Free for All

FREE FOR ALL

HOW LINUX AND THE FREE SOFTWARE MOVEMENT UNDERCUT THE
HIGH TECH TITANS

1. ACKNOWLEDGMENTS

This is just a book about the free software movement. It wouldn't be possible
without the hard work and the dedication of the thousands if not millions of
people who like to spend their free time hacking code. I salute you. Thank you.

Many people spoke to me during the process of assembling this book, and it
would be impossible to cite them all. The list should begin with the millions of
people who write and contribute to the various free software lists. The letters,
notes, and postings to these lists are a wonderful history of the evolution of free
software and an invaluable resource.

The list should also include the dozens of journalists at places like Slashdot.org,
LinuxWorld, Linux magazine, Linux Weekly News, Kernel Traffic, Salon, and
the New York Times. I should specifically mention the work of Joe Barr, Jeff
Bates, Janelle Brown, Zack Brown, Jonathan Corbet, Elizabeth Coolbaugh, Amy
Harmon, Andrew Leonard, Rob Malda, John Markoff, Mark Nielsen, Nicholas
Petreley, Harald Radke, and Dave Whitinger. They wrote wonderful pieces that
will make a great first draft of the history of the open source movement. Only a
few of the pieces are cited directly in the footnotes, largely for practical reasons.
The entire body of websites like Slashdot, Linux Journal, Linux World, Kernel
Notes, or Linux Weekly News should be required reading for anyone interested
in the free software movement.

There are hundreds of folks at Linux trade shows who took the time to show me
their products, T-shirts, or, in one case, cooler filled with beer. Almost everyone

I met at the conferences was happy to speak about their experiences with open
source software. They were all a great source of information, and I don't even
know most of their names.

Some people went beyond the call of duty. John Gilmore, Ethan Rasiel, and
Caroline McKeldin each read drafts when the book was quite unfinished. Their
comments were crucial.

Many friends, acquaintances, and subjects of the book were kind enough to read
versions that were a bit more polished, but far from complete: L. David Baron,
Jeff Bates, Brian Behlendorf, Alan Cox, Robert Dreyer, Theo de Raadt, Telsa
Gwynne, Jordan Hubbard, James Lewis Moss, Kirk McKusick, Sam Ockman,
Tim O'Reilly, Sameer Parekh, Bruce Perens, Eric Raymond, and Richard
Stallman.

There are some people who deserve a different kind of thanks. Daniel Greenberg
and James Levine did a great job shaping the conception of the book. When I
began, it was just a few ideas on paper. My editors, David Conti, Laureen
Rowland, Devi Pillai, and Adrian Zackheim, were largely responsible for this
transition. Kimberly Monroe suffered through my mistakes as she took the book
through its production stages. They took a bunch of rambling comments about a
social phenomenon and helped turn it into a book.

Finally, I want to thank everyone in my family for everything they've given
through all of my life. And, of course, Caroline, who edited large portions with a
slavish devotion to grammar and style.

Visit http://www.wayner.org/books/ffa/ for updates, corrections, and additional
comments.

1. VERSION INFORMATION

FREE FOR ALL. Copyright 2000 by Peter Wayner.
Some Rights Reserved:

This is [a complete version of] the free electronic version of the book originally
published by HarperCollins. The book is still protected by copyright and bound
by a license granting you the limited rights to make complete copies for non-

commercial purposes. You're welcome to read it in electronic form subject to
these conditions:

1) You may not make derivative works. You must reproduce the work in its
entirety.

2) You may not sell versions.

3) You refer everyone receiving a copy to the website where they may get the
latest corrected version. http://www.wayner.org/books/ffa/

A full license developed by the Creative Commons (www.creativecommons.org)
will be forthcoming. Please write p3@wayner.org if you have any questions or
suggestions.

See http://www.wayner.org/books/ffa/ for the FIRST PDF EDITION Page layout
for this and the original paper edition designed by William Ruoto, see Not
printed on acid-free paper. Library of Congress Cataloging-in-Publication Data
Wayner, Peter, 1964 Free for all: how Linux and the free software movement
undercut the high-tech titans / Peter Wayner. p. cm. ISBN 0-06-662050-3 1.
Linux. 2. Operating systems (Computers) 3. Free computer software. 1. Title.
QA76.76.063 W394 2000 005.4'469 dc21 00-023919 00 01 02 03 04 V/RRD 10
987654321

[ffa.png]
Free For All may be purchased at Amazon.com

1. BATTLE

The world where cash was king, greed was good, and money was power fell off
its axis and stopped rotating, if only for a second, in January 1999. Microsoft,
the great software giant and unstoppable engine of cash, was defending itself in a
courtroom in Washington, D.C. The Department of Justice claimed that
Microsoft was a monopoly and was using this power to cut off competitors.
Microsoft denied it all and claimed that the world was hurling threat after
competitive threat its way. They weren't a monopoly, they were just a very
competitive company that managed to withstand the slings and arrows of other
equally ruthless competitors out to steal its market share.

The trial quickly turned into everyone's worst nightmare as the lawyers, the
economists, and the programmers filled the courtroom with a thick mixture of
technobabble and legal speak. On the stands, the computer nerds spewed out
three-letter acronyms (TLAs) as they talked about creating operating systems.
Afterward, the legal nerds started slicing them up into one-letter acronyms and
testing to see just which of the three letters was really the one that committed the
crime. Then the economists came forward and offered their theories on just when
a monopoly is a monopoly. Were three letters working in collusion enough?
What about two? Everyone in the courtroom began to dread spending the day
cooped up in a small room as Microsoft tried to deny what was obvious to
practically everyone.

In the fall and early winter of 1998 and 1999, the Department of Justice had
presented its witnesses, who explained how Microsoft had slanted contracts,
tweaked software, and twisted arms to ensure that it and it alone got the lion's
share of the computer business. Many watching the trial soon developed the
opinion that Microsoft had adopted a mixture of tactics from the schoolyard
bully, the local mob boss, and the mother from hell. The Department of Justice
trotted out a number of witnesses who produced ample evidence that suggested
the computer customers of the world will buy Microsoft products unless
Microsoft decides otherwise. Competitors must be punished.

By January, the journalists covering the trial were quietly complaining about this
endless waste of time. The Department of Justice's case was so compelling that
they saw the whole trial as just a delay in what would eventually come to be a
ruling that would somehow split or shackle Microsoft.

But Microsoft wasn't going to be bullied or pushed into splitting up. The trial
allowed them to present their side of the story, and they had one ready. Sure,
everyone seemed to use Microsoft products, but that was because they were
great. It wasn't because there weren't any competitors, but because the
competitors just weren't good enough.

In the middle of January, Richard Schmalensee, the dean of the Sloan School of
Management at the Massachusetts Institute of Technology, took the stand to
defend Microsoft. Schmalensee had worked for the Federal Trade Commission
and the Department of Justice as an economist who examined the marketplace
and the effects of anti-competitive behavior. He studied how monopolies behave,
and to him Microsoft had no monopoly power. Now, he was being paid

handsomely by Microsoft as an expert witness to repeat this view in court.

Schmalensee's argument was simple: competitors are popping up all over the
place. Microsoft, he said in his direct testimony, "is in a constant struggle for
competitive survival. That struggle--the race to win and the victor's perpetual
fear of being displaced--is the source of competitive vitality in the
microcomputer software industry."

Schmalensee even had a few competitors ready. "The iMac clearly competes
directly and fiercely with Intel-compatible computers running Windows," he said
without mentioning that Microsoft had bailed out Apple several months before
with hundreds of millions of dollars in an investment. When Steve Jobs, the
iCEO of Apple, announced the deal to a crowd of Mac lovers, the crowd booed.
Jobs quieted them and tried to argue that the days of stiff competition with
Microsoft were over. The scene did such a good job of capturing the total
domination of Microsoft that the television movie The Pirates of Silicon Valley
used it to illustrate how Bill Gates had won all of the marbles.

After the announcement of the investment, Apple began shipping Microsoft's
Internet Explorer web browser as the preferred browser on its machines.
Microsoft's competitor Netscape became just a bit harder to find on the iMac.
After that deal, Steve Jobs even began making statements that the old sworn
enemies, Apple and Microsoft, were now more partners than competitors.
Schmalensee didn't focus on this facet of Apple's new attitude toward
competition.

Next, Schmalensee trotted out BeOS, an operating system made by Be, a small
company with about 100 employees run by ex-Apple executive Jean-Louis Gass
e. This company had attracted millions of dollars in funding, he said, and some
people really liked it. That made it a competitor.

Schmalensee didn't mention that Be had trouble giving away the BeOS operating
system. Gass e approached a number of PC manufacturers to see if they would
include BeOS on their machines and give users the chance to switch between
two operating systems. Gass e found, to no one's real surprise, that Microsoft's
contracts with manufacturers made it difficult, if not practically impossible, to
get BeOS in customers' hands. Microsoft controlled much of what the user got to
see and insisted on almost total control over the viewer's experience.
Schmalensee didn't mention these details in his testimony. BeOS may have been

as locked up as a prisoner in a windowless cell in a stone-walled asylum on an
island in the middle of the ocean, but BeOS was still a competitor for the love of
the fair maiden.

The last competitor, though, was the most surprising to everyone. Schmalensee
saw Linux, a program given away for free, as a big potential competitor. When
he said Linux, he really meant an entire collection of programs known as "open
source" software. These were written by a loose-knit group of programmers who
shared all of the source code to the software over the Internet.

Open source software floated around the Internet controlled by a variety of
licenses with names like the GNU General Public License (GPL). To say that the
software was "controlled" by the license is a bit of a stretch. If anything, the
licenses were deliberately worded to prohibit control. The GNU GPL, for
instance, let users modify the program and give away their own versions. The
license did more to enforce sharing of all the source code than it did to control or
constrain. It was more an anti-license than anything else, and its author, Richard
Stallman, often called it a "copyleft."

Schmalensee didn't mention that most people thought of Linux as a strange tool
created and used by hackers in dark rooms lit by computer monitors. He didn't
mention that many people had trouble getting Linux to work with their
computers. He forgot to mention that Linux manuals came with subheads like
"Disk Druid-like 'fstab editor' available." He didn't delve into the fact that for
many of the developers, Linux was just a hobby they dabbled with when there
was nothing interesting on television. And he certainly didn't mention that most
people thought the whole Linux project was the work of a mad genius and his
weirdo disciples who still hadn't caught on to the fact that the Soviet Union had
already failed big-time. The Linux folks actually thought sharing would make
the world a better place. Fat-cat programmers who spent their stock-option
riches on Porsches and balsamic vinegar laughed at moments like this.

Schmalensee didn't mention these facts. He just offered Linux as an alternative
to Windows and said that computer manufacturers might switch to it at any time.
Poof. Therefore, Microsoft had competitors. At the trial, the discourse quickly
broke down into an argument over what is really a worthy competitor and what
isn't. Were there enough applications available for Linux or the Mac? What
qualifies as "enough"? Were these really worthy?

Under cross-examination, Schmalensee explained that he wasn't holding up the
Mac, BeOS, or Linux as competitors who were going to take over 50 percent of
the marketplace. He merely argued that their existence proved that the barriers
produced by the so-called Microsoft monopoly weren't that strong. If rational
people were investing in creating companies like BeOS, then Microsoft's power
wasn't absolute.

Afterward, most people quickly made up their minds. Everyone had heard about
the Macintosh and knew that back then conventional wisdom dictated that it
would soon fail. But most people didn't know anything about BeOS or Linux.
How could a company be a competitor if no one had heard of it? Apple and
Microsoft had TV commercials. BeOS, at least, had a charismatic chairman.
There was no Linux pitchman, no Linux jingle, and no Linux 30-second spot in
major media. At the time, only the best-funded projects in the Linux community
had enough money to buy spots on late-night community-access cable television.
How could someone without money compete with a company that hired the
Rolling Stones to pump excitement into a product launch?

When people heard that Microsoft was offering a free product as a worthy
competitor, they began to laugh even louder at the company's chutzpah. Wasn't
money the whole reason the country was having a trial? Weren't computer
programmers in such demand that many companies couldn't hire as many as they
needed, no matter how high the salary? How could Microsoft believe that
anyone would buy the supposition that a bunch of pseudo-communist nerds
living in their weird techno-utopia where all the software was free would ever
come up with software that could compete with the richest company on earth?
At first glance, it looked as if Microsoft's case was sinking so low that it had to
resort to laughable strategies. It was as if General Motors were to tell the world
""We shouldn't have to worry about fixing cars that pollute because a collective of
hippies in Ithaca, New York, is refurbishing old bicycles and giving them away
for free." It was as if Exxon waved away the problems of sinking oil tankers by
explaining that folksingers had written a really neat ballad for teaching birds and
otters to lick themselves clean after an oil spill. If no one charged money for
Linux, then it was probably because it wasn't worth buying.

But as everyone began looking a bit deeper, they began to see that Linux was
being taken seriously in some parts of the world. Many web servers, it turned
out, were already running on Linux or another free cousin known as FreeBSD. A
free webserving tool known as Apache had controlled more than 50 percent of

the web servers for some time, and it was gradually beating out Microsoft
products that cost thousands of dollars. Many of the web servers ran Apache on
top of a Linux or a FreeBSD machine and got the job done. The software worked
well, and the nonexistent price made it easy to choose.

Linux was also winning over some of the world's most serious physicists,
weapons designers, biologists, and hard-core scientists. Some of the nation's top
labs had wired together clusters of cheap PCs and turned them into
supercomputers that were highly competitive with the best machines on the
market. One upstart company started offering "supercomputers" for $3,000.
These machines used Linux to keep the data flowing while the racks of
computers plugged and chugged their way for hours on complicated simulations.

There were other indications. Linux users bragged that their system rarely
crashed. Some claimed to have machines that had been running for a year or
more without a problem. Microsoft (and Apple) users, on the other hand, had
grown used to frequent crashes. The "Blue Screen of Death" that appears on
Windows users' monitors when something goes irretrievably wrong is the butt of
many jokes.

Linux users also bragged about the quality of their desktop interface. Most of the
uninitiated thought of Linux as a hacker's system built for nerds. Yet recently
two very good operating shells called GNOME and KDE had taken hold. Both
offered the user an environment that looked just like Windows but was better.
Linux hackers started bragging that they were able to equip their girlfriends,
mothers, and friends with Linux boxes without grief. Some people with little
computer experience were adopting Linux with little trouble.

Building websites and supercomputers is not an easy task, and it is often done in
back rooms out of the sight of most people. When people began realizing that
the free software hippies had slowly managed to take over a large chunk of the
web server and supercomputing world, they realized that perhaps Microsoft's
claim was viable. Web servers and supercomputers are machines built and run by
serious folks with bosses who want something in return for handing out
paychecks. They aren't just toys sitting around the garage.

If these free software guys had conquered such serious arenas, maybe they could
handle the office and the desktop. If the free software world had created
something usable by the programmers' mothers, then maybe they were viable

competitors. Maybe Microsoft was right.

3.1 SLEEPING IN

While Microsoft focused its eyes and ears upon Washington, one of its biggest
competitors was sleeping late. When Richard Schmalensee was prepping to take
the stand in Washington, D.C., to defend Microsoft's outrageous fortune against
the slings and arrows of a government inquisition, Alan Cox was still sleeping
in. He didn't get up until 2:00 PM. at his home in Swansea on the south coast of
Wales. This isn't too odd for him. His wife, Telsa, grouses frequently that it's
impossible to get him moving each morning without a dose of Jolt Cola, the kind
that's overloaded with caffeine.

The night before, Cox and his wife went to see The Mask of Zorro, the latest
movie that describes how Don Diego de la Vega assumed the secret identity of
Zorro to free the Mexican people from the tyranny of Don Rafael Montero. In
this version, Don Diego, played by Anthony Hopkins, chooses an orphan,
Alejandro Murrieta, played by Antonio Banderas, and teaches him to be the next
Zorro so the fight can continue. Its theme resonates with writers of open source
software: a small band of talented, passionate warriors warding off the evil
Oppressor.

Cox keeps an open diary and posts the entries on the web. "It's a nice looking
film, with some great stunts and character play," he wrote, but

You could, however, have fitted the plot, including all the twists, on the back of a
matchbox. That made it feel a bit ponderous so it only got a 6 out of 10 even
though I'm feeling extremely smug because I spotted one of the errors in the film
while watching it not by consulting imdb later.

By the imdb, he meant the Internet Movie Database, which is one of the most
complete listings of film credits, summaries, and glitches available on the Net.
Users on the Internet write in with their own reviews and plot synopses, which
the database dutifully catalogs and makes available to everyone. It's a reference
book with thousands of authors.

In this case, the big glitch in the film is the fact that one of the train gauges uses
the metric system. Mexico converted to this system in 1860, but the film is set in

1841. Whoops. Busted.

Telsa wrote in her diary, which she also posts to the Net under the title "The
More Accurate Diary. Really."

Dragged him to cinema to see Zorro. I should have remembered he'd done some
fencing and found something different. He also claimed he'd spotted a really
obscure error. I checked afterward on IMDB, and was amazed. How did he see
this?

Cox is a big bear of a man who wears a long, brown wizard's beard. He has an
agile, analytic mind that constantly picks apart a system and probes it for
weaknesses. If he's playing a game, he plays until he finds a trick or a loophole
that will give him the winning edge. If he's working around the house, he often
ends up meddling with things until he fixes and improves them. Of course, he
also often breaks them. His wife loves to complain about the bangs and crashes
that come from his home office, where he often works until 6:30 in the morning.

To his wife, this crashing, banging, and late-night hacking is the source of the
halfhearted grousing inherent in every marriage. She obviously loves both his
idiosyncrasies and the opportunity to discuss just how strange they can be. In
January, Telsa was trying to find a way to automate her coffeepot by hooking it
up to her computer.

She wrote in her diary,

Alan is reluctant to get involved with any attempt to make a coffee-maker switch
on via the computer now because he seems to think I will eventually switch it on
with no water in and start a fire. I'm not the one who welded tinned spaghetti to
the non-stick saucepan. Or set the wok on fire. More than once. Once with
fifteen guests in the house. But there we are.

To the rest of the world, this urge to putter and fiddle with machines is more than
a source of marital comedy. Cox is one of the great threats to the continued
dominance of Microsoft, despite the fact that he found a way to weld spaghetti to
a nonstick pan. He is one of the core developers who help maintain the Linux
kernel. In other words, he's one of the group of programmers who helps guide
the development of the Linux operating system, the one Richard Schmalensee
feels is such a threat to Microsoft. Cox is one of the few people whom Linus
Torvalds, the creator of Linux, trusts to make important decisions about future

directions. Cox is an expert on the networking guts of the system and is
responsible for making sure that most of the new ideas that people suggest for
Linux are considered carefully and integrated correctly. Torvalds defers to Cox
on many matters about how Linux-based computers talk with other computers
over a network. Cox works long and hard to find efficient ways for Linux to
juggle multiple connections without slowing down or deadlocking.

The group that works with Cox and Torvalds operates with no official structure.
Millions of people use Linux to keep their computers running, and all of them
have copies of the source code. In the 1980s, most companies began keeping the
source code to their software as private as possible because they worried that a
competitor might come along and steal the ideas the source spelled out. The
source code, which is written in languages like C, Java, FORTRAN, BASIC, or
Pascal, is meant to be read by programmers. Most companies didn't want other
programmers understanding too much about the guts of their software.
Information is power, and the companies instinctively played their cards close to
their chests.

When Linus Torvalds first started writing Linux in 1991, however, he decided to
give away the operating system for free. He included all the source code because
he wanted others to read it, comment upon it, and perhaps improve it. His
decision was as much a radical break from standard programming procedure as a
practical decision. He was a poor student at the time, and this operating system
was merely a hobby. If he had tried to sell it, he wouldn't have gotten anything
for it. He certainly had no money to build a company that could polish the
software and market it. So he just sent out copies over the Internet.

Sharing software had already been endorsed by Richard Stallman, a legendary
programmer from MIT who believed that keeping source code private was a sin
and a crime against humanity. A programmer who shares the source code lets
others learn, and those others can contribute their ideas back into the mix.
Closed source code leaves users frustrated because they can't learn about the
software or fix any bugs. Stallman broke away from MIT in 1984 when he
founded the Free Software Foundation. This became the organization that
sponsored Stallman's grand project to free source code, a project he called GNU.
In the 1980s, Stallman created very advanced tools like the GNU Emacs text
editor, which people could use to write programs and articles. Others donated
their work and the GNU project soon included a wide range of tools, utilities,
and games. All of them were distributed for free.

Torvalds looked at Stallman and decided to follow his lead with open source
code. Torvalds's free software began to attract people who liked to play around
with technology. Some just glanced at it. Others messed around for a few hours.
Free is a powerful incentive. It doesn't let money, credit cards, purchase orders,
and the boss's approval get in the way of curiosity. A few, like Alan Cox, had
such a good time taking apart an operating system that they stayed on and began
contributing back to the project.

In time, more and more people like Alan Cox discovered Torvalds's little project
on the Net. Some slept late. Others kept normal hours and worked in offices.
Some just found bugs. Others fixed the bugs. Still others added new features that
they wanted. Slowly, the operating system grew from a toy that satisfied the
curiosity of computer scientists into a usable tool that powers supercomputers,
web servers, and millions of other machines around the world.

Today, about a thousand people regularly work with people like Alan Cox on the
development of the Linux kernel, the official name for the part of the operating
system that Torvalds started writing back in 1991. That may not be an accurate
estimate because many people check in for a few weeks when a project requires
their participation. Some follow everything, but most people are just interested
in little corners. Many other programmers have contributed various pieces of
software such as word processors or spreadsheets. All of these are bundled
together into packages that are often called plain Linux or GNU/Linux and
shipped by companies like Red Hat or more ad hoc groups like Debian.[/ 1]
While Torvalds only wrote the core kernel, people use his name, Linux, to stand
for a whole body of software written by thousands of others. It's not exactly fair,
but most let it slide. If there hadn't been the Linux kernel, the users wouldn't
have the ability to run software on a completely free system. The free software
would need to interact with something from Microsoft, Apple, or IBM. Of
course, if it weren't for all of the other free software from Berkeley, the GNU
project, and thousands of other garages around the world, there would be little
for the Linux kernel to do.

[1]: /Linux Weekly News/ keeps a complete list of distributors. These range from
the small, one- or two-man operations to the biggest, most corporate ones like
Red Hat: Alzza Linux, Apokalypse, Armed Linux, Bad Penguin Linux, Bastille
Linux, Best Linux (Finnish/Swedish), Bifrost, Black Cat Linux
(Ukrainian/Russian), Caldera OpenLinux, CCLinux, Chinese Linux Extension,
Complete Linux, Conectiva Linux (Brazilian), Debian GNU/Linux, Definite

Linux, DemoLinux, DLD, DLite, DL X, DragonLinux, easyLinux, Enoch,
Eridani Star System, Eonova Linux, e-smith server and gateway, Eurielec Linux
(Spanish), eXecutive Linux, floppyfw, Floppix, Green Frog Linux, hal91, Hard
Hat Linux, Immunix, Independence, Jurix, KhaOs Linux, KRUD, KSI-Linux,
Laetos, LEM, Linux Cyrillic Edition, LinuxGT, Linux-Kheops (French), Linux
MLD (Japanese), LinuxOne OS, LinuxPPC, LinuxPPP (Mexican), Linux Pro
Plus, Linux Router Project, LOAF, LSD, Mandrake, Mastodon, MicroLinux,
MkLinux, muLinux, nanoLinux II, NoMad Linux, OpenClassroom, Peanut
Linux, Plamo Linux, PLD, Project Ballantain, PROSA, QuadLinux, Red Hat,
Rock Linux, RunOnCD, ShareTheNet, Skygate, Slackware, Small Linux,
Stampede, Stataboware, Storm Linux, SuSE, Tomsrtbt, Trinux, TurboLinux,
uClinux, Vine Linux, WinLinux 2000, Xdenu, XTeamLinux, and Yellow Dog
Linux.

Officially, Linus Torvalds is the final arbiter for the kernel and the one who
makes the final decisions about new features. In practice, the group runs like a
loosely knit "ad-hocracy." Some people might care about a particular feature like
the ability to interface with Macintoshes, and they write special code that makes
this task easier. Others who run really big databases may want larger file systems
that can store more information without limits.

All of these people work at their own pace. Some work in their homes, like Alan
Cox. Some work in university labs. Others work for businesses that use Linux
and encourage their programmers to plug away so it serves their needs.

The team is united by mailing lists. The Linux Kernel mailing list hooks up Cox
in Britain, Torvalds in Silicon Valley, and the others around the globe. They post
notes to the list and discuss ideas. Sometimes verbal fights break out, and

sometimes everyone agrees. Sometimes people light a candle by actually writing
new code to make the kernel better, and other times they just curse the darkness.

Cox is now one of several people responsible for coordinating the addition of
new code. He tests it for compatibility and guides Linux authors to make sure
they're working together optimally. In essence, he tests every piece of incoming
software to make sure all of the gauges work with the right system of
measurement so there will be no glitches. He tries to remove the
incompatibilities that marred Zorro.

Often, others will duplicate Cox's work. Some new features are very popular and

have many cooks minding the stew. The technology for speeding up computers
with multiple CPUs lets each computer harness the extra power, so many list
members test it frequently. They want the fastest machines they can get, and
smoothing the flow of data between the CPUs is the best way to let the machines
cooperate.

Other features are not so popular, and they're tackled by the people who need the
features. Some people want to hook their Linux boxes up to Macintoshes. Doing
that smoothly can require some work in the kernel. Others may want to add
special code to enable a special device like a high-speed camera or a strange type
of disk drive. These groups often work on their own but coordinate their
solutions with the main crowd. Ideally, they'll be able to come up with some
patches that solve their problem without breaking some other part of the system.

It's a very social and political process that unrolls in slow motion through e-mail
messages. One person makes a suggestion. Others may agree. Someone may
squabble with the idea because it seems inelegant, sloppy, or, worst of all,
dangerous. After some time, a rough consensus evolves. Easy problems can be
solved in days or even minutes, but complicated decisions can wait as the debate
rages for years.

Each day, Cox and his virtual colleagues pore through the lists trying to figure
out how to make Linux better, faster, and more usable. Sometimes they skip out
to watch a movie. Sometimes they go for hikes. But one thing they don't do is
spend months huddled in conference rooms trying to come up with legal
arguments. Until recently, the Linux folks didn't have money for lawyers, and
that means they didn't get sidetracked by figuring out how to get big and
powerful people like Richard Schmalensee to tell a court that there's no
monopoly in the computer operating system business.

3.2 SUITS AGAINST HACKERS

Schmalensee and Cox couldn't be more different from each other. One is a career
technocrat who moves easily between the government and MIT. The other is
what used to be known as an absentminded professor--the kind who works when
he's really interested in a problem. It just so happens that Cox is pretty intrigued
with building a better operating system than the various editions of Windows

that form the basis of Microsoft's domination of the computer industry.

The battle between Linux and Microsoft is lining up to be the classic fight
between the people like Schmalensee and the people like Cox. On one side are
the armies of lawyers, lobbyists, salesmen, and expensive executives who are
armed with patents, lawsuits, and legislation. They are skilled at moving the
levers of power until the gears line up just right and billions of dollars pour into
their pockets. They know how to schmooze, toady, beg, or even threaten until
they wear the mantle of authority and command the piety and devotion of the
world. People buy Microsoft because it's "the standard." No one decreed this, but
somehow it has come to be.

On the other side are a bunch of guys who just like playing with computers and
will do anything to take them apart. They're not like the guy in the song by John
Mellencamp who sings "I fight authority and authority always wins." Some
might have an attitude, but most just want to look at the insides of their
computers and rearrange them to hook up to coffee machines or networks. They
want to fidget with the guts of their machines. If they weld some spaghetti to the
insides, so be it.

Normally, these battles between the suits and the geeks don't threaten the
established order. There are university students around the world building solar-
powered cars, but they don't actually pose a threat to the oil or auto industries.
"21," a restaurant in New York, makes a great hamburger, but they're not going
to put McDonald's out of business. The experimentalists and the perfectionists
don't usually knock heads with the corporations who depend upon world
domination for their profits. Except when it comes to software.

Software is different from cars or hamburgers. Once someone writes the source
code, copying the source costs next to nothing. That makes it much easier for
tinkerers like Cox to have a global effect. If Cox, Stallman, Torvalds, and his
chums just happen to luck upon something that's better than Microsoft, then the
rest of the world can share their invention for next to nothing. That's what makes
Cox, Torvalds, and their buddies a credible threat no matter how often they sleep
late.

It's easy to get high off of the idea alone. A few guys sleeping late and working
in bedrooms aren't supposed to catch up to a cash engine like Microsoft. They
aren't supposed to create a webserving engine that controls more than half of the

web. They aren't supposed to create a graphical user interface for drawing
windows and icons on the screen that's much better than Windows. They aren't
supposed to create supercomputers with sticker prices of $3,000. Money isn't
supposed to lose.

Of course, the folks who are working on free software projects have advantages
that money can't buy. These programmers don't need lawyers to create licenses,
negotiate contracts, or argue over terms. Their software is free, and lawyers lose
interest pretty quickly when there's no money around. The free software guys
don't need to scrutinize advertising copy. Anyone can download the software and
just try it. The programmers also don't need to sit in the corner when their
computer crashes and complain about the idiot who wrote the software. Anyone
can read the source code and fix the glitches.

The folks in the free source software world are, in other words, grooving on
freedom. They're high on the original American dream of life, liberty, and the
pursuit of happiness. The founders of the United States of America didn't set out
to create a wealthy country where citizens spent their days worrying whether
they would be able to afford new sport utility vehicles when the stock options
were vested. The founders just wanted to secure the blessings of liberty for
posterity. Somehow, the wealth followed.

This beautiful story is easy to embrace: a group of people started out swapping
cool software on the Net and ended up discovering that their free sharing created
better software than what a corporation could produce with a mountain of cash.

The programmers found that unrestricted cooperation made it easy for everyone
to contribute. No price tags kept others away. No stereotypes or biases excluded
anyone. The software and the source code were on the Net for anyone to read.

Wide-open cooperation also turned out to be wide-open competition because the
best software won the greatest attention. The corporate weasels with the ear of
the president could not stop a free source software project from shipping. No
reorganization or downsizing could stop people from working on free software if
they wanted to hack. The freedom to create was more powerful than money.

That's an idyllic picture, and the early success of Linux, FreeBSD, and other free
packages makes it tempting to think that the success will build. Today, open
source servers power more than 50 percent of the web servers on the Internet,

and that is no small accomplishment. Getting thousands, if not millions, of
programmers to work together is quite amazing given how quirky programmers
can be. The ease of copying makes it possible to think that Alan Cox could get
up late and still move the world.

But the 1960s were also an allegedly idyllic time when peace, love, and sharing
were going to create a beautiful planet where everyone gave to everyone else in
an eternal golden braid of mutual respect and caring. Everyone assumed that the
same spirit that so quickly and easily permeated the college campuses and
lovefests in the parks was bound to sweep the world. The communes were really
happening, man. But somehow, the groovy beat never caught on beyond those
small nests of easy caring and giving. Somehow, the folks started dropping back
in, getting real jobs, taking on real mortgages, and buying back into the world
where money was king.

Over the years, the same sad ending has befallen many communes, utopian
visions, and hypnotic vibes. Freedom is great. It allows brilliant inventors to
work independently of the wheels of power. But capital is another powerful
beast that drives innovation. The great communes often failed because they
never converted their hard work into money, making it difficult for them to save
and invest. Giving things away may be, like, really groovy, but it doesn't build a
nest egg.

Right now, the free software movement stands at a crucial moment in its history.
In the past, a culture of giving and wide-open sharing let thousands of
programmers build a great operating system that was, in many ways, better than
anything coming from the best companies. Many folks began working on Linux,
FreeBSD, and thousands of other projects as hobbies, but now they're waking up
to find IBM, HewlettPackard, Apple, and all the other big boys pounding on
their door. If the kids could create something as nice as Linux, everyone began to
wonder whether these kids really had enough good stuff to go the distance and
last nine innings against the greatest power hitters around.

Perhaps the free software movement will just grow faster and better as more
people hop on board. More users mean more eyes looking for bugs. More users
mean more programmers writing new source code for new features. More is
better.

On the other hand, sharing may be neat, but can it beat the power of capital?

Microsoft's employees may be just serfs motivated by the dream that someday
their meager stock options will be worth enough to retire upon, but they have a
huge pile of cash driving them forward. This capital can be shifted very quickly.
If Bill Gates wants 1,000 programmers to create something, he can wave his
hand. If he wants to buy 1,000 computers, it takes him a second. That's the
power of capital.

Linus Torvalds may be on the cover of magazines, but he can't do anything with
the wave of a hand. He must charm and cajole the thousands of folks on the
Linux mailing list to make a change. Many of the free software projects may
generate great code, but they have to beg for computers. The programmers might
even surprise him and come up with an even better solution. They've done it in
the past. But no money means that no one has to do what anyone says.

In the past, the free software movement was like the movies in which Mickey
Rooney and Judy Garland put on a great show in the barn. That part won't
change. Cool kids with a dream will still be spinning up great programs that will
be wonderful gifts for the world.

But shows that are charming and fresh in a barn can become thin and weak on a
big stage on Broadway. The glitches and raw functionality of Linux and free
software don't seem too bad if you know that they're built by kids in their spare
time. Building real tools for real companies, moms, police stations, and serious
users everywhere is another matter. Everyone may be hoping that sharing,
caring, and curiosity are enough, but no one knows for certain. Maybe capital
will end up winning. Maybe it won't. It's freedom versus assurance; it's wide-
open sharing versus stock options; it's cooperation versus intimidation; it's the
geeks versus the suits, all in one knockdown, hack-till-you-drop, winner-take-
everything fight.

1. LISTS

While Alan Cox was sleeping late and Microsoft was putting Richard
Schmalensee on the stand, the rest of the open source software world was
tackling their own problems. Some were just getting up, others were in the
middle of their day, and still others were just going to sleep. This is not just
because the open source hackers like to work at odd times around the clock.
Some do. But they also live around the globe in all of the different time zones.

The sun never sets on the open source empire.

On January 14, 1999, for instance, Peter Jeremy, an Australian, announced that
he had just discovered a potential Y2K problem in the control software in the
central database that helped maintain the FreeBSD source code. He announced
this by posting a note to a mailing list that forwarded the message to many other
FreeBSD users. The problem was that the software simply appended the two
characters "19" to the front of the year. When the new millennium came about a
year later, the software would start writing the new date as "19100." Oops. The
problem was largely cosmetic because it only occurred in some of the support
software used by the system.

FreeBSD is a close cousin to the Linux kernel and one that predates it in some
ways. It descends from a long tradition of research and development of operating
systems at the University of California at Berkeley. The name BSD stands for
"Berkeley Software Distribution," the name given to one of the first releases of
operating system source code that Berkeley made for the world. That small
package grew, morphed, and absorbed many other contributions over the years.

Referring to Linux and FreeBSD as cousins is an apt term because they share
much of the same source code in the same way that cousins share some of the
same genes. Both borrow source code and ideas from each other. If you buy a
disk with FreeBSD, which you can do from companies like Walnut Creek, you
may get many of the same software packages that you get from a disk from Red
Hat Linux. Both include, for instance, some of the GNU compilers that turn
source code into something that can be understood by computers.

FreeBSD, in fact, has some of its own fans and devotees. The FreeBSD site lists
thousands of companies large and small that use the software. Yahoo, the big
Internet directory, game center, and news operation, uses FreeBSD in some of its
servers. So does Blue Mountain Arts, the electronic greeting card company that
is consistently one of the most popular sites on the web. There are undoubtedly
thousands more who aren't listed on the FreeBSD site. The software produced by
the FreeBSD project is, after all, free, so people can give it away, share it with
their friends, or even pretend they are "stealing" it by making a copy of a disk at
work. No one really knows how many copies of FreeBSD are out there because
there's no reason to count. Microsoft may need to count heads so they can bill
everyone for using Windows, but FreeBSD doesn't have that problem.

That morning, Peter Jeremy's message went out to everyone who subscribed to
the FreeBSD mailing list. Some users who cared about the Y2K bug could take
Jeremy's patch and use it to fix their software directly. They didn't need to wait
for some central bureaucracy to pass judgment on the information. They didn't
need to wait for the Y2K guy at FreeBSD to get around to vetting the change.
Everyone could just insert the fix because they had all of the source code
available to them.

Of course, most people never use all their freedoms. In this case, most people
didn't have to bother dealing with Jeremy's patch because they waited for the
official version. The FreeBSD infrastructure absorbed the changes into its source
code vaults, and the changes appeared in the next fully updated version. This
new complete version is where most people first started using the fix. Jeremy is
a programmer who created a solution that was easy for other programmers to
use. Most people, however, aren't programmers, and they want their software to
be easy to use. Most programmers aren't even interested in poking around inside
their machines. Everyone wants the solution to either fix itself or come as close
to that as possible.

Jeremy's message was just one of the hundreds percolating through the FreeBSD
community that day. Some fell on deaf ears, some drew snotty comments, and a
few gathered some real attention. The mailing lists were fairly complex
ecologies where ideas blossomed and grew before they faded away and died.

Of course, it's not fair to categorize the FreeBSD world as a totally decentralized
anarchy. There is one central team led by one man, Jordan Hubbard, who
organizes the leadership of a core group of devoted programmers. The group
runs the website, maintains an up-to-date version of FreeBSD, and sponsors
dozens of lists devoted to different corners or features. One list focuses on
hooking up the fast high-performance SCSI hard disks that are popular with
people who demand high-performance systems. Another concentrates on
building in enough security to keep out attackers who might try to sneak in
through the Internet.

That January 14, a man in Great Britain, Roger Hardiman, was helping a man in
Switzerland, Reto Trachsel, hook up a Hauppauge video card to his system.
They were communicating on the Multimedia mailing list devoted to finding
ways to add audio and video functions to FreeBSD systems. Trachsel posted a
note to the list asking for information on how to find the driver software that

would make sure that the data coming out of the Hauppauge television receiver
would be generally available to the rest of the computer. Hardiman pointed out a
solution, but cautioned, "If your Hauppauge card has the MSP34xx Stereo
Decoder audio chip, you may get no sound when watching TV. I should get this
fixed in the next week or two."

Solutions like these float around the FreeBSD community. Most people don't
really care if they can watch television with their computer, but a few do. The
easy access to source code and drivers means that the few can go off and do their
own thing without asking some major company for permission. The big
companies like Microsoft and Apple, for instance, have internal projects that are
producing impressive software for creating and displaying multimedia
extravaganzas on computers. But they have a strict view of the world: the
company is the producer of high-quality tools that make their way to the
consumer who uses them and pays for them in one way or another.

The list ecology is more organic and anti-hierarchical. Everyone has access to
the source code. Everyone can make changes. Everyone can do what they want.
There is no need for the FreeBSD management to meet and decide "Multimedia
is good." There is no need for a project team to prioritize and list action items
and best-of-breed deliverables. Someone in Switzerland decides he wants to
hook up a television receiver to his computer and, what do you know, someone
in Great Britain has already solved the problem. Well, he's solved it if you don't
have an MSP34xx stereo decoder chip in your card. But that should be fixed
sooner or later, too.

4.1 FREE DOESN'T MEAN FREELOADING

There are thousands of other mailing lists linking thousands of other projects. It