	New	York
Times,	June	29,	1999.

Ananian,	C.	Scott.	"A	Linux	Lament:	As	Red	Hat	Prepares	to	Go	Public,	One
Linux	Hacker's	Dreams	of	IPO	Glory	Are	Crushed	by	the	Man."	Salon
magazine,	July	30,	1999.

http://www.salon.com/tech/feature/1999/07/30/redhat_shares/index.html

"Questions	Not	to	Ask	on	Linux-Kernel."	May	1998.

http://lwn.net/980521/a/nonfaq.html

Aragon,	Lawrence,	and	Matthew	A.	De	Bellis.	"Our	Lunch	With	Linus:	(Almost)
Everything	You	Need	to	Know	About	the	World's	Hottest	Programmer."	VAR
Business,	April	12,	1999.

Betz,	David,	and	Jon	Edwards.	"GNU's	NOT	UNIX."	BYTE,	July	1986.

Brinkley,	Joel.	"Microsoft	Witness	Attacked	for	Contradictory	Opinions."	New
York	Times,	January	15,	1999.

http://www.nytimes.com/library/1999/01/biztech/articles/15soft.html

Bronson,	Po.	"Manager's	Journal	Silicon	Valley	Searches	for	an	Image."Wall
Street	Journal,	June	8,	1998.

Nudist	on	the	Late	Shift:	And	Other	True	Tales	of	Silicon	Valley.	New	York:
Random	House,	1999.

Brown,	Zack.	"The	'Linux'	vs.	'GNU/Linux'	Debate."	Kernel	Traffic,	April	13,
1999.

http://www.kt.opensrc.org/kt19990408_13.html#editorial

Caravita,	Giuseppe.	"Telecommunications,	Technology,	and	Science."	Il	Sole	24
Ore,	March	5,	1999.

http://www.ilsole24ore.it/24oreinformatica/speciale_3d.19990305/INFORMATICA/Informatica/A.html

Chalmers,	Rachel.	"Challenges	Ahead	for	the	Linux	Standards
Base."LinuxWorld,	April	1999.

http://www.linuxworld.com/linuxworld/lw-1999-04/lw-04-lsb.html

Coates,	James.	"A	Rebellious	Reaction	to	the	Linux	Revolution."Chicago
Tribune,	April	25,	1999.

http://www.chicagotribune.com/business/printedition/article/0,1051,SA-
Vo9904250051,00.html

Cox,	Alan.	"Editorial."	Freshmeat,	July	18,	1999.

http://www.freshmeat.net/news/1998/07/18/900797536.html

Cringely,	Robert	X.	"Be	Careful	What	You	Wish	For:	Why	Being	Acquired	by
Microsoft	Makes	Hardly	Anyone	Happy	in	the	Long	Run."	PBS	Online,	August
27,	1999.

http://www.pbs.org/cringely/pulpit/pulpit19990826.html

D'Amico,	Mary	Lisbeth.	"German	Division	of	Microsoft	Protests	'Where	Do	You
Want	to	Go	Tomorrow'	Slogan:	Linux	Site	Holds	Contest	for	New	Slogan	While
Case	Is	Pending."	LinuxWorld,	April	13,	1999.

http://www.linuxworld.com/linuxworld/lw-1999-04/lw-04-german.html

Diamond,	David.	"Linus	the	Liberator."	San	Jose	Mercury	News.

http://www.mercurycenter.com/svtech/news/special/linus/story.html

DiBona,	Chris,	Sam	Ockman,	and	Mark	Stone.	Open	Sources:Voices	from	the
Open	Source	Revolution.	San	Francisco:	O'Reilly,	1999.

Freeman,	Derek.	Margaret	Mead	and	Samoa:	The	Making	and	Unmaking	of	an
Anthropological	Myth.	Cambridge,	MA:	Harvard	University	Press,	1988.

Gilder,	George.	Wealth	and	Poverty.	Institute	for	Contemporary	Studies.	San
Fransisco:	CA,	1981.

Gleick,	James.	"Control	Freaks."	New	York	Times,	July	19,	1998.

"Broken	Windows	Theory."	New	York	Times,	March	21,	1999.

"Interview	with	Linus	Torvalds."	FatBrain.com,	May	1999.

http://www.kt.opensrc.org/interviews/ti19990528_fb.html

Jelinek,	Jakub.	"Re:	Mach64	Problems	in	UltraPenguin	1.1.9."	Linux	Weekly
News,	April	27,	1999.

http://www.lwn.net/1999/0429/a/up-dead.html

Johnson,	Richard	B.,	and	Chris	Wedgwood.	"Segfault	in	syslogd	[problem
shown]."	April	1999.

http://www.kt.opensrc.org/kt19990415_14.html#8

Joy,	Bill.	"Talk	to	Stanford	EE	380	Students."	November	1999.

Kahn,	David.	The	Codebreakers.	New	York:	Macmillan,	1967.

Kahney,	Leander.	"Open-Source	Gurus	Trade	Jabs."	Wired	News,	April	10,
1999.

http://www.wired.com/news/news/technology/story/19049.html

"Apple	Lifts	License	Restrictions."	Wired	News,	April	21,	1999.

http://www.wired.com/news/news/technology/story/19233.html

Kidd,	Eric.	"Why	You	Might	Want	to	Use	the	Library	GPL	for	Your	Next
Library."	Linux	Gazette,	March	1999.

http://www.linuxgazette.com/issue38/kidd.html

Kohn,	Alfie.	"Studies	Find	Reward	Often	No	Motivator;	Creativity	and	Intrinsic
Interest	Diminish	If	Task	Is	Done	for	Gain."	Boston	Globe,	January	19,	1987.

Leonard,	Andrew.	"Open	Season:	Why	an	Industry	of	Cutthroat	Competition	Is
Suddenly	Deciding	Good	Karma	Is	Great	Business."	Wired	News,	May	1999.

Linksvayer,	Mike.	"Choice	of	the	GNU	Generation."	Meta	Magazine.

http://gondwanaland.com/meta/history/interview.html

"Linux	Beat	Windows	NT	Handily	in	an	Oracle	Performance	Benchmark."	Linux
Weekly	News,	April	29,	1999.

http://rpmfind.net/veillard/oracle/

Liston,	Robert.	The	Pueblo	Surrender:	A	Covert	Action	by	the	National	Security
Agency.	New	York:	Evans,	1988.

Little,	Darnell.	"Comdex	Q&A:	Linus	Torvalds	on	the	Battle	Against
Microsoft."	Chicago	Tribune	April	19,	1999.

http://chicagotribune.com/business/businessnews/ws/item/0,1267,2674627007-
27361,00.html

Lohr,	Steve.	"Tiny	Software	Maker	Takes	Aim	at	Microsoft	in	Court."	New	York
Times,	May	31,	1999.

Mauss,	Marcel.	"Gift:	The	Form	and	Reason	for	Exchange	in	Archaic	Societies,"
trans.	W.	D.	Halls.	New	York:	W.W.	Norton	&	Company	(of	reissue	in	US),
1950.

McKusick,	Marshall	Kirk.	"Twenty	Years	of	Berkeley	Unix."	In	Open	Sources:
Voices	from	the	Open	Source	Revolution.	San	Francisco:	O'Reilly,	1999.

McKusick,	Marshall	Kirk,	Keith	Bostic,	and	Michael	J.	Karels,	eds.	The	Design
and	Implementation	of	the	4.4BSD	Operating	System

(Unix	and	Open	Systems	Series).	Reading,	MA:	Addison-Wesley,	1996.

McMillan,	Robert,	and	Nora	Mikes.	"After	the	'Sweet	Sixteen':	Linus	Torvalds's
Take	on	the	State	of	Linux."	LinuxWorld,	March	1999.

http://www.linuxworld.com/linuxworld/lw-1999-03/lw03-torvalds.html

Metcalfe,	Bob.	"Linux's	'60s	Technology:	Open-Sores	Ideology	Won't	Beat
W2K,	but	What	Will?"	June	19,	1999.

http://www.infoworld.com/articles/op/xml/990621opmetcalfe.xml

Nolan,	Chris.	"Microsoft	Antitrust:	the	Gass	e	Factor:	U.S.	Reportedly	Looks
into	Obstacles	for	Be	Operating	System."	San	Jose	Mercury	News,	February	11,
1999.

http://www.sjmercury.com/svtech/columns/talkischeap/docs/cn021199.html

Oakes,	Chris.	"Netscape	Browser	Guru:	We	Failed."	Wired	News,	April	2,	1999.

http://www.wired.com/news/news/technology/story/18926.html

Ousterhout,	John.	"Free	Software	Needs	Profit."	Dr.	Dobb's	Journal	website,
1999.

http://www.ddj.com/oped/1999/oust.htm

Perens,	Bruce,	Wichert	Akkerman,	and	Ian	Jackson.	"The	Apple	Public	Source
License--Our	Concerns."	March	1999.

http://perens.com/APSL.html/

"The	Open	Source	Definition."	In	Open	Sources:	Voices	from	the	Open	Source
Revolution,	ed.	Chris	DiBona,	Sam	Ockman,	and	Mark	Stone,	171-85.	San
Francisco:	O'Reilly,	1999.

Picarille,	Lisa,	and	Malcolm	Maclachlan.	"Apple	Defends	Open	Source
Initiative."	March	24,	1999.

http://www.techweb.com/wire/story/TWB19990324S0027

Raymond,	Eric.	The	Cathedral	and	the	Bazaar:Musings	on	Linux	and	Open
Source	by	an	Accidental	Revolutionary.	San	Francisco:	O'Reilly,	1999.

Reilly,	Patrick.	"Nader's	Microsoft	Agenda:	Progressive	Nonprofit	Plan	for	'Free'
Software."	Capital	Research	Center,	April	1,	1999.

http://www.capitalresearch.org/trends/ot-0499a.html

Rubini,	Alessandro.	"Tour	of	the	Linux	Kernel	Source."	Linux	Documentation
Project.

Rusling,	David	A.	"The	Linux	Kernel."

http://metalab.unc.edu/mdw/LDP/tlk/tlk-title.html

Schmalensee,	Richard.	"Direct	Testimony	in	the	Microsoft	Anti-Trust	Case	of
1999."

http://www.courttv.com/trials/	microsoft/legaldocs/ms_wit.html

Schulman,	Andrew.	Unauthorized	Windows	95.	Foster	City,	CA:	IDG	Books,
1995.

Searles,	Doc.	"It's	an	Industry."	Linux	Journal,	May	21,	1999.

http://www.linuxresources.com/articles/conversations/001.html

Slind-Flor,	Victoria.	"Linux	May	Alter	IP	Legal	Landscape:	Some	Predict	More
Contract	Work	if	Alternative	to	Windows	Catches	On."	National	Law	Journal,
March	12,	1999.

http://www.lawnewsnetwork.com/stories/mar/e030899q.html

Stallman,	Richard.	"The	GNU	Manifesto."	1984.

http://www.gnu.org/gnu/manifesto.html

"Why	Software	Should	Not	Have	Owners."	1994.

http://www.gnu.org/philosophy/why-free.html

Thompson,	Ken,	and	Dennis	Ritchie.	"The	UNIX	Time-Sharing	System."
Communications	of	the	ACM,	1974.

Thygeson,	Gordon.	Apple	T-Shirts:	A	Yearbook	of	History	at	Apple	Computer.
Cupertino,	CA:	Pomo	Publishing,	1998

Torvalds,	Linus.	"Linus	Torvalds:	Leader	of	the	Revolution."	Transcript	of	Chat
with	Linus	Torvalds,	creator	of	the	Linux	OS.	ABCNews.com.

"Linux's	History."	July	31,	1992.

http://www.li.org/li/linuxhistory.shtml

Valloppillil,	Vinod.	"Open	Source	Software:	A	(New?)	Development
Methodology."	Microsoft,	Redmond,	WA,	August	1998.

Wayner,	Peter.	"If	SB266	Wants	Plaintext,	Give	Them	Plaintext.	..	,"	Risks
Digest,	May	23,	1991.

http://catless.ncl.ac.uk/Risks/11.71.html#subj2

"Should	Hackers	Spend	Years	in	Prison?"	Salon,	June	9,	1999.

http://www.salon.com/tech/feature/1999/06/09/hacker_penalties/index.html

"Netscape	to	Release	New	Browser	Engine	to	Developers."	New	York	Times,
December	7,	1999.

"Glory	Among	the	Geeks."	Salon,	January	1999.

http://www.salon.com/21st/feature/1999/01/28feature.html

Whitenger,	Dave.	"Words	of	a	Maddog."	Linux	Today,	April	19,	1999.

http://linuxtoday.com/stories/5118.html

"Web	and	File	Server	Comparison:	Microsoft	Windows	NT	Server	4.0	and	Red
Hat	Linux	5.2	Upgraded	to	the	Linux	2.2.2	Kernel."	Mindcraft,	April	13,	1999.

http://www.mindcraft.com/whitepapers/nts4rhlinux.html

Williams,	Sam.	"Linus	Has	Left	the	Building."	Upside,	May	5,	1999.

http://www.upside.com/Open_Season/

Williams,	Riley.	"Linux	Kernel	Vertsion	History."

http://ps.cus.umist.ac.uk/~rhw/kernel.versions.html

Zawinski,	Jamie.	"Resignation	and	Postmortem."

http://www.jwz.org/gruntle/nomo.html

1.	 OTHER	WORKS	BY	PETER	WAYNER

Disappearing	Cryptography,	Information	Hiding:	Steganography	&
Watermarking,	2nd	ed.	by	Peter	Wayner	ISBN	1-55860-769-2	$44.95

To	order,	visit:	http://www.wayner.org/books/discrypt2/

Disappearing	Cryptography,	Second	Edition	describes	how	to	take	words,
sounds,	or	images	and	hide	them	in	digital	data	so	they	look	like	other	words,
sounds,	or	images.	When	used	properly,	this	powerful	technique	makes	it	almost
impossible	to	trace	the	author	and	the	recipient	of	a	message.	Conversations	can
be	submerged	in	the	flow	of	information	through	the	Internet	so	that	no	one	can
know	if	a	conversation	exists	at	all.

This	full	revision	of	the	best-selling	first	edition	describes	a	number	of	different
techniques	to	hide	information.	These	include	encryption,	making	data
incomprehensible;	steganography,	embedding	information	into	video,	audio,	or
graphics	files;	watermarking,	hiding	data	in	the	noise	of	image	or	sound	files;
mimicry,	"dressing	up"	data	and	making	it	appear	to	be	other	data,	and	more.

The	second	edition	also	includes	an	expanded	discussion	on	hiding	information
with	spread-spectrum	algorithms,	shuffling	tricks,	and	synthetic	worlds.	Each
chapter	is	divided	into	sections,	first	providing	an	introduction	and	high-level
summary	for	those	who	want	to	understand	the	concepts	without	wading	through
technical	explanations,	and	then	presenting	greater	detail	for	those	who	want	to
write	their	own	programs.	To	encourage	exploration,	the	author's	Web	site
www.wayner.org/books/discrypt2/	contains	implementations	for	hiding
information	in	lists,	sentences,	and	images.

"Disappearing	Cryptography	is	a	witty	and	entertaining	look	at	the	world	of
information	hiding.	Peter	Wayner	provides	an	intuitive	perspective	of	the	many
techniques,	applications,	and	research	directions	in	the	area	of	steganography.
The	sheer	breadth	of	topics	is	outstanding	and	makes	this	book	truly	unique.	A
must	read	for	those	who	would	like	to	begin	learning	about	information	hiding."
--Deepa	Kundur,	University	of	Toronto

"An	excellent	introduction	for	private	individuals,	businesses,	and	governments
who	need	to	under-	stand	the	complex	technologies	and	their	effects	on
protecting	privacy,	intellectual	property	and	other	interests."	-	David	Banisar,
Research	Fellow,	Harvard	Information	Infrastructure	Project,	&	Deputy	Director,

Privacy	International.

Translucent	Databases,	a	new	book	by	Peter	Wayner,	comes	with	more	than	two
dozen	examples	in	Java	and	SQL	code.	The	book	comes	with	a	royalty-free
license	to	use	the	code	for	your	own	projects	in	any	way	you	wish.

Do	you	have	personal	information	in	your	database?

Do	you	keep	les	on	your	customers,	your	employees,	or	anyone	else?

Do	you	need	to	worry	about	European	laws	restricting	the	information	you
keep?

Do	you	keep	copies	of	credit	card	numbers,	social	security	numbers,	or
other	informa-	tion	that	might	be	useful	to	identity	thieves	or	insurance
fraudsters?

Do	you	deal	with	medical	records	or	personal	secrets?

Most	database	administrators	spend	some	of	each	day	worrying	about	the
information	they	keep.	Some	spend	all	of	their	time.	Caring	for	information	can
be	a	dangerous	responsibility.

This	new	book,	Translucent	Databases,	describes	a	different	attitude	toward
protecting	the	information.	Most	databases	provide	elaborate	control
mechanisms	for	letting	the	right	people	in	to	see	the	right	records.	These	tools
are	well	designed	and	thoroughly	tested,	but	they	can	only	provide	so	much
support.	If	someone	breaks	into	the	operating	system	itself,	all	of	the	data	on	the
hard	disk	is	unveiled.	If	a	clerk,	a	supervisor,	or	a	system	administrator	decides
to	turn	traitor,	there's	nothing	anyone	can	do.

Translucent	databases	provide	better,	deeper	protection	by	scrambling	the	data
with	encryption	algorithms.	The	solutions	use	the	minimal	amount	of	encryption
to	ensure	that	the	database	is	still	functional.	In	the	best	applications,	the
personal	and	sensitive	information	is	protected	but	the	database	still	delivers	the
information.

Order	today	at	http://www.wayner.org/books/td/

ENDNOTES

==

title:		Free	For	All	-	How	Linux	and	the	Free	Software	Movement																

Undercut	the	High	Tech	Titans				creator:		Peter	Wayner						type:		

Book					rights:		Copyright	Peter	Wayner,	2000.	Free	For	All	is	

Licensed																under	a	Creative	Commons	License.	This	

License	permits																non-commercial	use	of	this	work,	so	

long	as	attribution																is	given.	For	more	information	

about	the	license,	visit																

http://creativecommons.org/licenses/by-nc/1.0/			date:		2002-12-22			

date.created:		2002-12-22			date.issued:		2002-12-22				

date.available:		2002-12-22					date.modified:		2002-12-22						

date.valid:		2002-12-22					language:		US

==

==

Other	versions	of	this	document:

manifest:
http://www.jus.uio.no/sisu/free_for_all.peter_wayner/sisu_manifest.html

html:	http://www.jus.uio.no/sisu/free_for_all.peter_wayner/toc.html

pdf:	http://www.jus.uio.no/sisu/free_for_all.peter_wayner/portrait.pdf

http://www.jus.uio.no/sisu/free_for_all.peter_wayner/landscape.pdf

plaintext	(plain	text):	http://www.jus.uio.no/sisu/

free_for_all.peter_wayner/plain.txt	at:	http://www.wayner.org/books/ffa/

Generated	by:	SiSU	0.46.0	of	2006w32/6	(20060812)	*

Ruby	version:	ruby	1.8.4	(2005-12-24)	[i486-linux]	*	Last	Generated	on:	Sat
Aug	12	12:20:48	BST	2006	*	SiSU	http://www.jus.uio.no/sisu

