


The	Project	Gutenberg	EBook	of	Debian	GNU/Linux:	Guide	to	Installation	and
Usage	by	John	Goerzen	and	Ossama	Othman

	

Copyright	laws	are	changing	all	over	the	world.	Be	sure	to	check	the	copyright
laws	for	your	country	before	downloading	or	redistributing	this	or	any	other
Project	Gutenberg	eBook.

	

This	header	should	be	the	first	thing	seen	when	viewing	this	Project	Gutenberg
file.	Please	do	not	remove	it.	Do	not	change	or	edit	the	header	without	written
permission.

	

Please	read	the	“legal	small	print,”	and	other	information	about	the	eBook	and
Project	Gutenberg	at	the	bottom	of	this	file.	Included	is	important	information
about	your	specific	rights	and	restrictions	in	how	the	file	may	be	used.	You	can
also	find	out	about	how	to	make	a	donation	to	Project	Gutenberg,	and	how	to	get
involved.

	

**Welcome	To	The	World	of	Free	Plain	Vanilla	Electronic	Texts**

	

**eBooks	Readable	By	Both	Humans	and	By	Computers,	Since	1971**

	

*****These	eBooks	Were	Prepared	By	Thousands	of	Volunteers!*****

	

Title:	Debian	GNU/Linux:	Guide	to	Installation	and	Usage	Author:	John
Goerzen	and	Ossama	Othman



	

Release	Date:	September,	2004	[EBook	#6527]

[Yes,	we	are	more	than	one	year	ahead	of	schedule]

[This	file	was	first	posted	on	December	25,	2002]

	

Edition:	10

	

Language:	English

	

Character	set	encoding:	ASCII

	

***	START	OF	THE	PROJECT	GUTENBERG	EBOOK,	DEBIAN
GNU/LINUX:	GUIDE	TO	INSTALLATION	AND	USAGE	***

	

Debian	GNU/Linux:	Guide	to	Installation	and	Usage	John	Goerzen	and
Ossama	Othman	(c)	1998,	1999	Software	in	the	Public	Interest,	Inc.

	

Permission	is	granted	to	make	and	distribute	verbatim	copies	of	this	manual
provided	the	copyright	notice	and	this	permission	notice	are	preserved	on	all
copies.

	

Permission	is	granted	to	copy	and	distribute	modified	versions	of	this	manual
under	the	conditions	for	verbatim	copying,	provided	also	that	the	sections	that
reprint	“The	GNU	General	Public	License”	and	other	clearly	marked	sections



held	under	separate	copyright	are	reproduced	under	the	conditions	given	within
them,	and	provided	that	the	entire	resulting	derived	work	is	distributed	under	the
terms	of	a	permission	notice	identical	to	this	one.

	

Permission	is	granted	to	copy	and	distribute	translations	of	this	manual	into
another	language	under	the	conditions	for	modified	versions.	“The	GNU	General
Public	License”	may	be	included	in	a	translation	approved	by	the	Free	Software
Foundation	instead	of	in	the	original	English.

	

At	your	option,	you	may	distribute	verbatim	and	modified	versions	of	this
document	under	the	terms	of	the	GNU	General	Public	License,	excepting	the
clearly	marked	sections	held	under	separate	copyright.

	

Contents

	

*	List	of	Figures

*	List	of	Tables

*	Acknowledgments

*	Preface

*	Guide

*	Introduction

*	What	Is	Debian?

*	Who	Creates	Debian?

A	Multiuser,	Multitasking	Operating	System	What	Is	Free	Software?



*	About	This	Book

*	How	to	Read	This	Book

*	Conventions

*	Getting	Started

*	Supported	Hardware

*	Memory	and	Disk	Space	Requirements	*	Before	You	Start

*	Information	You	Will	Need	Partitioning	Your	Hard	Drive	Background

Planning	Use	of	the	System	PC	Disk	Limitations

*	Device	Names	in	Linux

*	Recommended	Partitioning	Scheme	Partitioning	Prior	to	Installation
Debian	Installation	Steps	Choosing	Your	Installation	Media	Installing	from	a
CD-ROM

*	Booting	from	Floppies

*	Booting	the	Installation	System	*	Step-by-Step	Installation

*	Select	Color	or	Monochrome	Display	Debian	GNU/Linux	Installation	Main
Menu	Configure	the	Keyboard

*	Last	Chance	to	Back	Up!

*	Partition	a	Hard	Disk

Initialize	and	Activate	a	Swap	Partition	Initialize	a	Linux	Partition	Mount	a
Previously-Initialized	Partition	Install	Operating	System	Kernel	and	Modules	*
Configure	PCMCIA	Support

*	Configure	Device	Driver	Modules	*	Configure	the	Network

*	Install	the	Base	System



Configure	the	Base	System	Make	Linux	Bootable	Directly	from	the	Hard	Disk
*	Make	a	Boot	Floppy

*	The	Moment	of	Truth

*	Set	the	Root	Password

*	Create	an	Ordinary	User

*	Shadow	Password	Support

*	Remove	PCMCIA

*	Select	and	Install	Profiles

*	Package	Installation	with	dselect	*	Introduction

*	Once	dselect	Is	Launched	A	Few	Hints	in	Conclusion	Glossary

*	Logging	In

*	First	Steps

*	Command	History	and	Editing	the	Command	Line

*	Working	as	Root

*	Virtual	Consoles

*	Shutting	Down

*	The	Basics

*	The	Command	Line	and	Man	Pages	Describing	the	Command	Line	Files
and	Directories

Using	Files:	A	Tutorial	Dot	Files	and	ls	-a

*	Processes

*	The	Shell



Managing	Processes	with	bash	A	Few	bash	Features

*	Tab	Completion

*	Managing	Your	Identity

*	Using	the	Shell

*	Environment	Variables

Where	Commands	Reside:	The	PATH	Variable	Configuration	Files

*	System-Wide	Versus	User-Specific	Configuration

*	Aliases

Controlling	Input	and	Output	stdin,	stdout,	Pipelines,	and	Redirection	*
Filename	Expansion

*	More	on	Files

*	Permissions

*	File	Ownership

*	Mode

*	Permissions	in	Practice	Files	Present	and	Their	Locations	File	Compression
with	gzip

*	Finding	Files

*	Determining	a	File’s	Contents	*	Using	a	File	Manager

*	Working	with	Text	Files

*	Viewing	Text	Files

*	Text	Editors

*	Using	ae



*	The	X	Window	System

*	Introduction	to	X

*	Starting	the	X	Environment

*	Basic	X	Operations

*	The	Mouse

*	X	Clients

*	Troubleshooting

Leaving	the	X	Environment	Customizing	Your	X	Startup

*	Filesystems

*	Concepts

*	mount	and	etcfstab

*	Mounting	a	Filesystem

*	Example:	Mounting	a	CD-ROM

*	etcfstab:	Automating	the	Mount	Process	Removable	Disks	(Floppies,	Zip
Disks,	Etc.)	Backup	Tools

*	tar

*	Networking

*	PPP

*	Introduction

*	Preparation

*	The	Easy	Way:	wvdial



*	Ethernet

*	Removing	and	Installing	Software

What	a	Package	Maintenance	Utility	Does	dpkg

*	dselect

*	Compiling	Software

*	Advanced	Topics

*	Regular	Expressions

*	Advanced	Files

*	The	Real	Nature	of	Files:	Hard	Links	and	Inodes	*	Types	of	Files

*	The	proc	Filesystem

*	Large-Scale	Copying

*	Security

Software	Development	with	Debian	Reference

Reading	Documentation	and	Getting	Help	Kinds	of	Documentation

*	Using	info

*	HOWTOs

*	Personal	Help

*	Getting	Information	from	the	System	*	Troubleshooting

*	Common	Difficulties

Working	with	Strangely-Named	Files	Printing

*	X	Problems



*	Troubleshooting	the	Boot	Process	*	Booting	the	System

*	The	GNU	General	Public	License

*	Index

*	About	this	document	…

	

List	of	Figures

	

1.	cfdisk	screenshot

2.	dselect	Access	screen

3.	Sample	session	with	su

4.	Sample	printenv	output

5.	Changing	the	prompt

6.	Redirecting	output

	

List	of	Tables

	

1.	Linux	Device	Names

2.	Special	dselect	keys

3.	dselect	Package	States

4.	Expected	Package	Category	States

5.	Permissions	in	Linux



	

Acknowledgments	Many	people	have	helped	with	this	manual.	We’d	like	to
thank	everyone	involved,	and	we	try	to	do	that	here.

	

Thanks	to	Havoc	Pennington,	Ardo	van	Rangelrooij,	Larry	Greenfield,	Thalia
Hooker,	Day	Irmiter,	James	Treacy,	Craig	Sawyer,	Oliver	Elphick,	Ivan	E.

Moore	II,	Eric	Fischer,	Mike	Touloumtzis,	and	the	Linux	Documentation
Project	for	their	work	on	what	became	the	Debian	Tutorial	document.

	

Thanks	to	Richard	Stallman	of	the	Free	Software	Foundation	for	advice	and
editing.

	

Thanks	to	Bruce	Perens,	Sven	Rudolph,	Igor	Grobman,	James	Treacy,	Adam
Di	Carlo,	Tapio	Lehtonen,	and	Stephane	Bortzmeyer	for	their	work	on	what
became	a	collection	of	installation	documents.

	

Of	course,	it’s	impossible	to	thank	the	hundreds	of	Debian	developers	and
thousands	of	free	software	authors	who	gave	us	something	to	write	about	and
use.



Preface

“Freedom	is	still	the	most	radical	idea	of	all.”

	

This	quote,	penned	by	Nathaniel	Branden,	seems	fitting	nowhere	moreso	than
with	the	freewheeling	computing	industry.	In	the	space	of	just	a	few	decades,
lives	the	world	over	have	been	changed	by	computing	technology.

We,	the	people	behind	the	Free	Software	movement,	are	seeking	to	continue
this	trend	by	truly	opening	up	software	to	everyone	-	not	just	the	few	people
working	for	the	companies	that	write	it	-	but	everyone.	As	part	of	this	goal,	this
book	and	CD	contain	a	treasure	chest	of	Free	Software.

Over	one	thousand	packages,	including	things	such	as	the	world’s	most
popular	web	server,	can	be	found	here.	You	can	use	this	software	for	everything
from	graphic	design	to	SQL	databases.

	

The	Free	Software	revolution	has	taken	the	industry	by	storm.	Linux,	started
from	scratch	not	even	10	years	ago,	has	been	the	favorite	kernel	of	the	Free
Software	world.	The	ideas	and	experience	gained	from	Free	Software	have	truly
sent	Linux	and	the	Free	Software	Foundation’s	GNU

tools	all	over	the	world.	Free	systems	such	as	Debian	GNU/Linux	ship	with
literally	thousands	of	applications,	and	they	have	more	power	and	stability,	and
outperform	some	of	the	industry’s	traditional	best-selling	proprietary	operating
systems.

	

Today,	GNU/Linux	plays	a	dominant	role	in	Internet	servers	and	among	ISPs,
in	academia,	among	computer	hobbyists,	and	in	computer	science	research.

Debian	GNU/Linux	has	brought	the	power	of	Free	Software	to	everything
from	laptops	to	flights	aboard	the	Space	Shuttle.	As	I	write	this,	companies	the



world	over	are	experiencing	the	joy	and	benefits	that	are	Free	Software.	The
unprecedented	power,	the	ability	to	speak	directly	to	the	people	who	write	the
software	you	use,	the	capability	to	modify	programs	at	will,	and	the	phenomenal
expertise	of	the	online	support	mechanism	all	combine	to	make	Free	Software	a
vibrant	and	wonderful	way	to	use	your	computing	resources.

	

Starting	with	a	Free	Software	such	as	Debian	GNU/Linux	can	be	the	best
thing	you’ve	done	with	your	computer	in	a	long	time.	It’s	fast,	powerful,	stable,
versatile,	and	fun!

	

Welcome	to	the	revolution!

	

-	John	Goerzen

	

Guide

	

Introduction	We’re	glad	to	have	this	opportunity	to	introduce	you	to	Debian!
As	we	begin	our	journey	down	the	road	of	GNU/Linux,	we’d	like	to	first	talk	a
bit	about	what	exactly	Debian	is	-	what	it	does,	and	how	it	fits	in	with	the	vast
world	of	Free	Software.	Then,	we	talk	a	bit	about	the	phenomenon	that	is	Free
Software	and	what	it	means	for	Debian	and	you.	Finally,	we	close	the	chapter
with	a	bit	of	information	about	this	book	itself.

	

What	Is	Debian?

	

Debian	is	a	free	operating	system	(OS)	for	your	computer.	An	operating



system	is	the	set	of	basic	programs	and	utilities	that	make	your	computer	run.	At
the	core	of	an	operating	system	is	the	kernel.	The	kernel	is	the	most	fundamental
program	on	the	computer:	It	does	all	the	basic	housekeeping	and	lets	you	start
other	programs.	Debian	uses	the	Linux	kernel,	a	completely	free	piece	of
software	started	by	Linus	Torvalds	and	supported	by	thousands	of	programmers
worldwide.	A	large	part	of	the	basic	tools	that	fill	out	the	operating	system	come
from	the	GNU	Project,	and	these	tools	are	also	free.

	

Another	facet	of	an	operating	system	is	application	software:	programs	that
help	get	work	done,	from	editing	documents	to	running	a	business	to	playing
games	to	writing	more	software.	Debian	comes	with	more	than	1,500

packages	(precompiled	software	bundled	up	in	a	nice	format	for	easy
installation	on	your	machine)	-	all	for	free.

	

The	Debian	system	is	a	bit	like	a	pyramid.	At	the	base	is	Linux.	On	top	of	that
are	all	the	basic	tools,	mostly	from	GNU.	Next	is	all	the	application	software	that
you	run	on	the	computer;	many	of	these	are	also	from	GNU.

The	Debian	developers	act	as	architects	and	coordinators	-	carefully
organizing	the	system	and	fitting	everything	together	into	an	integrated,	stable
operating	system:	Debian	GNU/Linux.

	

The	design	philosophy	of	GNU/Linux	is	to	distribute	its	functionality	into
small,	multipurpose	parts.	That	way,	you	can	easily	achieve	new	functionality
and	new	features	by	combining	the	small	parts	(programs)	in	new	ways.	Debian
is	like	an	erector	set:	You	can	build	all	sorts	of	things	with	it.

	

When	you’re	using	an	operating	system,	you	want	to	minimize	the	amount	of
work	you	put	into	getting	your	job	done.	Debian	supplies	many	tools	that	can
help,	but	only	if	you	know	what	these	tools	do.	Spending	an	hour	trying	to	get
something	to	work	and	then	finally	giving	up	isn’t	very	productive.	This	guide



will	teach	you	about	the	core	tools	that	make	up	Debian:	what	tools	to	use	in
certain	situations	and	how	to	tie	these	various	tools	together.

	

Who	Creates	Debian?

	

Debian	is	an	all-volunteer	Internet-based	development	project.	There	are
hundreds	of	volunteers	working	on	it.	Most	are	in	charge	of	a	small	number	of
software	packages	and	are	very	familiar	with	the	software	they	package.

	

These	volunteers	work	together	by	following	a	strict	set	of	guidelines
governing	how	packages	are	assembled.	These	guidelines	are	developed
cooperatively	in	discussions	on	Internet	mailing	lists.

	

A	Multiuser,	Multitasking	Operating	System	As	we	mentioned	earlier	in
section	1.1,	the	design	of	Debian	GNU/Linux	comes	from	the	Unix	operating
system.	Unlike	common	desktop	operating	systems	such	as	DOS,	Windows,	and
MacOS,	GNU/Linux	is	usually	found	on	large	servers	and	multiuser	systems.

	

This	means	that	Debian	has	features	those	other	operating	systems	lack.	It
allows	a	large	number	of	people	to	use	the	same	computer	at	once,	as	long	as
each	user	has	his	or	her	own	terminal.1.1	To	permit	many	users	to	work	at	once,
Debian	must	allow	many	programs	and	applications	to	run	simultaneously.	This
feature	is	called	multitasking.

	

Much	of	the	power	(and	complexity)	of	GNU/Linux	systems	stems	from	these
two	features.	For	example,	the	system	must	have	a	way	to	keep	users	from
accidentally	deleting	each	other’s	files.	The	operating	system	also	must
coordinate	the	many	programs	running	at	once	to	ensure	that	they	don’t	all	use



the	same	resource,	such	as	a	hard	drive,	at	the	same	time.

	

If	you	keep	in	mind	what	Debian	was	originally	designed	to	do,	many	aspects
of	it	will	make	a	lot	more	sense.	You’ll	learn	to	take	advantage	of	the	power	of
these	features.

	

What	Is	Free	Software?

	

When	Debian	developers	and	users	speak	of	“Free	Software,”	they	refer	to
freedom	rather	than	price.	Debian	is	free	in	this	sense:	You	are	free	to	modify
and	redistribute	it	and	will	always	have	access	to	the	source	code	for	this
purpose.	The	Debian	Free	Software	Guidelines	describe	in	more	detail	exactly
what	is	meant	by	“free.”	The	Free	Software	Foundation,	originator	of	the	GNU
Project,	is	another	excellent	source	of	information.

You	can	find	a	more	detailed	discussion	of	free	software	on	the	Debian	web
site.	One	of	the	most	well-known	works	in	this	field	is	Richard	M.

Stallman’s	essay,	Why	Software	Should	Be	Free;	take	a	look	at	it	for	some
insight	into	why	we	support	Free	Software	as	we	do.	Recently,	some	people	have
started	calling	Free	Software	“Open	Source	Software”;	the	two	terms	are
interchangable.

	

You	may	wonder	why	would	people	spend	hours	of	their	own	time	writing
software	and	carefully	packaging	it,	only	to	give	it	all	away.	The	answers	are	as
varied	as	the	people	who	contribute.

	

Many	believe	in	sharing	information	and	having	the	freedom	to	cooperate
with	one	another,	and	they	feel	that	free	software	encourages	this.	A	long
tradition	that	upholds	these	values,	sometimes	called	the	Hacker1.2	Ethic,	started



in	the	1950s.	The	Debian	GNU/Linux	Project	was	founded	based	on	these	Free
Software	ethics	of	freedom,	sharing,	and	cooperation.

	

Others	want	to	learn	more	about	computers.	More	and	more	people	are
looking	for	ways	to	avoid	the	inflated	price	of	proprietary	software.	A	growing
community	contributes	in	appreciation	for	all	the	great	free	software	they’ve
received	from	others.

	

Many	in	academia	create	free	software	to	help	get	the	results	of	their	research
into	wider	use.	Businesses	help	maintain	free	software	so	they	can	have	a	say	in
how	it	develops	-	there’s	no	quicker	way	to	get	a	new	feature	than	to	implement
it	yourself	or	hire	a	consultant	to	do	so!

Business	is	also	interested	in	greater	reliability	and	the	ability	to	choose
between	support	vendors.

	

Still	others	see	free	software	as	a	social	good,	democratizing	access	to
information	and	preventing	excessive	centralization	of	the	world’s	information
infrastructure.	Of	course,	a	lot	of	us	just	find	it	great	fun.

	

Debian	is	so	committed	to	free	software	that	we	thought	it	would	be	useful	if
it	was	formalized	in	a	document	of	some	sort.	Our	Social	Contract	promises	that
Debian	will	always	be	100%	free	software.	When	you	install	a	package	from	the
Debian	main	distribution,	you	can	be	sure	it	meets	our	Free	Software	Guidelines.

	

Although	Debian	believes	in	free	software,	there	are	cases	where	people	want
to	put	proprietary	software	on	their	machine.	Whenever	possible	Debian	will
support	this;	though	proprietary	software	is	not	included	in	the	main	distribution,
it	is	sometimes	available	on	the	FTP	site	in	the	non-free	directory,	and	there	is	a
growing	number	of	packages	whose	sole	job	is	to	install	proprietary	software	we



are	not	allowed	to	distribute	ourselves.

	

It	is	important	to	distinguish	commercial	software	from	proprietary	software.
Proprietary	software	is	non-free	software;	commercial	software	is	software	sold
for	money.	Debian	permits	commercial	software,	but	not	proprietary	software,	to
be	a	part	of	the	main	distribution.	Remember	that	the	phrase	“free	software”
does	not	refer	to	price;	it	is	quite	possible	to	sell	free	software.	For	more
clarification	of	the	terminology,	see	http://www.opensource.org/or

http://www.fsf.org/philosophy/categories.html.

	

About	This	Book	This	book	is	aimed	at	readers	who	are	new	to	Debian
GNU/Linux.	It	assumes	no	prior	knowledge	of	GNU/Linux	or	other	Unix-like
systems,	but	it	does	assume	very	basic	general	knowledge	about	computers	and
hardware;	you	should	know	what	the	basic	parts	of	a	computer	are,	and	what	one
might	use	a	computer	to	do.

	

In	general,	this	tutorial	tries	to	help	you	understand	what	happens	inside	a
Debian	system.	The	idea	is	to	empower	you	to	solve	new	problems	and	get	the
most	out	of	your	computer.	Thus	there’s	plenty	of	theory	and	fun	facts	thrown	in
with	the	“How	To”	aspects	of	the	manual.

	

We’d	love	to	hear	your	comments	about	this	book!	You	can	reach	the	authors
at	debian-guide@complete.org.	We’re	especially	interested	in	whether	it	was
helpful	to	you	and	how	we	could	make	it	better.	Whether	you	have	a	comment	or
think	this	book	is	the	greatest	thing	since	sliced	bread,	please	send	us	e-mail.

	

Please	do	not	send	the	authors	technical	questions	about	Debian,	because	there
are	other	forums	for	that;	see	Appendix	A	on	page	[*]	for	more	information	on
the	documentation	and	getting	help.	Only	send	mail	regarding	the	book	itself	to



the	above	address.

	

How	to	Read	This	Book

	

The	best	way	to	learn	about	almost	any	computer	program	is	by	using	it.

Most	people	find	that	reading	a	book	without	using	the	program	isn’t
beneficial.	The	best	way	to	learn	about	Unix	and	GNU/Linux	is	by	using	them.
Use	GNU/Linux	for	everything	you	can.	Feel	free	to	experiment!

	

Debian	isn’t	as	intuitively	obvious	as	some	other	operating	systems.	You	will
probably	end	up	reading	at	least	the	first	few	chapters	of	this	book.

GNU/Linux’s	power	and	complexity	make	it	difficult	to	approach	at	first,	but
far	more	rewarding	in	the	long	run.

	

The	suggested	way	to	learn	is	to	read	a	little,	and	then	play	a	little.

Keep	playing	until	you’re	comfortable	with	the	concepts,	and	then	start
skipping	around	in	the	book.	You’ll	find	a	variety	of	topics	are	covered,	some	of
which	you	might	find	interesting.	After	a	while,	you	should	feel	confident
enough	to	start	using	commands	without	knowing	exactly	what	they	do.	This	is	a
good	thing.

	

Tip:	If	you	ever	mistakenly	type	a	command	or	don’t	know	how	to	exit	a
program,	press	CTRL-c	(the	Ctrl	key	and	the	lowercase	letter	c	pressed
simultaneously).	This	will	often	stop	the	program.

	

Conventions



	

Before	going	on,	it’s	important	to	be	familiar	with	the	typographical
conventions	used	in	this	book.

	

When	you	should	simultaneously	hold	down	multiple	keys,	a	notation	like
CTRL-a	will	be	used.	This	means	“press	the	Ctrl	key	and	press	lowercase	letter
a.”	Some	keyboards	have	both	Alt	and	Meta;	most	home	computers	have	only
Alt,	but	the	Alt	key	behaves	like	a	Meta	key.	So	if	you	have	no	Meta	key,	try	the
Alt	key	instead.

	

Keys	like	Alt	and	Meta	are	called	modifier	keys	because	they	change	the
meaning	of	standard	keys	like	the	letter	A.	Sometimes	you	need	to	hold	down
more	than	one	modifier;	for	example,	Meta-Ctrl-a	means	to	simultaneously	press
Meta,	Ctrl,	and	lowercase	a.

	

Some	keys	have	a	special	notation	-	for	example,	Ret	(Return/Enter),	Del
(Delete	or	sometimes	Backspace),	Esc	(Escape).	These	should	be	fairly	self-
explanatory.

	

Spaces	used	instead	of	hyphens	mean	to	press	the	keys	in	sequential	order.

For	example,	CTRL-a	x	RET	means	to	simultaneously	type	Ctrl	and
lowercase	a,	followed	by	the	letter	x,	followed	by	pressing	Return.	(On	some
keyboards,	this	key	is	labeled	Enter.	Same	key,	different	name.)	In	sample
sessions,	bold	face	text	denotes	characters	typed	by	the	user,	italicized	text
denotes	comments	about	a	given	part	of	the	sample	session,	and	all	other	text	is
output	from	entering	a	command.	For	shorter	commands,	you’ll	sometimes	find
that	the	command	can	be	found	within	other	text,	highlighed	with	a	monospace
font.

	



Getting	Started	“A	journey	of	a	thousand	miles	must	begin	with	a	single	step.”
-

Lao-Tsu

	

Now	that	you’ve	read	about	the	ideas	and	philosophy	behind	Linux	and
Debian,	it’s	time	to	start	putting	it	on	your	computer!	We	start	by	talking	about
how	to	prepare	for	a	Debian	install,	then	about	partitioning	your	disk,	and
finally,	how	to	start	up	the	installation	system.

	

Supported	Hardware	Debian	does	not	impose	hardware	requirements	beyond
the	requirements	of	the	Linux	kernel	and	the	GNU	tools.

	

Rather	than	attempting	to	describe	all	the	different	hardware	configurations
that	are	supported	for	the	PC	platform,	this	section	contains	general	information
and	pointers	to	where	additional	information	can	be	found.

	

There	are	two	excellent	places	to	check	for	detailed	information:	the	Debian
System	Requirements	list	and	the	Linux	Documentation	Project	Hardware
Compatibility	HOWTO.	For	information	on	video	card	support,	you	may	also
want	to	look	at	the	XFree86	Project	web	site.

	

Memory	and	Disk	Space	Requirements

	

You	must	have	at	least	4MB	of	memory	and	35MB	of	available	hard	disk
space.	If	you	want	to	install	a	reasonable	amount	of	software,	including	the	X
Window	system,	and	some	development	programs	and	libraries,	you’ll	need	at
least	300MB.	For	an	essentially	full	installation,	you’ll	need	around	800MB.	To



install	everything	available	in	Debian,	you’ll	probably	need	around	2GB.
Actually,	installing	everything	doesn’t	make	sense	because	some	packages
provide	the	same	services.

	

Before	You	Start	Before	you	start,	make	sure	to	back	up	every	file	that	is	now
on	your	system.	The	installation	procedure	can	wipe	out	all	of	the	data	on	a	hard
disk!	The	programs	used	in	installation	are	quite	reliable	and	most	have	seen
years	of	use;	still,	a	false	move	can	cost	you.	Even	after	backing	up,	be	careful
and	think	about	your	answers	and	actions.	Two	minutes	of	thinking	can	save
hours	of	unnecessary	work.

	

Debian	makes	it	possible	to	have	both	Debian	GNU/Linux	and	another
operating	system	installed	on	the	same	system.	If	you	plan	to	use	this	option,
make	sure	that	you	have	on	hand	the	original	CD-ROM	or	floppies	of	the	other
installed	operating	systems.	If	you	repartition	your	boot	drive,	you	may	find	that
you	have	to	reinstall	your	existing	operating	system’s	boot	loader2.1	or	the	entire
operating	system	itself.

	

Information	You	Will	Need

	

If	your	computer	is	connected	to	a	network	24	hours	a	day	(i.e.,	an	Ethernet	or
similar	LAN	connection	-	not	a	PPP	connection),	you	should	ask	your	network’s
system	administrator	for	the	following	information:	Your	host	name	(you	may	be
able	to	decide	this	on	your	own)	Your	domain	name

*	Your	computer’s	IP	address

*	The	IP	address	of	your	network

*	The	netmask	to	use	with	your	network

*	The	broadcast	address	to	use	on	your	network	*	The	IP	address	of	the



default	gateway	system	you	should	route	to,	if	your	network	has	a	gateway

*	The	system	on	your	network	that	you	should	use	as	a	DNS	server	Whether
you	connect	to	the	network	using	Ethernet	Whether	your	Ethernet	interface	is	a
PCMCIA	card,	and	if	so,	the	type	of	PCMCIA	controller	you	have

If	your	only	network	connection	is	a	telephone	line	using	PPP	or	an	equivalent
dialup	connection,	you	don’t	need	to	worry	about	getting	your	network	set	up
until	your	system	is	already	installed.	See	section	11.1	on	page	[*]	for
information	on	setting	up	PPP	under	Debian.

	

Partitioning	Your	Hard	Drive	Before	you	install	Debian	on	your	computer,	it
is	generally	a	good	idea	to	plan	how	the	contents	of	your	hard	drive	will	be
arranged.	One	part	of	this	process	involves	partitioning	your	hard	drive.

	

Background

	

Partitioning	your	disk	simply	refers	to	the	act	of	breaking	up	your	disk	into
sections.	Each	section	is	then	independent	of	the	others.	It’s	roughly	equivalent
to	putting	up	walls	in	a	house;	after	that,	adding	furniture	to	one	room	doesn’t
affect	any	other	room.

	

If	you	already	have	an	operating	system	on	your	system	(Windows	95,
Windows	NT,	DOS,	etc.)	and	you	want	to	install	Debian	GNU/Linux	on	the
same	disk,	you	will	probably	need	to	repartition	the	disk.	In	general,	changing	a
partition	that	already	has	a	filesystem	on	it	will	destroy	any	information	in	that
filesystem.	Therefore,	you	should	always	make	backups	before	doing	any
repartitioning.	Using	the	analogy	of	the	house,	you	would	probably	want	to
move	all	the	furniture	out	of	the	way	before	moving	a	wall	or	you	risk
destroying	your	furniture.	Luckily,	there	is	an	alternative	for	some	users;	see
section	2.3.6	on	page	[*]	for	more	information.



	

At	a	bare	minimum,	GNU/Linux	needs	one	partition	for	itself.	You	can	have	a
single	partition	containing	the	entire	operating	system,	applications,	and	your
personal	files.	Most	people	choose	to	give	GNU/Linux	more	than	the	minimum
number	of	partitions,	however.	There	are	two	reasons	you	might	want	to	break
up	the	filesystem	into	a	number	of	smaller	partitions.	The	first	is	for	safety.	If
something	happens	to	corrupt	the	filesystem,	generally	only	one	partition	is
affected.	Thus,	you	only	have	to	replace	(from	the	backups	you’ve	been
carefully	keeping)	a	portion	of	your	system.

At	the	very	least,	you	should	consider	creating	what	is	commonly	called	a
“root	partition.”	This	contains	the	most	essential	components	of	the	system.	If
any	other	partitions	get	corrupted,	you	can	still	boot	into	GNU/Linux	to	fix	the
system.	This	can	save	you	the	trouble	of	having	to	reinstall	the	system	from
scratch.

	

The	second	reason	is	generally	more	important	in	a	business	setting,	but	it
really	depends	on	your	use	of	the	machine.	Suppose	something	runs	out	of
control	and	starts	eating	disk	space.	If	the	process	causing	the	problem	happens
to	have	root	privileges	(the	system	keeps	a	percentage	of	the	disk	away	from
users),	you	could	suddenly	find	yourself	out	of	disk	space.	This	is	not	good	since
the	operating	system	needs	to	use	real	files	(besides	swap	space)	for	many
things.	It	may	not	even	be	a	problem	of	local	origin.	For	example,	unsolicited	e-
mail	(“spam”)	can	easily	fill	a	partition.	By	using	more	partitions,	you	protect
the	system	from	many	of	these	problems.	Using	e-mail	as	an	example	again,	by
putting	the	directory	varspool/mail	on	its	own	partition,	the	bulk	of	the	system
will	work	even	if	unsolicited	e-mail	fills	that	partition.

	

Another	reason	applies	only	if	you	have	a	large	IDE	disk	drive	and	are	using
neither	LBA	addressing	nor	overlay	drivers2.2.	In	this	case,	you	will	have	to	put
the	root	partition	into	the	first	1,024	cylinders	of	your	hard	drive,	usually	around
524	megabytes.	See	section	2.3.3	on	page	[*]

for	more	information	on	this	issue.



	

Most	people	feel	that	a	swap	partition	is	also	a	necessity,	although	this	isn’t
strictly	true.	“Swap”	is	scratch	space	for	an	operating	system,	which	allows	the
system	to	use	disk	storage	as	“virtual	memory”	in	addition	to	physical	memory.
Putting	swap	on	a	separate	partition	allows	Linux	to	make	much	more	efficient
use	of	it.	It	is	possible	to	force	Linux	to	use	a	regular	file	as	swap,	but	this	is	not
recommended.

	

The	only	real	drawback	to	using	more	partitions	is	that	it	is	often	difficult	to
know	in	advance	what	your	needs	will	be.	If	you	make	a	partition	too	small,
either	you	will	have	to	reinstall	the	system,	or	you	will	be	constantly	moving
things	around	to	make	room	in	the	undersized	partition.	On	the	other	hand,	if
you	make	the	partition	too	big,	you	may	be	wasting	space	that	could	be	used
elsewhere.

	

Planning	Use	of	the	System

	

Disk	space	requirements	and	your	partitioning	scheme	are	influenced	by	the
type	of	installation	you	decide	to	create.

	

For	your	convenience,	Debian	offers	a	number	of	default	“profiles”	some	of
which	are	listed	later	in	this	section.	Profiles	are	simply	preselected	sets	of
packages	designed	to	provide	certain	desired	capabilities	on	your	system.
Installation	is	easier	since	packages	that	fit	your	desired	profile	are	automatically
marked	for	installation.	Each	given	profile	lists	the	size	of	the	resulting	system
after	installation	is	complete.

Even	if	you	don’t	use	these	profiles,	this	discussion	is	important	for	planning,
since	it	will	give	you	a	sense	of	how	large	your	partition	or	partitions	need	to	be.
The	following	are	some	of	the	available	profiles	and	their	sizes:



	

Server_std.

This	is	a	small	server	profile,	useful	for	a	stripped-down	server,	that	does	not
have	a	lot	of	niceties	for	shell	users.	It	basically	has	an	FTP	server,	a	web	server,
DNS,	NIS,	and	POP.	It	will	take	up	around	50MB.	Of	course,	this	is	just	the	size
of	the	software;	any	data	you	serve	would	be	additional.

	

Dialup.

This	profile	would	be	good	for	a	standard	desktop	box,	including	the	X
Window	system,	graphics	applications,	sound,	editors,	etc.

The	size	of	the	packages	will	be	around	500MB.

	

Work_std.

This	profile	is	suitable	for	a	stripped-down	user	machine	without	the	X
Window	system	or	X	applications.	It	is	also	suitable	for	a	laptop	or	mobile
computer.	The	size	is	around	140MB.	It	is	possible	to	have	a	simple	laptop	setup
including	X	with	less	than	100MB.

	

Devel_comp.

This	is	a	desktop	setup	profile	with	all	the	popular	development	packages,
such	as	Perl,	C,	and	C++.	It	requires	around	475MB.

Assuming	you	are	adding	X	and	some	additional	packages	for	other	uses,	you
should	plan	for	approximately	800MB	of	disk	space	for	this	type	of	installation.

	

Remember	that	these	sizes	don’t	include	all	the	other	materials	that	are
normally	found,	such	as	user	files,	mail,	and	data.	It	is	always	best	to	be



generous	when	considering	the	space	for	your	own	files	and	data.

Notably,	the	Debian	/var	directory	contains	a	lot	of	state	information.

The	installed	package	management	files	can	easily	consume	20MB	of	disk
space.	In	general,	you	should	allocate	at	least	50MB	for	the	/var	directory
because	system	log	files	are	also	stored	there.

	

PC	Disk	Limitations

	

A	PC	BIOS	generally	adds	additional	constraints	for	disk	partitioning.

There	is	a	limit	to	how	many	“primary”	and	“logical”	partitions	a	drive	can
contain.	Additionally,	there	are	limits	to	where	on	the	drive	the	BIOS	looks	for
boot	information.	More	information	can	be	found	in	the	Linux	Partition	mini-
HOWTO.	This	section	will	include	a	brief	overview	to	help	you	plan	most
situations.

	

“Primary”	partitions	are	the	original	partitioning	scheme	for	PC	hard	disks.
However,	there	can	be	only	four	of	them.	To	get	past	this	limitation,	“extended”
or	“logical”	partitions	were	invented.	By	setting	one	of	your	primary	partitions
as	an	extended	partition,	you	can	subdivide	all	the	space	allocated	to	that
partition	into	logical	partitions.	The	number	of	logical	partitions	you	can	create
is	much	less	limited	than	the	number	of	primary	partitions	you	can	create;
however,	you	can	have	only	one	extended	partition	per	drive.

	

Linux	limits	the	number	of	partitions	per	drive	to	15	partitions	for	SCSI	drives
(3	usable	primary	partitions,	12	logical	partitions),	and	63

partitions	for	IDE	drives	(3	usable	primary	partitions,	60	logical	partitions).

	



The	last	issue	you	need	to	know	about	a	PC	BIOS	is	that	your	boot	partition	-
that	is,	the	partition	containing	your	kernel	image	-	needs	to	be	contained	within
the	first	1,024	cylinders	of	the	drive.	Because	the	root	partition	is	usually	your
boot	partition,	you	need	to	make	sure	your	root	partition	fits	into	the	first	1,024
cylinders.

	

If	you	have	a	large	disk,	you	may	have	to	use	cylinder	translation	techniques,
which	you	can	set	in	your	BIOS,	such	as	LBA	translation	mode.

(More	information	about	large	disks	can	be	found	in	the	Large	Disk	mini-
HOWTO.)	If	you	are	using	a	cylinder	translation	scheme,	your	boot	partition
must	fit	within	the	translated	representation	of	cylinder	1,024.

	

Device	Names	in	Linux

	

Linux	disks	and	partition	names	may	be	different	from	those	in	other
operating	systems.	You	should	know	the	names	that	Linux	uses	when	you	create
and	mount	partitions.	The	basic	scheme	can	be	found	in	Table	2.1	on	page	[*].

	

Table	2.1:	Linux	Device	Names	+––––––––––––––––––––––––––+

|	Device	|	Linux	Name	|

|–––––––––––––––—+––––––––––|

|	First	floppy	drive	|	devfd0	|

|–––––––––––––––—+––––––––––|

|	Second	floppy	drive	|	devfd1	|

|–––––––––––––––—+––––––––––|



|	First	partition	on	devhda	(typically	C:	in	|	devhda1	|

|	other	OSs)	|	|

|–––––––––––––––—+––––––––––|

|	Fifth	partition	on	devhdc	|	devhdc5	|

|–––––––––––––––—+––––––––––|

|	Second	partition	on	devsdb	|	devsdb2	|

|–––––––––––––––—+––––––––––|

|	Entire	Primary-Master	IDE	hard	disk	or	CD-ROM	|	devhda	|

|–––––––––––––––—+––––––––––|

|	Entire	Primary-Slave	IDE	hard	disk	or	CD-ROM	|	devhdb	|

|–––––––––––––––—+––––––––––|

|	Entire	Secondary-Master	IDE	hard	disk	or	|	devhdc	|

|	CD-ROM	|	|

|–––––––––––––––—+––––––––––|

|	Entire	Secondary-Slave	IDE	hard	disk	or	|	devhdd	|

|	CD-ROM	|	|

|–––––––––––––––—+––––––––––|

|	First	SCSI	disk	|	devsda	|

|–––––––––––––––—+––––––––––|

|	Second	and	remaining	SCSI	disks	|	devsdb	and	so	forth	|

|–––––––––––––––—+––––––––––|



|	First	serial	port	(COM1	in	other	OSs)	|	devttyS0	|

|–––––––––––––––—+––––––––––|

|	Second,	third,	etc.	serial	ports	|	devttyS1,	devttyS2,	etc.	|

|–––––––––––––––—+––––––––––|

|	SCSI	tape	units	(automatic	rewind)	|	devst0,	devst1,	etc.	|

|–––––––––––––––—+––––––––––|

|	SCSI	tape	units	(no	automatic	rewind)	|	devnst0,	devnst1,	etc.	|

|–––––––––––––––—+––––––––––|

|	SCSI	CD-ROMs	|	devscd0,	devscd1,	etc.	|

+––––––––––––––––––––––––––+

The	partitions	on	each	disk	are	represented	by	appending	a	number	to	the	disk
name.	For	example,	the	names	hda1	and	hda2	represent	the	first	and	second
partitions	of	the	first	IDE	disk	drive	in	your	system.	Linux	represents	the
primary	partitions	with	the	drive	name	plus	the	numbers	1

through	4.	For	example,	the	first	primary	partition	on	the	first	IDE	drive	is
devhda1.	The	logical	partitions	are	numbered	starting	at	5,	so	the	first	logical
partition	on	that	same	drive	is	devhda5.	Remember	that	the	extended	partition	-
that	is,	the	primary	partition	holding	the	logical	partitions	-	is	not	usable	by
itself.	This	applies	to	SCSI	drives	as	well	as	IDE	drives.

	

Let’s	assume	you	have	a	system	with	two	SCSI	disks,	one	at	SCSI	address	2

and	the	other	at	SCSI	address	4.	The	first	disk	(at	address	2)	is	then	named	sda
and	the	second	sdb.	If	the	sda	drive	has	three	partitions	on	it,	these	will	be	named
sda1,	sda2,	and	sda3.	The	same	applies	to	the	sdb	disk	and	its	partitions.	Note
that	if	you	have	two	SCSI	host	bus	adapters	(i.e.,	controllers),	the	order	of	the
drives	can	get	confusing.	The	best	solution	in	this	case	is	to	watch	the	boot



messages,	assuming	you	know	the	drive	models.

	

Recommended	Partitioning	Scheme

	

As	described	above,	you	should	have	a	separate	smaller	root	partition	and	a
larger	/usr	partition	if	you	have	the	space.	For	most	users,	the	two	partitions
initially	mentioned	are	sufficient.	This	is	especially	appropriate	when	you	have	a
single	small	disk,	because	creating	lots	of	partitions	can	waste	space.

	

In	some	cases,	you	might	need	a	separate	usrlocal	partition	if	you	plan	to
install	many	programs	that	are	not	part	of	the	Debian	distribution.	If	your
machine	will	be	a	mail	server,	you	may	need	to	make	varspool/mail	a	separate
partition.	Putting	tmp	on	its	own	20	to	32MB	partition,	for	instance,	is	a	good
idea.	If	you	are	setting	up	a	server	with	lots	of	user	accounts,	it’s	generally	good
to	have	a	separate,	large	home	partition	to	store	user	home	directories.	In
general,	the	partitioning	situation	varies	from	computer	to	computer	depending
on	its	uses.

	

For	very	complex	systems,	you	should	see	the	Multi	Disk	HOWTO.	It
contains	in-depth	information,	mostly	of	interest	to	people	setting	up	servers.

	

Swap	partition	sizes	should	also	be	considered.	There	are	many	views	about
swap	partition	sizes.	One	rule	of	thumb	that	works	well	is	to	use	as	much	swap
as	you	have	system	memory,	although	there	probably	isn’t	much	point	in	going
over	64MB	of	swap	for	most	users.	It	also	shouldn’t	be	smaller	than	16MB,	in
most	cases.	Of	course,	there	are	exceptions	to	these	rules.

If	you	are	trying	to	solve	10,000	simultaneous	equations	on	a	machine	with
256MB	of	memory,	you	may	need	a	gigabyte	(or	more)	of	swap	space.



	

As	an	example,	consider	a	machine	that	has	32MB	of	RAM	and	a	1.7GB	IDE

drive	on	devhda.	There	is	a	500MB	partition	for	another	operating	system	on
devhda1.	A	32MB	swap	partition	is	used	on	devhda3	and	the	rest,	about	1.2GB,
on	devhda2	is	the	Linux	partition.

	

Partitioning	Prior	to	Installation

	

There	are	two	different	times	that	you	can	partition:	prior	to	or	during	the
installation	of	Debian.	If	your	computer	will	be	solely	dedicated	to	Debian	you
should	partition	during	installation	as	described	in	section	3.5	on	page	[*].	If	you
have	a	machine	with	more	than	one	operating	system	on	it,	you	should	generally
let	the	other	operating	system	create	its	own	partitions.

	

The	following	sections	contain	information	regarding	partitioning	in	your
native	operating	system	prior	to	Debian	installation.	Note	that	you’ll	have	to
map	between	how	the	other	operating	system	names	partitions	and	how	Linux
names	partitions;	see	Table	2.1	on	page	[*].

	

Partitioning	from	DOS	or	Windows

	

If	you	are	manipulating	existing	FAT	or	NTFS	partitions,	it	is	recommended
that	you	use	either	the	scheme	below	or	native	Windows	or	DOS	tools.

Otherwise,	it	is	not	really	necessary	to	partition	from	DOS	or	Windows;	the
Linux	partitioning	tools	will	generally	do	a	better	job.

	



Lossless	Repartitioning

	

One	of	the	most	common	installations	is	onto	a	system	that	already	contains
DOS	(including	Windows	3.1),	Win32	(such	as	Windows	95,	98,	NT),	or	OS/2
and	it	is	desired	to	put	Debian	onto	the	same	disk	without	destroying	the
previous	system.	As	explained	in	section	2.3.1	on	page	[*],	decreasing	the	size
of	an	existing	partition	will	almost	certainly	damage	the	data	on	that	partition
unless	certain	precautions	are	taken.	The	method	described	here,	while	not
guaranteed	to	protect	your	data,	works	extremely	well	in	practice.	As	a
precaution,	you	should	make	a	backup.

	

Before	going	any	further,	you	should	have	decided	how	you	will	divide	up	the
disk.	The	method	in	this	section	will	only	split	a	partition	into	two	pieces.	One
will	contain	the	original	operating	system,	and	the	other	will	be	used	for	Debian.
During	the	installation	of	Debian,	you	will	be	given	the	opportunity	to	use	the
Debian	portion	of	the	disk	as	you	see	fit,	i.e.,	as	swap	or	as	a	filesystem.

	

The	idea	is	to	move	all	the	data	on	the	partition	to	the	beginning	before
changing	the	partition	information,	so	that	nothing	will	be	lost.	It	is	important
that	you	do	as	little	as	possible	between	the	data	movement	and	repartitioning	to
minimize	the	chance	of	a	file	being	written	near	the	end	of	the	partition	as	this
will	decrease	the	amount	of	space	you	can	take	from	the	partition.

	

The	first	thing	you	need	is	a	copy	of	FIPS,	which	is	available	in	the	tools
directory	on	your	Debian	CD-ROM.	This	disk	must	be	bootable.	Under	DOS,	a
bootable	floppy	can	be	created	using	the	command	sys	a:	for	a	previously
formatted	floppy	or	format	a:	/s	for	an	unformatted	floppy.

Unzip	the	archive	and	copy	the	files	RESTORRB.EXE,	FIPS.EXE	and
ERRORS.TXT

to	the	bootable	floppy.	FIPS	comes	with	very	good	documentation	that	you



may	want	to	read.	You	should	definitely	read	the	documentation	if	you	use	a	disk
compression	driver	or	a	disk	manager.	Create	the	disk	and	read	the
documentation	before	you	continue.

	

The	next	thing	to	be	done	is	to	move	all	the	data	to	the	beginning	of	the
partition.	DEFRAG,	which	comes	standard	with	DOS	6.0	and	later,	can	easily	do
the	job.	See	the	FIPS	documentation	for	a	list	of	other	software	that	may	also
work.	Note	that	if	you	have	Windows	95	or	higher,	you	must	run	DEFRAG	from
there,	because	DOS	doesn’t	understand	VFAT,	which	is	used	to	support	long
filenames	in	Windows	95	and	higher.

	

After	running	the	defragmenter	(which	can	take	a	while	on	a	large	disk),
reboot	with	the	FIPS	floppy	disk	you	created.	Simply	type	a:\	fips	and	follow	the
directions.

	

Note	that	there	are	many	other	other	partition	managers	out	there,	in	case	FIPS
doesn’t	work	for	you.

	

Debian	Installation	Steps

	

As	you	initially	install	Debian,	you	will	proceed	through	several	different
steps:

	

1.	Boot	the	installation	system

2.	Initial	system	configuration

3.	Install	the	base	system



4.	Boot	the	newly	installed	base	system

5.	Install	the	rest	of	the	system

Booting	the	Debian	installation	system,	the	first	step,	is	generally	done	with
the	Rescue	Floppy	or	from	the	CD-ROM.

	

Once	you’ve	booted	into	Linux,	the	dbootstrap	program	will	launch	and	guide
you	through	the	second	step,	the	initial	system	configuration.	This	step	is
described	in	detail	in	section	3	on	page	[*].

	

The	“Debian	base	system”	is	a	core	set	of	packages	that	are	required	to	run
Debian	in	a	minimal,	stand-alone	fashion.	dbootstrap	will	install	it	from	your
CD-ROM,	as	described	in	section	3.12	on	page	[*].	Once	you	have	configured
and	installed	the	base	system,	your	machine	can	“stand	on	its	own.”

	

The	final	step	is	the	installation	of	the	remainder	of	the	Debian	system.

This	would	include	the	applications	and	documents	that	you	actually	use	on
your	computer,	such	as	the	X	Window	system,	editors,	shells,	and	development
environments.	The	rest	of	the	Debian	system	can	be	installed	from	CD-ROM.	At
this	point,	you’ll	be	using	the	standard	Debian	package	management	tools,	such
as	dselect.	This	step	is	described	in	section	3.20

on	page	[*].

	

Choosing	Your	Installation	Media	First,	choose	the	boot	media	for	the
installation	system.	Next,	choose	the	method	you	will	use	to	install	the	base
system.

	



To	boot	the	installation	system,	you	have	the	following	choices:	bootable	CD-
ROM,	floppies,	or	a	non-Linux	boot	loader.

	

CD-ROM	booting	is	one	of	the	easiest	ways	to	install.	Not	all	machines	can
boot	directly	from	the	CD-ROM	so	you	may	still	need	to	use	floppies.

Booting	from	floppies	is	supported	for	most	platforms.	Floppy	booting	is
described	in	section	2.4.2	on	page	[*].

	

Installing	from	a	CD-ROM

	

If	your	system	supports	booting	from	a	CD-ROM,	you	don’t	need	any
floppies.	Put	the	CD-ROM	into	the	drive,	turn	your	computer	off,	and	then	turn
it	back	on.	You	should	see	a	Welcome	screen	with	a	boot	prompt	at	the	bottom.
Now	you	can	skip	down	to	section	2.5.

	

If	your	computer	didn’t	“see”	the	Debian	CD-ROM,	the	easiest	option	is	to
make	two	floppies	for	booting	(described	in	section	2.4.2)	and	then	use	them	to
start	Debian.	Don’t	worry;	after	Debian	is	finished	with	those	two	floppies,	it
will	find	your	CD-ROM	with	no	trouble.

	

Booting	from	Floppies

	

It’s	not	hard	at	all	to	boot	from	floppies.	In	fact,	your	CD-ROM	contains	all
the	information	necessary	to	create	boot	disks	for	you.	For	these	instructions,
you	will	need	to	get	two	disks.	Label	the	first	one	“Debian	2.1	Install/Rescue
Disk”	and	the	second	“Debian	2.1	Modules/Drivers	Disk.”



	

Creating	Floppies	from	Disk	Images

	

Disk	images	are	files	containing	the	complete	contents	of	a	floppy	disk	in	raw
form.	Disk	images,	such	as	resc1440.bin,	cannot	simply	be	copied	to	floppy
drives.	A	special	program	is	used	to	write	the	image	files	to	floppy	disk	in	raw
mode.

	

First,	you	need	to	get	to	a	DOS	prompt.	In	Windows	95	and	above,	you	can	do
this	by	double-clicking	on	an	MS-DOS	icon	or	by	going	to	Start\(

\rightarrow	\)Programs\(	\rightarrow	\)MS-DOS	prompt.	Then,	insert	your
Debian	GNU/Linux	CD-ROM	into	your	CD-ROM	drive.	First,	you	change	to
your	CD-ROM	drive.	In	most	cases,	this	is	D:.

	

C:\WINDOWS>D:

Now,	change	to	the	directory	containing	the	disk	images.

	

D:\>CD

	

\DISTS\SLINK\MAIN\DISKS-I386\2.1.8-1999-02-22

	

If	you	get	an	error,	double-check	what	you’re	typing.	If	the	error	persists,
manually	issue	CD	\DISTS\SLINK\MAIN\DISKS-I386,	then	run	DIR,	and	then
CD	into	the	directory	indicated.	Note	that	the	above	commands,	and	some	other
examples	below,	may	appear	as	a	single	line	on	your	display	even	if	they	are
wrapped	here.



	

Now,	you’re	ready	to	create	the	first	of	two	disks.	Start	the	program	to	write
them	out,	rawrite2:

	

D:\DISTS\SLINK\MAIN\DISKS-I386\

	

2.1.8-1999-02-22>rawrite2

	

RaWrite	2.0	-	Write	disk	file	to

	

raw	floppy	diskette

	

Rawrite2	starts	and	displays	its	welcome	message.	Next,	it	asks	for	the
filename	and	diskette	drive.	You	tell	it	to	write	resc1440.bin	to	a:	Enter	disk
image	source	file	name:	resc1440.bin	Enter	target	diskette	drive:	a:

	

Rawrite2	now	asks	you	to	insert	a	disk	into	the	floppy	drive.	Do	so	and	press
Enter.

	

Plese	insert	a	formatted	diskette	into	drive	A:	and	press	-ENTER-	:

	

At	this	point,	rawrite2	will	create	the	first	of	the	two	disks.	Now,	you	need	to
repeat	the	process	for	the	second	disk:	D:\DISTS\SLINK\MAIN\DISKS-I386\



	

2.1.8-1999-02-22>rawrite2

	

RaWrite	2.0	-	Write	disk	file	to

	

raw	floppy	diskette

	

Enter	disk	image	source	file	name:	drv1440.bin	Enter	target	diskette	drive:	a:

	

Please	insert	a	formatted	diskette	into	drive	A:	and	press	-ENTER-	:

	

By	now,	your	disks	are	created.	You	can	now	use	the	first	one	to	boot.

	

Booting	Debian

	

You	are	now	ready	to	boot	into	Debian!	Shut	down	your	existing	operating
system,	turn	off	your	computer,	and	place	the	Install/Rescue	Disk	into	the	floppy
drive.	Now	turn	your	computer	back	on.	You	should	get	a	Welcome	screen	with
a	boot	prompt	at	the	bottom.

	

Booting	the	Installation	System	You	should	now	have	the	boot	prompt.
Simply	press	Enter	at	this	point.

	



Once	you	press	Enter,	you	should	see	the	message	Loading…,	and	then
Uncompressing	Linux…,	and	then	a	screenful	or	so	of	information	about	the
hardware	in	your	system.	In	general,	you	can	ignore	these	messages.

Linux	will	look	for	various	hardware	devices	and	will	tell	you	what	it	finds
and	doesn’t	find.	Don’t	worry	about	messages	at	this	point.	Just	wait	until	you
see	the	Color	Selection	screen.	If	you	have	trouble,	see	section	B.2	on	page	[*].

	

Step-by-Step	Installation	dbootstrap	is	the	name	of	the	program	that	is	run
after	you	have	booted	into	the	installation	system.	It	is	responsible	for	initial
system	configuration	and	the	installation	of	the	“base	system.”

	

The	main	job	of	dbootstrap	and	the	main	purpose	of	your	initial	system
configuration	is	to	configure	certain	core	elements	of	your	system.	For	instance,
this	includes	your	IP	address,	host	name,	and	other	aspects	of	your	networking
setup,	if	any.	This	also	includes	the	configuration	of	“kernel	modules,”	which	are
drivers	that	are	loaded	into	the	kernel.

These	modules	include	storage	hardware	drivers,	network	drivers,	special
language	support,	and	support	for	other	peripherals.	Configuring	these
fundamental	things	is	done	first,	because	it	is	often	necessary	for	the	system	to
function	properly	for	the	next	steps	of	installation.

	

dbootstrap	is	a	simple,	character-based	application.	It	is	very	easy	to	use;
generally,	it	will	guide	you	through	each	step	of	the	installation	process	in	a
linear	fashion.	You	can	also	go	back	and	repeat	steps	if	you	made	a	mistake.
Navigation	within	dbootstrap	is	accomplished	with	the	arrow	keys,	Enter,	and
Tab.

	

Select	Color	or	Monochrome	Display	Once	the	system	has	finished	booting,
dbootstrap	is	invoked.	The	first	thing	that	dbootstrap	asks	about	is	your	display.
You	should	see	the	“Select	Color	or	Monochrome	display”	dialog	box.	If	your



monitor	is	capable	of	displaying	color,	press	Enter.	The	display	should	change
from	black-and-white	to	color.	Then	press	Enter	again,	on	the	“Next”	item,	to
continue	with	the	installation.

	

If	your	monitor	can	display	only	black	and	white,	use	the	arrow	keys	to	move
the	cursor	to	the	“Next”	menu	item,	and	then	press	Enter	to	continue	with	the
installation.

	

Debian	GNU/Linux	Installation	Main	Menu	You	may	see	a	dialog	box	that
says	“The	installation	program	is	determining	the	current	state	of	your	system
and	the	next	installation	step	that	should	be	performed.”	This	is	a	phase	in	which
the	installation	program	automatically	figures	out	what	you	probably	need	to	do
next.	In	some	cases,	you	may	not	even	see	this	box.

	

During	the	entire	installation	process,	you	will	be	presented	with	the	main
menu,	titled	“Debian	GNU/Linux	Installation	Main	Menu.”	The	choices	at	the
top	of	the	menu	will	change	to	indicate	your	progress	in	installing	the	system.
Phil	Hughes	wrote	in	the	Linux	Journal	that	you	could	teach	a	chicken	to	install
Debian!	He	meant	that	the	installation	process	was	mostly	just	pecking	at	the
Enter	key.	The	first	choice	on	the	installation	menu	is	the	next	action	that	you
should	perform	according	to	what	the	system	detects	you	have	already	done.	It
should	say	“Next,”	and	at	this	point	the	next	step	in	installing	the	system	will	be
taken.

	

Configure	the	Keyboard	Make	sure	the	highlight	is	on	the	“Next”	item	and
press	Enter	to	go	to	the	keyboard	configuration	menu.

	

Move	the	highlight	to	the	keyboard	selection	you	desire	and	press	Enter.

Use	the	arrow	keys	to	move	the	highlight.	In	most	cases,	you	can	just	use	the



default	U.S.	layout.

	

Last	Chance	to	Back	Up!

	

Did	we	tell	you	to	back	up	your	disks?	Here’s	your	first	chance	to	wipe	out	all
of	the	data	on	your	disks	and	your	last	chance	to	save	your	old	system.	If	you
haven’t	backed	up	all	of	your	disks,	remove	the	floppy	from	the	drive,	reset	the
system,	and	run	backups.

	

Partition	a	Hard	Disk	Whatever	the	“Next”	menu	selection	is,	you	can	use	the
down-arrow	key	to	select	“Partition	a	Hard	Disk.”	Go	ahead	and	do	this	now,
then	press	Enter.

	

The	“Partition	a	Hard	Disk”	menu	item	presents	you	with	a	list	of	disk	drives
you	can	partition	and	runs	a	partitioning	application	called	cfdisk.	You	must
create	at	least	one	“Linux	native”	(type	83)	disk	partition,	and	you	probably	want
at	least	one	“Linux	swap”	(type	82)	partition,	as	explained	in	later	in	this	section.

	

You	will	now	create	the	partitions	that	you	need	to	install	Debian.	For	this
example,	the	assumption	is	that	you	are	partitioning	an	empty	hard	disk.

	

The	boot	partition	must	reside	within	the	first	1,024	of	cylinders	of	your	hard
disk	(see	section	2.3.3	on	page	[*]).	Keeping	that	in	mind,	use	the	rightarrow	key
to	highlight	the	“New”	menu	selection,	and	then	press	Enter.	You	will	be
presented	with	the	choice	of	creating	a	primary	partition	or	a	logical	partition.	To
help	ensure	that	the	partition	containing	the	boot	information	is	within	the	first
1,024	cylinders,	create	a	primary	partition	first.	This	primary	partition	will	be
your	“Linux	native”	partition.



	

Highlight	the	“Primary”	menu	selection	and	press	Enter.	Next	you	will	need	to
enter	how	large	you	want	that	partition	to	be.	Review	section	2.3.2	on	page	[*]	if
you’re	not	sure	how	large	it	should	be.	Remember	to	leave	enough	space	for
your	swap	partition	(see	section	2.3.5	on	page	[*]).	Enter	the	parition	size	you
want	and	then	press	Enter.	Next	you	will	be	asked	if	you	want	to	place	the
partition	at	the	beginning	of	free	space	or	at	the	end.	Place	it	at	the	beginning	to
help	ensure	that	it	lies	within	the	first	1,024	cylinders.	Highlight	“Beginning”
and	press	Enter.

At	this	point	you	will	be	brought	back	to	the	main	screen.	Notice	that	the
partition	you	created	is	listed.	By	default,	a	Linux	native	partition	was	created.
This	partition	must	now	be	made	bootable.	Make	sure	that	the	“Bootable”	menu
selection	is	highlighted	and	press	Enter.	The	partition	should	now	have	the	word
“Boot”	listed	under	the	“Flags”	column.

	

With	the	remaining	space,	create	another	primary	partition.	Using	the	down-
arrow	key,	highlight	the	free	space	entry	in	the	partition	list.	Now	highlight	the
“New”	menu	selection	and	proceed	just	as	you	did	when	you	created	the	first
primary	partition.	Notice	that	the	partition	is	listed	as	a	Linux	native	partition.
Because	this	partition	will	be	your	swap	partition,	it	must	be	denoted	as	such.
Make	sure	the	partition	you	just	created	(your	swap	partition)	is	highlighted	and
then	press	the	left-arrow	key	until	the	“Type”	menu	selection	is	highlighted,	then
press	Enter.

You	will	be	presented	with	a	list	of	supported	partition	types.	The	Linux	swap
partition	type	should	already	be	selected.	If	it	is	not,	enter	the	number	from	the
list	that	corresponds	to	the	Linux	swap	partition	(82),	and	then	press	Enter.	Your
swap	partition	should	now	be	listed	as	a	Linux	swap	partition	under	the	“FS
Type”	column	in	the	main	screen.

	

Your	cfdisk	screen	should	look	something	like	the	screenshot	in	Figure	3.1

on	page	[*].	The	numbers	may	not	be	the	same,	but	the	Flags	and	FS	Type
column	shoulds	be	similar.



	

Until	now,	nothing	on	your	disk	has	been	altered.	If	you	are	satisfied	that	the
partition	scheme	you	created	is	what	you	want,	press	the	left-arrow	key	until
“Write”	is	highlighted,	and	press	Enter.	Your	hard	disk	has	now	been	partitioned.
Quit	the	cfdisk	application	by	selecting	the	“Quit”	menu	selection.	Once	you
have	left	cfdisk,	you	should	be	back	in	Debian’s	dbootstrap	installation
application.

	

Figure	3.1:	cfdisk	screenshot	\resizebox*{4in}{!}
{\includegraphics{images/cfdisk.eps}}

	

Initialize	and	Activate	a	Swap	Partition	This	will	be	the	“Next”	menu	item
once	you	have	created	one	disk	partition.	You	have	the	choice	of	initializing	and
activating	a	new	swap	partition,	activating	a	previously-initialized	one,	or	doing
without	a	swap	partition.

	

A	swap	partition	is	strongly	recommended,	but	you	can	do	without	one	if	you
insist	and	if	your	system	has	more	than	4MB	RAM.	If	you	wish	to	do	this,	select
the	“Do	Without	a	Swap	Partition”	item	from	the	menu	and	move	on	to	the	next
section.

	

It’s	always	permissible	to	reinitialize	a	swap	partition,	so	select	“Initialize	and
Activate	a	Swap	Partition”	unless	you	are	sure	you	know	what	you	are	doing.
This	menu	choice	will	first	present	you	with	a	dialog	box	reading	“Please	select
the	partition	to	activate	as	a	swap	device.”

The	default	device	presented	should	be	the	swap	partition	you’ve	already	set
up;	if	so,	just	press	Enter.

	



Next	you	have	the	option	to	scan	the	entire	partition	for	unreadable	disk
blocks	caused	by	defects	on	the	surface	of	the	hard	disk	platters.	This	is	useful	if
you	have	MFM,	RLL,	or	older	SCSI	disks,	and	it	never	hurts	(although	it	can	be
time-consuming).	Properly	working	disks	in	most	modern	systems	don’t	require
this	step,	because	they	have	their	own	internal	mechanisms	for	mapping	out	bad
disk	blocks.

	

Finally,	there	is	a	confirmation	message	because	initialization	will	destroy	any
data	previously	on	the	partition.	If	all	is	well,	select	“Yes.”	The	screen	will	flash
as	the	initialization	program	runs.

	

Initialize	a	Linux	Partition	At	this	point,	the	next	menu	item	presented	should
be	“Initialize	a	Linux	Partition.”	If	it	isn’t,	either	you	haven’t	completed	the	disk
partitioning	process,	or	you	haven’t	made	one	of	the	menu	choices	dealing	with
your	swap	partition.

	

You	can	initialize	a	Linux	partition,	or	alternately	you	can	mount	a	previously
initialized	one.	Note	that	dbootstrap	will	not	upgrade	an	old	system	without
destroying	it.	If	you’re	upgrading,	Debian	can	usually	upgrade	itself,	and	you
won’t	need	to	use	dbootstrap.	The	Debian	2.1

release	notes	contain	upgrade	instructions.

	

If	you	are	using	old	disk	partitions	that	are	not	empty,	i.e.,	if	you	want	to	just
throw	away	what	is	on	them,	you	should	initialize	them	(which	erases	all	files).
Moreover,	you	must	initialize	any	partitions	that	you	created	in	the	disk
partitioning	step.	About	the	only	reason	to	mount	a	partition	without	initializing
it	at	this	point	would	be	to	mount	a	partition	upon	which	you	have	already
performed	some	part	of	the	installation	process	using	this	same	set	of	installation
floppies.

	



Select	the	“Next”	menu	item	to	initialize	and	mount	the	disk	partition.	The
first	partition	that	you	mount	or	initialize	will	be	the	one	mounted	as
(pronounced	“root”).	You	will	be	offered	the	choice	to	scan	the	disk	partition	for
bad	blocks,	as	you	were	when	you	initialized	the	swap	partition.	It	never	hurts	to
scan	for	bad	blocks,	but	it	could	take	10	minutes	or	more	to	do	so	if	you	have	a
large	disk.

	

Once	you’ve	mounted	the	partition,	the	“Next”	menu	item	will	be	“Install
Operating	System	Kernel	and	Modules”	unless	you’ve	already	performed	some
of	the	installation	steps.	You	can	use	the	arrow	keys	to	select	the	menu	items	to
initialize	or	to	mount	disk	partitions	if	you	have	any	more	partitions	to	set	up.	If
you	have	created	separate	partitions	for	var,	/usr,	or	other	filesystems,	you
should	initialize	or	mount	them	now.

	

Mount	a	Previously-Initialized	Partition

	

An	alternative	to	the	“Initialize	a	Partition”	step	is	the	“Mount	a	Previously-
Initialized	Partition”	step.	Use	this	if	you	are	resuming	an	installation	that	was
interrupted	or	if	you	want	to	mount	partitions	that	have	already	been	initialized.

	

Install	Operating	System	Kernel	and	Modules	This	should	be	the	next	menu
step	after	you’ve	mounted	your	root	partition,	unless	you’ve	already	performed
this	step	in	a	previous	run	of	dbootstrap.	First,	you	will	be	asked	to	confirm	that
the	device	you	have	mounted	on	root	is	the	proper	one.	Next,	you	will	be	offered
a	menu	of	devices	from	which	you	can	install	the	kernel.	Choose	the	appropriate
device	from	which	to	install	the	kernel	and	modules;	this	will	either	be	a	CD-
ROM	device	or	the	first	floppy	device.

	

If	you’re	installing	from	floppies,	you’ll	need	to	feed	in	the	Rescue	Floppy
(which	is	probably	already	in	the	drive),	followed	by	the	Drivers	Floppy.



	

Configure	PCMCIA	Support	There	is	an	alternate	step,	before	the	“Configure
Device	Driver	Modules”

menu	selection,	called	“Configure	PCMCIA	Support.”	This	menu	is	used	to
enable	PCMCIA	support.

	

If	you	do	have	PCMCIA	but	are	not	installing	your	Debian	system	using	it
(i.e.,	installation	with	a	PCMCIA	Ethernet	card),	you	need	not	configure
PCMCIA	at	this	point.	You	can	easily	configure	and	enable	PCMCIA	at	a	later
point,	after	installation	is	complete.	However,	if	you	are	installing	by	way	of	a
PCMCIA	network	device,	this	alternate	must	be	selected,	and	PCMCIA	support
must	be	configured	prior	to	configuring	the	network.

	

If	you	need	to	install	PCMCIA,	select	the	alternate	below	“Configure	Device
Driver	Modules.”	You	will	be	asked	which	PCMCIA	controller	your	system
contains.	In	most	cases,	this	will	be	i82365.	In	some	cases,	it	will	be	tcic;	your
laptop’s	vendor-supplied	specifications	should	provide	the	information.	You	can
generally	leave	the	next	few	sets	of	options	blank.	Again,	certain	hardware	has
special	needs;	the	Linux	PCMCIA	HOWTO

contains	plenty	of	information	in	case	the	default	doesn’t	work.

	

In	some	unusual	cases,	you	may	also	need	to	modify	the	file
etcpcmcia/config.opts.	You	can	open	your	second	virtual	terminal	(Left	Alt-F2)
and	edit	the	file	there	and	then	reconfigure	your	PCMCIA,	or	you	can	manually
force	a	reload	of	the	modules	using	insmod	and	rmmod.

	

Once	PCMCIA	is	properly	configured	and	installed,	you	should	configure
your	device	drivers	as	described	in	the	next	section.



	

Configure	Device	Driver	Modules	Select	the	“Configure	Device	Driver
Modules”	menu	item	and	look	for	devices	that	are	on	your	system.	Configure
those	device	drivers,	and	they	will	be	loaded	whenever	your	system	boots.

	

You	don’t	have	to	configure	all	your	devices	at	this	point;	what	is	crucial	is
that	any	device	configuration	required	for	the	installation	of	the	base	system	is
done	here.

	

At	any	point	after	the	system	is	installed,	you	can	reconfigure	your	modules
with	the	modconf	program.

	

Configure	the	Network	You’ll	have	to	configure	the	network	even	if	you	don’t
have	a	network,	but	you’ll	only	have	to	answer	the	first	two	questions	-	“Choose
the	Host	name,”	and	“Is	your	system	connected	to	a	network?”

	

If	you	are	connected	to	a	network,	you’ll	need	the	information	you	collected
from	2.2.1.	However,	if	your	primary	connection	to	the	network	will	be	PPP,	you
should	choose	NOT	to	configure	the	network.

	

dbootstrap	will	ask	you	a	number	of	questions	about	your	network;	fill	in	the
answers	from	2.2.1.	The	system	will	also	summarize	your	network	information
and	ask	you	for	confirmation.	Next,	you	need	to	specify	the	network	device	that
your	primary	network	connection	uses.	Usually,	this	will	be	eth0	(the	first
Ethernet	device).	On	a	laptop,	it’s	more	likely	that	your	primary	network	device
is	pcmcia.

	



Here	are	some	technical	details	you	may	find	handy:	The	program	assumes
the	network	IP	address	is	the	bitwise	AND	of	your	system’s	IP	address	and	your
netmask.	It	will	guess	the	broadcast	address	is	the	bitwise	OR	of	your	system’s
IP	address	with	the	bitwise	negation	of	the	netmask.	It	will	guess	that	your
gateway	system	is	also	your	DNS	server.	If	you	can’t	find	any	of	these	answers,
use	the	system’s	guesses.	You	can	change	them	once	the	system	has	been
installed,	if	necessary,	by	editing	etcinit.d/network.	(On	a	Debian	system,
daemons	are	started	by	scripts	in	the	directory	etcinit.d/.)

	

Install	the	Base	System	During	the	“Install	the	Base	System”	step,	you’ll	be
offered	a	menu	of	devices	from	which	you	may	install	the	base	system.	Here,
you	need	to	select	your	CD-ROM	device.

	

You	will	be	prompted	to	specify	the	path	to	the	base2_1.tgz	file.	If	you	have
official	Debian	media,	the	default	value	should	be	correct.

Otherwise,	enter	the	path	where	the	base	system	can	be	found,	relative	to	the
media’s	mount	point.	As	with	the	“Install	Operating	System	Kernel	and
Modules”	step,	you	can	either	let	dbootstrap	find	the	file	itself	or	type	in	the	path
at	the	prompt.

	

Configure	the	Base	System

	

At	this	point	you’ve	read	in	all	of	the	files	that	make	up	a	minimal	Debian
system,	but	you	must	perform	some	configuration	before	the	system	will	run.

	

You’ll	be	asked	to	select	your	time	zone.	There	are	many	ways	to	specify	your
time	zone;	we	suggest	you	go	to	the	“Directories:”	pane	and	select	your	country
(or	continent).	That	will	change	the	available	time	zones,	so	go	ahead	and	select
your	geographic	locality	(i.e.,	country,	province,	state,	or	city)	in	the



“Timezones:”	pane.

	

Next,	you’ll	be	asked	if	your	system	clock	is	to	be	set	to	GMT	or	local	time.
Select	GMT	(i.e.,	“Yes”)	if	you	will	only	be	running	Linux	on	your	computer;
select	local	time	(i.e.,	“No”)	if	you	will	be	running	another	operating	system	as
well	as	Debian.	Unix	(and	Linux	is	no	exception)	generally	keeps	GMT	time	on
the	system	clock	and	converts	visible	time	to	the	local	time	zone.	This	allows	the
system	to	keep	track	of	daylight	savings	time	and	leap	years,	and	even	allows	a
user	who	is	logged	in	from	another	time	zone	to	individually	set	the	time	zone
used	on	his	or	her	terminal.

	

Make	Linux	Bootable	Directly	from	the	Hard	Disk	If	you	elect	to	make	the	hard
disk	boot	directly	to	Linux,	you	will	be	asked	to	install	a	master	boot	record.	If
you	aren’t	using	a	boot	manager	(and	this	is	probably	the	case	if	you	don’t	know
what	a	boot	manager	is)	and	you	don’t	have	another	different	operating	system
on	the	same	machine,	answer	“Yes”	to	this	question.	Note	that	if	you	answer
“Yes,”	you	won’t	be	able	to	boot	into	DOS	normally	on	your	machine,	for
instance.	Be	careful.	If	you	answer	“Yes,”	the	next	question	will	be	whether	you
want	to	boot	Linux	automatically	from	the	hard	disk	when	you	turn	on	your
system.	This	sets	Linux	to	be	the	bootable	partition	-	the	one	that	will	be	loaded
from	the	hard	disk.

	

Note	that	multiple	operating	system	booting	on	a	single	machine	is	still
something	of	a	black	art.	This	book	does	not	even	attempt	to	document	the
various	boot	managers,	which	vary	by	architecture	and	even	by	sub-architecture.
You	should	see	your	boot	manager’s	documentation	for	more	information.
Remember:	When	working	with	the	boot	manager,	you	can	never	be	too	careful.

	

The	standard	i386	boot	loader	is	called	“LILO.”	It	is	a	complex	program	that
offers	lots	of	functionality,	including	DOS,	NT,	and	OS/2	boot	management.	To
find	out	more	about	this	functionality,	you	can	read	the	documentation	in
usrdoc/lilo	after	your	system	is	set	up.



	

Make	a	Boot	Floppy	You	should	make	a	boot	floppy	even	if	you	intend	to
boot	the	system	from	the	hard	disk.	The	reason	is	that	it’s	possible	for	the	hard
disk	bootstrap	to	be	mis-installed,	but	a	boot	floppy	will	almost	always	work.

Select	“Make	a	Boot	Floppy”	from	the	menu	and	feed	the	system	a	blank
floppy	as	directed.	Make	sure	the	floppy	isn’t	write-protected,	because	the
software	will	format	and	write	it.	Mark	this	the	“Custom	Boot”

floppy	and	write-protect	it	once	it	has	been	written.

	

The	Moment	of	Truth	You	system’s	first	boot	on	its	own	power	is	what
electrical	engineers	call	the	“smoke	test.”	If	you	have	any	floppies	in	your	floppy
drive,	remove	them.	Select	the	“Reboot	the	System”	menu	item.

	

If	are	booting	directly	into	Debian	and	the	system	doesn’t	start	up,	either	use
your	original	installation	boot	media	(for	instance,	the	Rescue	Floppy)	or	insert
the	Custom	Boot	floppy	if	you	created	one,	and	then	reset	your	system.	If	you
are	not	using	the	Custom	Boot	floppy,	you	will	probably	need	to	add	some	boot
arguments.	If	booting	with	the	Rescue	Floppy	or	similar	technique,	you	need	to
specify	rescue	root=rootfs,	where	rootfs	is	your	root	partition,	such	as	devsda1.

	

Debian	should	boot,	and	you	should	see	the	same	messages	as	when	you	first
booted	the	installation	system,	followed	by	some	new	messages.

	

Set	the	Root	Password	The	root	account	is	also	called	the	superuser;	it	is	a
login	that	bypasses	all	security	protection	on	your	system.	The	root	account
should	be	used	only	to	perform	system	administration	and	for	as	short	a	time	as
possible.

	



Any	password	you	create	should	contain	from	six	to	eight	characters,	and	it
should	contain	both	uppercase	and	lowercase	characters,	as	well	as	punctuation
characters.	Take	extra	care	when	setting	your	root	password,	since	it	is	such	a
powerful	account.	Avoid	dictionary	words	or	use	of	any	personal	information
that	could	be	guessed.

	

If	anyone	ever	tells	you	he	needs	your	root	password,	be	extremely	wary.

You	should	normally	never	give	out	your	root	account,	unless	you	are
administering	a	machine	with	more	than	one	system	administrator.

	

Create	an	Ordinary	User	The	system	will	ask	you	to	create	an	ordinary	user
account.	This	account	should	be	your	main	personal	login.	You	should	not	use
the	root	account	for	daily	use	or	as	your	personal	login.

	

Why	not?	It’s	a	lot	harder	to	do	damage	to	the	system	as	an	ordinary	user	than
as	root;	system	files	are	protected.	Another	reason	is	that	you	might	be	tricked
into	running	a	Trojan	horse	program	-	that	is,	a	program	that	takes	advantage	of
your	superuser	powers	to	compromise	the	security	of	your	system	behind	your
back.	Any	good	book	on	Unix	system	administration	will	cover	this	topic	in
more	detail.	Consider	reading	one	if	this	topic	is	new	to	you.

	

Name	the	user	account	anything	you	like.	If	your	name	is	John	Smith,	you
might	use	“smith,”	“john,”	“jsmith,”	or	“js.”

	

Shadow	Password	Support	Next,	the	system	will	ask	whether	you	want	to
enable	shadow	passwords.

This	is	an	authentication	system	that	makes	your	Linux	system	a	bit	more
secure.	Therefore,	we	recommend	that	you	enable	shadow	passwords.



Reconfiguration	of	the	shadow	password	system	can	also	be	done	later	with
the	shadowconfig	program.

	

Remove	PCMCIA	If	you	have	no	use	for	PCMCIA,	you	can	choose	to	remove
it	at	this	point.

This	will	make	your	startup	cleaner;	also,	it	will	make	it	easier	to	replace	your
kernel	(PCMCIA	requires	a	lot	of	correlation	between	the	version	of	the
PCMCIA	drivers,	the	kernel	modules,	and	the	kernel	itself).

In	general,	you	will	not	need	PCMCIA	unless	you’re	using	a	laptop.

	

Select	and	Install	Profiles	The	system	will	now	ask	you	if	you	want	to	use	the
pre-rolled	software	configurations	offered	by	Debian.	You	can	always	choose
package-by-package	what	you	want	to	install	on	your	new	machine.	This	is	the
purpose	of	the	dselect	program,	described	below.	But	this	can	be	a	long	task	with
the	thousands	of	packages	available	in	Debian!

	

So,	you	have	the	ability	to	choose	tasks	or	profiles	instead.	A	task	is	work	you
will	do	with	the	machine,	such	as	“Perl	programming”	or	“HTML

authoring”	or	“Chinese	word	processing.”	You	can	choose	several	tasks.

A	profile	is	a	category	your	machine	will	be	a	member	of,	such	as	“Network
server”	or	“Personal	workstation.”	Unlike	with	tasks,	you	can	choose	only	one
profile.

	

To	summarize,	if	you	are	in	a	hurry,	choose	one	profile.	If	you	have	more
time,	choose	the	Custom	profile	and	select	a	set	of	tasks.	If	you	have	plenty	of
time	and	want	very	precise	control	on	what	is	or	is	not	installed,	skip	this	step
and	use	the	full	power	of	dselect.



	

Soon,	you	will	enter	into	dselect.	If	you	selected	tasks	or	profiles,	remember
to	skip	the	“Select”	step	of	dselect,	because	the	selections	have	already	been
made.

	

A	word	of	warning	about	the	size	of	the	tasks	as	they	are	displayed:	The	size
shown	for	each	task	is	the	sum	of	the	sizes	of	its	packages.	If	you	choose	two
tasks	that	share	some	packages,	the	actual	disk	requirement	will	be	less	than	the
sum	of	the	sizes	for	the	two	tasks.

	

Once	you’ve	added	both	logins	(root	and	personal),	you’ll	be	dropped	into	the
dselect	program.	dselect	allows	you	to	select	packages	to	be	installed	on	your
system.	If	you	have	a	CD-ROM	or	hard	disk	containing	the	additional	Debian
packages	that	you	want	to	install	on	your	system,	or	if	you	are	connected	to	the
Internet,	this	will	be	useful	to	you	right	away.

Otherwise,	you	may	want	to	quit	dselect	and	start	it	later	after	you	have
transported	the	Debian	package	files	to	your	system.	You	must	be	the	superuser
(root)	when	you	run	dselect.	Information	on	how	to	use	dselect	is	given	in
section	3.20.

	

Package	Installation	with	dselect	It	is	now	time	to	install	the	software
packages	of	your	choice	on	your	Debian	system.	This	is	done	using	Debian’s
package	management	tool,	dselect.



Introduction

This	section	documents	dselect	for	first-time	users.	It	makes	no	attempt	to
explain	everything,	so	when	you	first	meet	dselect,	work	through	the	help
screens.

	

dselect	is	used	to	select	which	packages	you	wish	to	install	(there	are	currently
about	2,250	packages	in	Debian	2.1).	It	will	be	run	for	you	during	the
installation.	It	is	a	very	powerful	and	somewhat	complex	tool.

As	such,	having	some	knowledge	of	it	beforehand	is	highly	recommended.

Careless	use	of	dselect	can	wreak	havoc	on	your	system.

	

dselect	will	step	you	through	the	package	installation	process	outlined	here:

1.	Choose	the	access	method	to	use.

2.	Update	list	of	available	packages,	if	possible.

3.	Select	the	packages	you	want	on	your	system.

4.	Install	and	upgrade	wanted	packages.

5.	Configure	any	packages	that	are	unconfigured.

6.	Remove	unwanted	software.

As	each	step	is	completed	successfully,	dselect	will	lead	you	on	to	the	next.
Go	through	them	in	order	without	skipping	any	steps.

	

Here	and	there	in	this	document	we	talk	of	starting	another	shell.	Linux	has
six	console	sessions	or	shells	available	at	any	one	time.	You	switch	between



them	by	pressing	Left	Alt-F1	through	Left	Alt-F6,	after	which	you	log	in	on
your	new	shell	and	go	ahead.	The	console	used	by	the	install	process	is	the	first
one,	a.k.a.	tty1,	so	press	Left	Alt-F1	when	you	want	to	return	to	that	process.

	

Once	dselect	Is	Launched

	

Once	in	dselect,	you	will	get	this	screen:	Debian	Linux	`dselect’	package
handling	frontend.

	

0.	[A]ccess	Choose	the	access	method	to	use.

	

1.	[U]pdate	Update	list	of	available	packages,	if	possible.

	

2	[S]elect	Request	which	packages	you	want	on	your	system.

	

3.	[I]nstall	Install	and	upgrade	wanted	packages.

	

4.	[C]onfig	Configure	any	packages	that	are	unconfigured.

	

5.	[R]emove	Remove	unwanted	software.

	

6.	[Q]uit	Quit	dselect.



	

Let’s	look	at	these	one	by	one.

	

Access

	

The	Access	screen	is	shown	in	Figure	3.2	on	page	[*].

	

Figure	3.2:	dselect	Access	screen	\resizebox*{4in}{!}
{\includegraphics{images/dselect-access.eps}}

	

Here	we	tell	dselect	where	our	packages	are.	Ignore	the	order	that	these	appear
in.	It	is	very	important	that	you	select	the	proper	method	for	installation.	You
may	have	a	few	more	methods	listed,	or	a	few	less,	or	you	may	see	them	listed	in
a	different	order;	just	don’t	worry	about	it.

In	the	following	list,	we	describe	the	different	methods.

	

multi_cd.

Quite	large	and	powerful,	this	complex	method	is	the	recommended	way	of
installing	a	recent	version	of	Debian	from	a	set	of	multiple	binary	CDs.	Each	of
these	CDs	should	contain	information	about	the	packages	in	itself	and	all	prior
CDs	(in	the	file	Packages.cd).	When	you	first	select	this	method,	be	sure	the	CD-
ROM	you	will	be	using	is	not	mounted.	Place	the	last	binary	disk	of	the	set	(we
don’t	need	the	source	CDs)	in	the	drive	and	answer	the	questions	you	are	asked:
CD-ROM	drive	location

	

Confirmation	that	you	are	using	a	multi-cd	set	The	location	of	the	Debian



distribution	on	the	disk(s)	[	Possibly	]	the	location(s)	of	the	Packages	file(s)
Once	you	have	updated	the	available	list	and	selected	the	packages	to	be
installed,	the	multi_cd	method	diverges	from	normal	procedure.	You	will	need	to
run	an	“install”	step	for	each	of	the	CDs	you	have,	in	turn.

Unfortunately,	due	to	the	limitations	of	dselect,	it	will	not	be	able	to	prompt
you	for	a	new	disk	at	each	stage;	the	way	to	work	for	each	disk	is	outlined	here:

	

1.	Insert	the	CD	in	your	CD-ROM	drive.

2.	From	the	main	dselect	menu,	select	“Install.”

3.	Wait	until	dpkg	finishes	installing	from	this	CD.	(It	may	report	installation
successful,	or	possibly	installation	errors.	Don’t	worry	about	these	until	later.)

4.	Press	Return	to	go	back	to	the	main	dselect	menu.

5.	Repeat	with	the	next	CD	in	the	set.

It	may	be	necessary	to	run	the	installation	step	more	than	once	to	cover	the
order	of	package	installation;	some	packages	installed	early	may	need	to	have
later	packages	installed	before	they	will	configure	properly.

	

Running	a	“Configure”	step	is	recommended	to	help	fix	any	packages	that
may	end	up	in	this	state.

	

multi_nfs,	multi_mount.

	

These	are	similar	to	the	multi_cd	method	and	are	refinements	on	the	theme	of
coping	with	changing	media	-	for	example,	installing	from	a	multi_cd	set
exported	via	NFS	from	another	machine’s	CD-ROM

drive.	indexdselect!multi-NFS,	multi-mount	installation	apt.



One	of	the	best	options	for	installation	from	a	local	mirror	of	the	Debian
archive	or	from	the	network.	This	method	uses	the	“apt”	system	to	do	complete
dependency	analysis	and	ordering,	so	it’s	most	likely	to	install	packages	in	the
optimal	order.

	

Configuration	of	this	method	is	straightforward.	You	may	select	any	number
of	different	locations,	mixing	and	matching	file:	URLs	(local	disks	or	NFS

mounted	disks),	http:	URLs,	or	ftp:	URLs.	Note,	however,	that	the	HTTP	and
FTP	options	do	not	support	local	authenticating	proxies.

	

If	you	have	proxy	server	for	either	HTTP	or	FTP	(or	both),	make	sure	you	set
the	http_proxy	and	ftp_proxy	environment	variables,	respectively.	Set	them	from
your	shell	before	starting	dselect	by	using	the	following	command:

	

#	export	http_proxy=http://gateway:3128/

	

#	dselect

	

Update

	

dselect	will	read	the	Packages	or	Packages.gz	files	from	the	mirror	and	create
a	database	on	your	system	of	all	available	packages.	This	may	take	a	while	as	it
downloads	and	processes	the	files.

	

Select



	

Hang	on	to	your	hat.	This	is	where	it	all	happens.	The	object	of	the	exercise	is
to	select	just	which	packages	you	wish	to	have	installed.

	

Press	Enter.	If	you	have	a	slow	machine,	be	aware	that	the	screen	will	clear
and	can	remain	blank	for	15	seconds.	So	don’t	start	bashing	keys	at	this	point.

	

The	first	thing	that	comes	up	on	the	screen	is	page	1	of	the	Help	file.

You	can	get	to	this	help	by	pressing	?	at	any	point	in	the	“Select”

screens,	and	you	can	page	through	the	help	screens	by	hitting	the	.	(full	stop)
key.

	

Before	you	dive	in,	note	these	points:

	

*	To	exit	the	“Select”	screen	after	all	selections	are	complete,	press	Enter.	This
will	return	you	to	the	main	screen	if	there	is	no	problem	with	your	selection.
Otherwise,	you	will	be	asked	to	deal	with	that	problem.	When	you	are	happy
with	any	given	screen,	press	Enter	to	get	out.

*	Problems	are	quite	normal	and	are	to	be	expected.	If	you	select	package	A
and	that	package	requires	package	B	to	run,	dselect	will	warn	you	of	the	problem
and	will	most	likely	suggest	a	solution.	If	package	A	conflicts	with	package	B
(i.e.,	if	they	are	mutually	exclusive),	you	will	be	asked	to	decide	between	them.

Let’s	look	at	the	top	two	lines	of	the	Select	screen.	This	header	reminds	us	of
some	of	the	special	keys	listed	in	Table	3.1.

	

Table	3.1:	Special	dselect	keys	+––––––––––––––––––+



|	Key	|	Description	|

|––+–––––––––––––––—|

|	+	|	Select	a	package	for	installation.	|

|––+–––––––––––––––—|

|	=	|	Place	a	package	on	hold	|

|––+–––––––––––––––—|

|	-	|	Remove	a	package.	|

|––+–––––––––––––––—|

|	_	|	Remove	a	package	and	its	configuration	files.	|

|––+–––––––––––––––—|

|	i,	I	|	Toggle/cycle	information	displays.	|

|––+–––––––––––––––—|

|	o,	O	|	Cycle	through	the	sort	options.	|

|––+–––––––––––––––—|

|	v,	V	|	A	terse/verbose	toggle.	|

+––––––––––––––––––+

Table	3.2	lists	the	states	that	dselect	uses	to	denote	the	status	of	each	package
it	is	aware	of.

	

Table	3.2:	dselect	Package	States	+–––––––––––––––—+

|	Flag	|	Meaning	|	Possible	values	|



|––+–––––—+–––––––-|

|	E	|	Error	|	Space,	R,	I	|

|––+–––––—+–––––––-|

|	I	|	Installed	State	|	Space,	*,	-,	U,	C,	I	|

|––+–––––—+–––––––-|

|	O	|	Old	Mark	|	*,	-,	=,	_,	n	|

|––+–––––—+–––––––-|

|	M	|	Mark	|	*,	-,	=,	_,	n	|

+–––––––––––––––—+

Rather	than	spell	all	this	out	here,	I	refer	you	to	the	Help	screens	where	all	is
revealed.	One	example,	though.

	

You	enter	dselect	and	find	a	line	like	this:	EIOM	Pri	Section	Package
Description	**	Opt	misc	loadlin	a	loader	(running	under	DOS)	for	LINUX

	

This	is	saying	that	loadlin	was	selected	when	you	last	ran	dselect	and	that	it	is
still	selected,	but	it	is	not	installed.	Why	not?	The	answer	must	be	that	the
loadlin	package	is	not	physically	available.	It	is	missing	from	your	mirror.

	

The	information	that	dselect	uses	to	get	all	the	right	packages	installed	is
buried	in	the	packages	themselves.	Nothing	in	this	world	is	perfect,	and	it	does
sometimes	happen	that	the	dependencies	built	into	a	package	are	incorrect,
which	means	that	dselect	simply	cannot	resolve	the	situation.	A	way	out	is
provided	where	the	user	can	regain	control;	it	takes	the	form	of	the	commands	Q
and	X,	which	are	available	in	the	Select	screen.



	

Q

An	override.	Forces	dselect	to	ignore	the	builtin	dependencies	and	to	do	what
you	have	specified.	The	results,	of	course,	will	be	on	your	own	head.

	

X

Use	X	if	you	get	totally	lost.	It	puts	things	back	the	way	they	were	and	exits.

	

Select	screen	(dselect)	Keys	that	help	you	not	to	get	lost	(!)	are	R,	U,	and	D.

	

R

Cancels	all	selections	at	this	level.	Does	not	affect	selections	made	at	the
previous	level.

	

U

If	dselect	has	proposed	changes	and	you	have	made	further	changes	U	will
restore	dselect’s	selections.

	

D

Removes	the	selections	made	by	dselect,	leaving	only	yours.

	

An	example	follows.	The	boot-floppies	package	(not	an	example	for
beginners,	I	know,	but	it	was	chosen	because	it	has	a	lot	of	dependencies)



depends	on	these	packages:

	

*	libc6-pic

*	slang1-pic

*	sysutils

*	makedev

*	newt0.25

*	newt0.25-dev

*	popt

*	zlib1g

*	zlib1g-dev

*	recode

The	person	maintaining	boot-floppies	also	thinks	that	the	following	packages
should	be	installed.	These	are	not,	however,	essential:	*	lynx

*	debiandoc-sgml

*	unzip

	

When	you	select	boot-floppies,	dselect	brings	up	the	conflict	resolution
screen.	You’ll	notice	that	all	the	required	packages	have	been	selected.

	

Pressing	the	R	key	puts	things	back	to	the	starting	point.

	



EIOM	Pri	Section	Package	Description	__	Opt	admin	boot-floppie	Scripts	to
create	the	Debian	__	Opt	devel	newt0.25-dev	Developer’s	toolkit	for	newt	__
Opt	devel	slang1-dev	The	S-Lang	programming	library	__	Opt	devel	slang1-pic
The	S-Lang	programming	library	If	you	decide	now	that	you	don’t	want	boot-
floppies,	just	press	Enter.

	

Pressing	the	D	key	puts	things	the	way	I	selected	them	in	the	first	place:
EIOM	Pri	Section	Package	Description	*	Opt	admin	boot-floppie	Scripts	to
create	the	Debian	_	Opt	devel	newt0.25-dev	Developer’s	toolkit	for	newt	__	Opt
devel	slang1-dev	The	S-Lang	programming	library	__	Opt	devel	slang1-pic	The
S-Lang	programming	library	Pressing	the	U	key	restores	dselect’s	selections:
EIOM	Pri	Section	Package	Description	*	Opt	admin	boot-floppie	Scripts	to
create	the	Debian	installation	*	Opt	devel	newt0.25-dev	Developer’s	toolkit	for
newt	*	Opt	devel	slang1-dev	The	S-Lang	programming	library	*	Opt	devel
slang1-pic	The	S-Lang	programming	library	I	suggest	running	with	the	defaults
for	now;	you	will	have	ample	opportunities	to	add	more	later.

	

Whatever	you	decide,	press	Enter	to	accept	and	return	to	the	main	screen.

If	this	results	in	unresolved	problems,	you	will	be	bounced	right	back	to
another	problem	resolution	screen.

	

The	R,	U,	and	D	keys	are	very	useful	in	“what	if”	situations.	You	can
experiment	at	will	and	then	restore	everything	and	start	again.	Don’t	look	on
them	as	being	in	a	glass	box	labeled	“Break	in	Case	of	Emergency.”

	

After	making	your	selections	in	the	Select	screen,	press	I	to	give	you	a	big
window,	press	t	to	take	you	to	the	beginning,	and	then	use	the	Page	Down	key	to
look	quickly	through	the	settings.	This	way	you	can	check	the	results	of	your
work	and	spot	glaring	errors.	Some	people	have	deselected	whole	groups	of
packages	by	mistake	and	not	noticed	the	error	until	too	late.	dselect	is	a	very
powerful	tool;	don’t	misuse	it.



	

You	should	now	have	the	situation	shown	in	Table	3.3.

	

Table	3.3:	Expected	Package	Category	States	+––––––––––––—+

|	Package	category	|	Status	|

|––––––+––––––-|

|	Required	|	all	selected	|

|––––––+––––––-|

|	Important	|	all	selected	|

|––––––+––––––-|

|	Standard	|	mostly	selected	|

|––––––+––––––-|

|	Optional	|	mostly	deselected	|

|––––––+––––––-|

|	Extra	|	mostly	deselected	|

+––––––––––––—+

Happy?	Press	Enter	to	exit	the	Select	process.	You	can	come	back	and	run
Select	again	if	you	wish.

	

Install

	



dselect	runs	through	the	entire	set	of	packages	and	installs	those	selected.
Expect	to	be	asked	to	make	decisions	as	you	go.	It	is	often	useful	to	switch	to	a
different	shell	to	compare,	say,	an	old	configuration	with	a	new	one.	If	the	old
file	is	conf.modules,	the	new	one	will	be	conf.modules.dpkg-dist.

	

The	screen	scrolls	past	fairly	quickly	on	a	fast	machine.	You	can	stop	and	start
it	with	Ctrl-s	and	Ctrl-q,	respectively,	and	at	the	end	of	the	run,	you	will	get	a	list
of	any	uninstalled	packages.

	

It	can	happen	that	a	package	does	not	get	installed	because	it	depends	on	some
other	package	that	is	listed	for	installation	but	is	not	yet	installed.	The	answer
here	is	to	run	Install	again.	Cases	have	been	reported	where	it	was	necessary	to
run	it	four	times	before	everything	slipped	into	place.	This	will	vary	by	your
acquisition	method.

	

Configure

	

Most	packages	get	configured	in	step	3,	but	anything	left	hanging	can	be
configured	here.

	

Remove

	

Removes	packages	that	are	installed	but	no	longer	required.

	

Quit

	



I	suggest	running	etccron.daily/find	at	this	point,	because	you	have	a	lot	of
new	files	on	your	system.	Then	you	can	use	locate	to	get	the	location	of	any
given	file.

	

A	Few	Hints	in	Conclusion

	

When	the	install	process	runs	dselect	for	you,	you	will	doubtless	be	eager	to
get	Debian	running	as	soon	as	possible.	Well,	please	be	prepared	to	take	an	hour
or	so	to	learn	your	way	around	and	then	get	it	right.	When	you	enter	the	Select
screen	for	the	first	time,	don’t	make	any	selections	at	all	-	just	press	Enter	and
see	what	dependency	problems	there	are.	Try	fixing	them.	If	you	find	yourself
back	at	the	main	screen,	run	Select	again.

	

You	can	get	an	idea	of	the	size	of	a	package	by	pressing	i	twice	and	looking
for	the	“Size”	figure.	This	is	the	size	of	the	compressed	package,	so	the
uncompressed	files	will	be	a	lot	bigger	(see	“Installed-Size,”	which	is	in
kilobytes,	to	know	it).

	

Installing	a	new	Debian	system	is	a	complex	thing,	but	dselect	can	do	it	for
you	as	easy	as	can	be.	So	take	the	time	to	learn	how	to	drive	it.	Read	the	help
screens	and	experiment	with	i,	I,	o,	and	O.	Use	the	R	key.	It’s	all	there,	but	it’s
up	to	you	to	use	it	effectively.

	

Glossary

	

The	following	terms	will	be	useful	to	you	throughout	this	book	and	in	general
when	you’re	talking	about	Debian.



	

Package.

A	file	that	contains	everything	needed	to	install,	de-install,	and	run	a	particular
program.	The	program	that	handles	packages	is	dpkg.	dselect	is	a	frontend	to
dpkg.	Experienced	users	often	use	dpkg	to	install	or	remove	a	package.

	

Package	names.

All	package	names	have	the	form	xxxxxxxxxxx.deb.	Sample	package	names
include	the	following:

	

*	efax_08a-1.deb

*	lrzsz_0.12b-1.deb

*	mgetty_0.99.2-6.deb

*	minicom_1.75-1.deb

*	term_2.3.5-5.deb

*	uucp_1.06.1-2.deb

*	uutraf_1.1-1.deb

*	xringd_1.10-2.deb

*	xtel_3.1-2.deb

	

Logging	In	Your	system	is	now	installed!	Pat	yourself	on	the	back	for	a	job
well	done!	Now	it’s	time	to	start	using	the	system.	In	this	chapter,	we	introduce
you	to	the	Debian	command	line,	some	security	principles,	and	how	to	exit	the
system.	In	later	chapters,	we’ll	go	into	more	detail	on	these	topics	and	introduce



you	to	the	Debian	graphical	interface,	X11.

	

First	Steps	After	you	quit	dselect,	you’ll	be	presented	with	the	login:	prompt.
You	can	now	log	in	using	the	personal	login	and	password	you	selected;	your
system	is	now	ready	to	use.	Let’s	examine	what	it	means	to	log	in	and	how	this
process	works.

	

To	use	Debian,	you	must	identify	yourself	to	the	system.	This	is	so	it	knows
who	you	are,	what	you	have	permission	to	do,	and	what	your	preferences	are.

	

To	this	end,	you	have	a	username	or	login.	If	you	installed	Debian	yourself,
you	should	have	been	asked	to	give	such	a	name	during	installation.	If	you	are
logging	on	to	a	system	administered	by	someone	else,	you’ll	have	to	ask	him	for
an	account	on	the	system	and	a	corresponding	username.

	

You	also	have	a	password,	so	no	one	else	can	pretend	to	be	you.	If	you	don’t
have	a	password,	anyone	can	log	on	to	your	computer	from	the	Internet	and	do
bad	things.	If	you’re	worried	about	security,	you	should	have	a	password.

	

Many	people	prefer	to	trust	others	not	to	do	anything	malicious	with	their
account;	hopefully	your	work	environment	doesn’t	encourage	paranoia.	This	is	a
perfectly	reasonable	attitude;	it	depends	on	your	personal	priorities	and	your
environment.	Obviously	a	home	system	does	not	need	to	be	as	secure	as	a
military	installation.	Debian	allows	you	to	be	as	secure	or	as	insecure	as	you
like.

	

When	you	start	Debian,	you’ll	see	a	prompt:	a	request	from	the	computer	for
some	information.	In	this	case,	the	prompt	is	login:.



	

You	should	type	your	username	and,	when	requested,	your	password.	The
password	does	not	appear	on	the	screen	as	you	type	it.	Press	Enter	after	both	the
username	and	the	password.	If	you	type	your	username	or	password	incorrectly,
you’ll	have	to	start	over.

	

If	you	do	it	correctly,	you’ll	see	a	brief	message	and	then	a	$	prompt.

The	$	is	printed	by	a	special	program	called	the	shell	and	is	thus	called	a	shell
prompt.	This	is	where	you	give	commands	to	the	system.

	

Try	entering	the	command	whoami	now.	There	is	a	cursor	to	the	right	of	the
shell	prompt.	Your	cursor	is	a	small	underscore	or	rectangle	that	indicates	where
you’re	typing;	it	should	move	as	you	type.	Always	press	Enter	when	you’re	done
typing	a	shell	command.

	

whoami	tells	your	username.	You’ll	then	get	a	new	shell	prompt.

	

For	the	rest	of	the	book,	when	we	say	to	enter	a	command,	you	should	type	it
at	the	shell	prompt	and	press	the	Enter	key.

	

When	you’re	done	working,	you	may	want	to	log	out	of	the	system.	To	exit
the	shell,	enter	the	exit	command.	Keep	in	mind	that	if	you	remain	logged	in,
someone	could	come	along	and	use	your	account.	Hopefully	you	can	trust	those
in	your	office	or	home	not	to	do	this;	but	if	you	do	not	trust	your	environment,
you	should	be	certain	to	log	out	when	you	leave.

	



Command	History	and	Editing	the	Command	Line	Whatever	you	type	after
the	shell	prompt	and	before	pressing	Enter	is	called	a	command	line.	It’s	a	line	of
text	that	commands	the	computer	to	do	something.	The	Debian	default	shell
offers	several	features	to	make	entering	command	lines	easy.

	

You	can	scroll	up	to	previous	commands	to	run	them	again,	or	you	can	modify
them	slightly	and	then	run	them	again.	Try	this:	Enter	any	command,	such	as
whoami;	then	press	the	Up	Arrow	key.	The	whoami	command	will	reappear	at
the	prompt.	You	can	then	press	Enter	to	run	whoami	a	second	time.

	

If	you’ve	entered	several	commands,	you	can	keep	pressing	the	Up	Arrow	key
to	go	back	through	them.	This	feature	is	handy	if	you’re	doing	the	same	thing
several	times,	or	if	you	type	a	command	incorrectly	and	want	to	go	back	to	fix	it.
You	can	press	the	Down	Arrow	key	to	move	in	the	other	direction,	toward	your
more	recent	commands.	If	there	are	no	more	commands	to	move	to,	the
computer	will	beep.

	

You	can	also	move	around	on	the	command	line	to	make	changes.	The	easiest
way	is	with	the	Left	and	Right	Arrow	keys.	Try	typing	whoasmi	instead	of
whoami,	and	then	use	the	Left	Arrow	key	to	move	back	to	the	s.	You	can	erase
the	s	with	the	Backspace	or	Delete	keys.

	

There	are	more	advanced	features	as	well	(no	need	to	memorize	them	all	now,
though).	Try	pressing	Ctrl-a.	This	moves	you	to	the	beginning	of	the	line.	Ctrl-k
(the	k	stands	for	“kill”)	deletes	all	characters	until	the	end	of	the	line;	try	it	from
the	middle	of	the	command	line.	Using	Ctrl-a	followed	by	Ctrl-k,	you	can	delete
the	entire	command	line.	Ctrl-y	pastes	the	last	thing	you	killed,	reinserting	it	at
the	current	cursor	position	(y	stands	for	“yank,”	as	in	“yank	it	back”).	Ctrl-e	will
move	the	cursor	to	the	end	of	the	command	line.

	



Go	ahead	and	play	around	with	command-line	editing	to	get	a	feel	for	it.

Experiment.

	

Working	as	Root	Because	Debian	is	a	multiuser	system,	it’s	designed	to	keep
any	one	user	or	program	from	breaking	the	entire	system.	The	kernel	will	not
allow	normal	users	to	change	important	system	files.	This	means	that	things	stay
the	way	they’re	supposed	to,	safe	from	accidents,	viruses,	and	even	malicious
pranks.	Unlike	other	operating	systems,	Debian	is	safe	from	these	threats.	You
won’t	need	an	anti-virus	program.

	

However,	sometimes	you	need	to	change	important	system	files;	for	example,
you	might	want	to	install	new	software	or	configure	your	network	connection.
To	do	so,	you	have	to	have	greater	powers	than	a	normal	user;	you	must	become
the	root	user	(also	called	the	superuser).

	

To	become	root,	just	log	on	with	the	username	root	and	the	root	password;	this
was	set	during	installation,	as	described	in	section	3.15	on	page	[*].

	

At	many	sites,	only	the	system	administrator	has	the	root	password,	and	only
the	system	administrator	can	do	the	things	that	one	must	be	root	to	do.	If	you’re
using	your	own	personal	computer,	you	are	the	system	administrator,	of	course.
If	you	don’t	have	root	privileges,	you	will	have	to	rely	on	your	system
administrator	to	perform	any	tasks	that	require	root	privileges.

	

Sometimes	you’ll	have	the	root	password	even	on	a	shared	corporate	or
educational	server,	because	the	system	administrator	trusts	you	to	use	it	properly.
In	that	case,	you’ll	be	able	to	help	administer	the	system	and	customize	it	for
your	needs.	But	you	should	be	sure	to	use	the	password	responsibly,	respecting
other	users	at	all	times.



	

If	you	have	the	password,	try	logging	on	as	root	now.	Enter	the	whoami
command	to	verify	your	identity.	Then	log	out	immediately.	When	you’re	root,
the	kernel	will	not	protect	you	from	yourself,	because	root	has	permission	to	do
anything	at	all	to	the	system.	Don’t	experiment	while	you’re	root.	In	fact,	don’t
do	anything	as	root	unless	absolutely	necessary.	This	isn’t	a	matter	of	security,
but	rather	of	stability.	Your	system	will	run	much	better	if	it	can	keep	you	from
making	mistakes.

	

You	may	find	the	su	command	more	convenient	than	logging	in	as	root.	su
allows	you	to	assume	the	identity	of	another	user,	usually	root	unless	you	specify
someone	else.	(You	can	remember	that	su	stands	for	Super	User,	though	some
say	it	stands	for	Set	UserID.)	Here’s	something	to	try.	Log	on	as	yourself	-	that
is,	not	as	root.	Then	your	session	will	look	something	like	the	one	in	Figure	4.1.

	

When	you’re	doing	system	administration	tasks,	you	should	do	as	much	as
possible	as	yourself.	Then	use	su,	do	the	part	that	requires	root	privileges,	and
use	the	exit	command	to	turn	off	privileges	so	you	can	no	longer	harm	anything.

	

You	can	use	su	to	assume	the	identity	of	any	user	on	the	system,	not	just	root.
To	do	this,	type	su	user	where	user	is	the	user	you	want	to	become.

You’ll	have	to	know	the	user’s	password,	of	course,	unless	you’re	root	at	the
time	or	the	user	has	no	password.

	

Figure	4.1:	Sample	session	with	su	\begin{figure}\par\par\begin{list}{}{
\setlength{\rightmargin}{\leftmargin}

\ra…	…~~~~~~~~~~~~~}\textrm{\textit{Exit	your	\lq\lq	normal”

shell}}\end{list}\end{figure}



	

Virtual	Consoles	The	Linux	kernel	supports	virtual	consoles.	These	provide	a
way	of	making	your	single	screen	and	keyboard	seem	like	multiple	terminals
that	are	connected	to	the	same	system.	Thankfully,	using	virtual	consoles	is	one
of	the	simplest	things	about	Debian:	There	are	“hot	keys”	for	switching	among
the	consoles	quickly.	To	try	it,	log	in	to	your	system	and	press	Alt-F2
(simultaneously	press	the	left	Alt	key,	and	F2,	that	is,	function	key	number	2).

	

You	should	find	yourself	at	another	login	prompt.	Don’t	panic:	You	are	now
on	virtual	console	(VC)	number	2!	Log	in	here	and	do	some	things	-	more
whoami	commands	or	whatever	-	to	confirm	that	this	is	a	real	login	shell.

Now	you	can	return	to	virtual	console	number	1	by	pressing	Alt-F1.	Or	you
can	move	on	to	a	third	virtual	console,	in	the	obvious	way	(Alt-F3).

	

Debian	comes	with	six	virtual	consoles	enabled	by	default,	which	you	access
with	the	Alt	key	and	function	keys	F1	through	F6.	(Technically,	there	are	more
virtual	consoles	enabled,	but	only	six	of	them	allow	you	to	log	in.	The	others	are
used	for	the	X	Window	system	or	other	special	purposes.)

	

If	you’re	using	the	X	Window	system,	it	will	generally	start	up	on	the	first
unused	virtual	console	-	probably	VC	7.	Also,	to	switch	from	the	X

virtual	console	to	one	of	the	first	six,	you’ll	have	to	add	Ctrl	to	the	key
sequence.	So	that’s	Ctrl-Alt-F1	to	get	to	VC	1.	But	you	can	go	from	a	text	VC	to
the	X	virtual	console	using	only	Alt.	If	you	never	leave	X,	you	won’t	have	to
worry	about	this;	X	automatically	switches	you	to	its	virtual	console	when	it
starts	up.

	

Once	you	get	used	to	them,	virtual	consoles	will	probably	become	an
indispensable	tool	for	getting	many	things	done	at	once.	(The	X	Window	system



serves	much	the	same	purpose,	providing	multiple	windows	rather	than	multiple
consoles.)	You	can	run	a	different	program	on	each	VC	or	log	on	as	root	on	one
VC	and	as	yourself	on	another.	Or	everyone	in	the	family	can	use	his	or	her	own
VC;	this	is	especially	handy	if	you	use	X,	in	which	case	you	can	run	several	X
sessions	at	once	on	different	virtual	consoles.

	

Shutting	Down	Do	not	just	turn	off	the	computer!	You	risk	losing	valuable
data!

	

If	you	are	the	only	user	of	your	computer,	you	might	want	to	turn	the
computer	off	when	you’re	done	with	it.

	

To	avoid	possibly	weakening	some	hardware	components,	only	turn	off	the
computer	when	you’re	done	for	the	day.	Power	up	and	power	down	are	the	two
greatest	contributors	to	wear	and	tear	on	computer	components.	Turning	the
computer	on	and	off	once	a	day	is	probably	the	best	compromise	between	your
electric	bill	and	your	computer’s	lifespan.

	

It’s	a	bad	thing	to	just	press	the	power	switch	when	you’re	done	using	the
computer.	It	is	also	bad	to	reboot	the	machine	(with	the	Reset	button)	without
first	taking	proper	precautions.	The	Linux	kernel,	in	order	to	improve
performance,	has	a	disk	cache.	This	means	it	temporarily	stores	information
meant	for	permanent	storage	in	RAM.	Because	memory	is	thousands	of	times
faster	than	a	disk,	this	makes	many	file	operations	move	more	quickly.
Periodically,	the	information	Linux	has	in	memory	is	actually	written	to	the	disk.
This	is	called	syncing.	In	order	to	turn	off	or	reboot	the	computer	safely,	you’ll
have	to	tell	the	computer	to	clear	everything	out	of	memory	and	put	it	in
permanent	storage.

	

To	reboot,	just	type	reboot	or	press	Ctrl-Alt-Del	(that’s	Ctrl,	Alt,	and	Delete).



	

To	shut	down,	you’ll	have	to	log	in	as	root.	As	root,	just	type	the	command
shutdown	-h	now.	The	sytem	will	go	through	the	entire	shutdown	procedure,
including	the	sync	command,	which	clears	the	disk	cache	as	described	above.
When	you	see	System	halted,	it’s	safe	to	turn	off	the	computer.	If	you	have
Advanced	Power	Management	(APM)	support	in	your	kernel	and	BIOS,	the
computer	might	shut	itself	off	and	save	you	the	trouble.	APM	is	common	in
laptops	and	is	also	found	in	certain	desktop	mainboards.

	

The	Basics	It’s	now	time	to	explore	the	system	in	more	detail.	You’ve	seen
how	to	log	in	and	shut	down	the	system.	In	this	chapter,	we	explore	the	Linux
comand	line,	how	Linux	deals	with	files	and	directories,	and	some	basics	on
identifying	yourself	to	others.

	

The	Command	Line	and	Man	Pages	We’ve	already	discussed	the	command
line	-	that	is,	commands	you	type	after	the	shell	prompt.	This	section	describes
the	structure	of	more	complicated	command	lines.

	

A	minimal	command	line	contains	just	a	command	name,	such	as	whoami.
But	other	things	are	possible.	For	example,	you	might	type:	man	whoami.	This
command	requests	the	online	manual	for	the	whoami	program	(you	may	have	to
press	the	space	bar	to	scroll	through	the	documentation	or	press	q	to	quit).	A
more	complicated	example	is	man	-k	PostScript.	This	command	line	has	three
parts.	It	begins	with	the	command	name,	man.	Then	it	has	an	option	or	switch,	-
k,	followed	by	an	argument,	PostScript.	Some	people	refer	to	everything	except
the	command	name	as	the	parameters	of	the	command.	So,	options	and
arguments	are	both	parameters.

	

Options	change	the	behavior	of	a	command,	switching	on	particular	features
or	functionality.	They	usually	have	a	-	before	them.	The	GNU	utilities	also	have
“long	forms”	for	the	options;	the	long	form	of	-k	is	-apropos.



You	can	enter	man	-h	or	man	-help	to	get	a	full	list	of	options	for	the	man
command.	Every	command	will	have	its	own	set	of	options,	though	most	have	-
help	and	-version	options.	Some	commands,	such	as	tar,	do	not	require	the	“-”
before	their	options	for	historical	reasons.

	

Anything	that	isn’t	an	option	and	isn’t	the	command	name	is	an	argument	(in
this	case,	PostScript).	Arguments	can	serve	many	purposes;	most	commonly,
they	are	filenames	that	the	command	should	operate	on.	In	this	case,	PostScript
is	the	word	you	want	man	to	search	for.	In	the	case	of	man	whoami,	the
argument	was	the	command	you	wanted	information	about.

	

Here’s	a	breakdown	of	the	man	-k	PostScript	command	line:	man.

The	command	name,	tells	the	computer	to	look	at	the	manual	pages.

These	provide	documentation	for	commands.	For	example,	man	whoami	will
give	you	documentation	on	the	whoami	command.

	

-k.

The	option,	changes	the	behavior	of	man.	Normally	man	expects	a	command
name,	such	as	whoami,	for	an	argument	and	looks	for	documentation	of	that
command.	But	with	the	-k	or	-apropos	option,	it	expects	the	argument	to	be	a
keyword.	It	then	gives	a	list	of	all	manual	pages	with	that	keyword	in	their
description.

	

PostScript.

is	the	argument;	because	we	used	the	-k	option,	it’s	the	keyword	to	search	for.

	



-k	and	PostScript	are	both	parameters.

	

Go	ahead	and	type	man	-k	PostScript,	and	you	will	see	a	list	of	all	the	manual
pages	on	your	system	that	have	something	to	do	with	PostScript.	If	you	haven’t
installed	much	software,	you	might	see	the	message	PostScript:	nothing
appropriate	instead.

	

Describing	the	Command	Line

	

Note:	You	can	skip	this	section	if	you	want	to	move	on.

	

There’s	a	traditional,	concise	way	of	describing	command	syntax.	Syntax
means	the	correct	ways	to	combine	various	options	and	arguments.	For	example,
if	you	type	man	man	to	get	the	manual	page	about	man,	you’ll	see	several	syntax
descriptions	beginning	with	the	command	name	man.	One	of	them	will	look	like
this:	man	-k	[-M	path]	keyword	…

	

Anything	in	brackets	([])	is	an	optional	unit.	In	this	case	you	don’t	have	to	use
the	-M	option,	but	if	you	do,	you	must	use	a	path	argument.	You	must	use	the	-k
option	and	the	keyword	argument.	The	…	means	that	you	could	have	more	of
whatever	came	before	it,	so	you	could	look	up	several	keywords.

	

Let’s	look	at	one	of	the	more	complex	descriptions	from	the	man	manual
page:

	

man	[-c|-w|-tZT	device]	[-adhu7V]



	

[-m	system[,…]]	[-L	locale]	[-p	string]

	

[-M	path]	[-P	pager]	[-r	prompt]	[-S	list]

	

[-e	extension]	[[section]	page	…]	…

	

There’s	no	need	to	go	through	all	of	this	(and	don’t	worry	about	what	it	all
means),	but	do	pay	attention	to	the	organization	of	the	description.

	

First,	clusters	of	options	usually	mean	you	can	use	one	or	more	of	them	in
different	combinations,	so	-adhu7V	means	you	can	also	use	-h.	However,	you
can’t	always	use	all	combinations;	this	description	doesn’t	make	that	clear.	For
example,	-h	is	incompatible	with	other	options,	but	you	could	do	man	-du.
Unfortunately,	the	description’s	format	does	not	make	this	clear.

	

Second,	the	|	symbol	means	“or.”	So	you	can	use	the	-c,	the	-w,	or	the	-tZT
option,	followed	by	a	device	argument.

	

Third,	notice	that	you	can	nest	the	brackets,	because	they	indicate	optional
units.	So	if	you	have	a	section,	you	must	also	have	a	page,	because	e	page	is	not
optional	within	the	[[section]	page]	unit.

	

There’s	no	need	to	memorize	any	of	this,	just	refer	to	this	section	as	you	read
documentation.



	

Files	and	Directories	Files	are	a	facility	for	storing	and	organizing
information,	analogous	to	paper	documents.	They’re	organized	into	directories,
which	are	called	folders	on	some	other	systems.	Let’s	look	at	the	organization	of
files	on	a	Debian	system:

	

/.

A	simple	/	represents	the	root	directory.	All	other	files	and	directories	are
contained	in	the	root	directory.	If	you	are	coming	from	the	DOS/Windows	world,
is	very	similar	to	what	C:is	for	DOS,	that	is	the	root	of	the	filesystem.	A	notable
difference	between	DOS	and	Linux	however,	is	that	DOS	keeps	several
filesystems:	C:	(first	hard	disk),	A:	(first	floppy	disk),	and	D:	(either	CD-ROM	or
second	hard	disk),	whereas	Linux	has	all	its	files	organized	above	the	same	root.

	

homejaneq.

This	is	the	home	directory	of	user	“janeq.”	Reading	left	to	right,	to	get	to	this
directory	you	start	in	the	root	directory,	enter	directory	home,	and	then	enter
directory	janeq.

	

etcX11/XF86Config.

This	is	the	configuration	file	for	the	X	Window	system.	It	resides	in	the	X11
subdirectory	of	the	etc	directory.	etc	is	in	turn	a	subdirectory	of	the	root
directory,	/.

	

Things	to	note:

	



*	Filenames	are	case-sensitive.	That	is,	MYFILE	and	MyFile	are	different
files.

*	The	root	directory	is	referred	to	as	simply	/.	Don’t	confuse	this	“root”	with
the	root	user,	the	user	on	your	system	with	“super	powers.”

*	Every	directory	has	a	name,	which	can	contain	any	letters	or	symbols	except
.	The	root	directory	is	an	exception;	its	name	is

(pronounced	“slash”	or	“the	root	directory”),	and	it	cannot	be	renamed.

*	While	you	can	use	almost	any	letters	or	symbols	in	a	filename,	in	practice
it’s	a	bad	idea.	It	is	better	to	avoid	characters	that	often	have	special	meanings	on
the	command	line,	including:	{	}	(	)	[	]	‘	`

”	\/	>	<	|	;	!	#	&	^	*	%

*	Also	avoid	putting	spaces	in	filenames.	If	you	want	to	separate	words	in	a
name,	good	choices	are	the	period,	hyphen,	and	underscore.	You	could	also
capitalize	each	word,	LikeThis.

*	Each	file	or	directory	is	designated	by	a	fully-qualified	filename,	absolute
filename,	or	path,	giving	the	sequence	of	directories	which	must	be	passed
through	to	reach	it.	The	three	terms	are	synonymous.

All	absolute	filenames	begin	with	the	directory,	and	there’s	a

before	each	directory	or	file	in	the	filename.	The	first	/	is	the	name	of	a
directory,	but	the	others	are	simply	separators	to	distinguish	the	parts	of	the
filename.

*	The	words	used	here	can	be	confusing.	Take	the	following	example:
usrshare/keytables/us.map.gz.	This	is	a	fully-qualified	filename;	some	people
call	it	a	path.	However,	people	will	also	refer	to	us.map.gz	alone	as	a	filename.

*	There	is	also	another	use	for	the	word	“path.”	The	intended	meaning	is
usually	clear	from	the	context.

*	Directories	are	arranged	in	a	tree	structure.	All	absolute	filenames	start	with
the	root	directory.	The	root	directory	has	a	number	of	branches,	such	as	etc	and



usr.	These	subdirectories	in	turn	branch	into	still	more	subdirectories,	such	as
etcinit.d	and	usrlocal.

The	whole	thing	together	is	called	the	“directory	tree.”

*	You	can	think	of	an	absolute	filename	as	a	route	from	the	base	of	the	tree	(/)
to	the	end	of	some	branch	(a	file).	You’ll	also	hear	people	talk	about	the
directory	tree	as	if	it	were	a	family	tree:	Thus	subdirectories	have	“parent,”	and	a
path	shows	the	complete	ancestry	of	a	file.

*	There	are	also	relative	paths	that	begin	somewhere	other	than	the	root
directory.	More	on	this	later.

*	No	directory	corresponds	to	a	physical	device,	such	as	your	hard	disk.

This	differs	from	DOS	and	Windows,	in	which	all	paths	begin	with	a	device
name	such	as	C:.	The	directory	tree	is	meant	to	be	an	abstraction	of	the	physical
hardware,	so	you	can	use	the	system	without	knowing	what	the	hardware	is.	All
your	files	could	be	on	one	disk	-	or	you	could	have	20	disks,	some	of	them
connected	to	a	different	computer	elsewhere	on	the	network.	You	can’t	tell	just
by	looking	at	the	directory	tree,	and	nearly	all	commands	work	just	the	same
way	no	matter	what	physical	device(s)	your	files	are	really	on.

Don’t	worry	if	all	this	isn’t	completely	clear	yet.	There	are	many	examples	to
come.

	

Using	Files:	A	Tutorial

	

To	use	your	system,	you’ll	have	to	know	how	to	create,	move,	rename,	and
delete	files	and	directories.	This	section	describes	how	to	do	so	with	the	standard
Debian	commands.

	

The	best	way	to	learn	is	to	try	things.	As	long	as	you	aren’t	root	(and	haven’t
yet	created	any	important	personal	files),	you	cannot	mess	up	too	seriously.



Jump	in	-	type	each	of	these	commands	at	the	prompt	and	press	Enter.

	

pwd

One	directory	is	always	considered	the	current	working	directory	for	the	shell
you’re	using.	You	can	view	this	directory	with	the	pwd	command,	which	stands
for	Print	Working	Directory.	pwd	prints	the	name	of	the	directory	you’re
working	in	-	probably	homeyourname.

	

ls

ls	stands	for	“list,”	as	in	“list	files.”	When	you	type	ls,	the	system	displays	a
list	of	all	the	files	in	your	current	working	directory.	If	you’ve	just	installed
Debian,	your	home	directory	may	well	be	empty.	If	your	working	directory	is
empty,	ls	produces	no	output,	because	there	are	no	files	to	list.

	

cd	/

cd	means	“change	directory.”	In	this	case,	you’ve	asked	to	change	to	the	root
directory.

	

pwd

This	verifies	that	you’re	working	in	the	root	directory.

	

ls

Lets	you	see	what’s	in	/.

	



cd

Typing	cd	with	no	arguments	selects	your	home	directory	-	home	yourname	-
as	the	current	working	directory.	Try	pwd	to	verify	this.

	

Before	continuing,	you	should	know	that	there	are	actually	two	different	kinds
of	filenames.	Some	of	them	begin	with	/,	the	root	directory,	such	as	etcprofile.
These	are	called	absolute	filenames	because	they	refer	to	the	same	file	no	matter
what	your	current	directory	is.	The	other	kind	of	filename	is	relative.

	

Two	directory	names	are	used	only	in	relative	filenames:	.	and	…	The
directory	.	refers	to	the	current	directory,	and	..	is	the	parent	directory.	These	are
“shortcut”	directories.	They	exist	in	every	directory.	Even	the	root	directory	has
a	parent	directory	-	it’s	its	own	parent!

	

So	filenames	that	include	.	or	..	are	relative,	because	their	meaning	depends	on
the	current	directory.	If	I’m	in	usrbin	and	type	../etc,	I’m	referring	to	usretc.	If
I’m	in	var	and	type	..etc,	I’m	referring	to	etc.	Note	that	a	filename	without	the
root	directory	at	the	front	implicitly	has	.	at	the	front.	So	you	can	type	local/bin,
or	./local/bin	and	it	means	the	same	thing.

	

A	final	handy	tip:	The	tilde	is	equivalent	to	your	home	directory.	So	typing	cd
is	the	same	as	typing	cd	with	no	arguments.	Also,	you	can	type	things	like	cd
/practice/mysubdirectory	to	change	to	the	directory
homeyourname/practice/mysubdirectory.	In	a	similar	way,	myuser	is	equivalent
to	the	home	directory	of	the	user	“myuser,”	which	is	probably	something	like
homemyuser;	so	~myuser/docs/debian.ps	is	equivalent	to
homemyuser/doc/debian.ps.

	

Here	are	some	more	file	commands	to	try	out,	now	that	you	know	about



relative	filenames.	cd	to	your	home	directory	before	you	begin.

	

mkdir	practice

In	your	home	directory,	make	a	directory	called	practice.	You’ll	use	this
directory	to	try	out	some	other	commands.	You	might	type	ls	to	verify	that	your
new	directory	exists.

	

cd	practice

Changes	the	directory	to	practice.

	

mkdir	mysubdirectory

Creates	a	subdirectory	of	practice.

	

cp	etcprofile	.

cp	is	short	for	“copy.”	etcprofile	is	just	a	random	file	on	your	system,	don’t
worry	about	what	it	is	for	now.	We’ve	copied	it	to	.	(recall	that	.	just	means	“the
directory	I’m	in	now,”	or	the	current	working	directory).	So	this	creates	a	copy
of	etcprofile	and	puts	it	in	your	practice	directory.	Try	typing	ls	to	verify	that
there’s	indeed	a	file	called	profile	in	your	working	directory,	alongside	the	new
mysubdirectory.

	

more	profile

This	lets	you	view	the	contents	of	the	file	profile.	more	is	used	to	view	the
contents	of	text	files.	It’s	called	more	because	it	shows	one	screenful	of	the	file
at	a	time,	and	you	press	the	space	bar	to	see	more.



more	will	exit	when	you	get	to	the	end	of	the	file,	or	when	you	press	q	(quit).

	

more	etcprofile

Verifies	that	the	original	looks	just	like	the	copy	you	made.

	

mv	profile	mysubdirectory

mv	stands	for	“move.”	You’ve	moved	the	file	profile	from	the	current
directory	into	the	subdirectory	you	created	earlier.

	

ls

Verifies	that	profile	is	no	longer	in	the	current	directory.

	

ls	mysubdirectory

Verifies	that	profile	has	moved	to	mysubdirectory.

	

cd	mysubdirectory

Changes	to	the	subdirectory.

	

mv	profile	myprofile

Note	that	unlike	some	operating	systems,	there	is	no	difference	between
moving	a	file	and	renaming	it.	Thus	there’s	no	separate	rename	command.

Note	that	the	second	argument	to	mv	can	be	a	directory	to	move	the	file	or



directory	into,	or	it	can	be	a	new	filename.	cp	works	the	same	way.

	

As	usual,	you	can	type	ls	to	see	the	result	of	mv.

	

mv	myprofile	..

Just	as	.	means	“the	directory	I’m	in	now,”	..	means	“parent	of	the	current
directory,”	in	this	case	the	practice	directory	you	created	earlier.	Use	ls	to	verify
that	that’s	where	myprofile	is	now.

	

cd	..

Changes	directories	to	the	parent	directory	-	in	this	case	practice,	where	you
just	put	myprofile.

	

rm	myprofile

rm	means	“remove,”	so	this	deletes	myprofile.	Be	careful!	Deleting	a	file	on	a
GNU/Linux	system	is	permanent	-	there	is	no	undelete.	If	you	rm	it,	it’s	gone,
forever.	Be	careful!	To	repeat,	deleting	a	file	on	a	GNU/Linux	system	is
permanent	-	there	is	no	undelete.	If	you	rm	it,	it’s	gone,	forever.

	

rmdir	mysubdirectory

rmdir	is	just	like	rm,	only	it’s	for	directories.	Notice	that	rmdir	only	works	on
empty	directories.	If	the	directory	contains	files,	you	must	delete	those	files	first,
or	alternatively	you	can	use	rm	-r	in	place	of	rmdir.

	

cd	..



This	moves	out	of	the	current	directory,	and	into	its	parent	directory.

Now	you	can	type	the	following:

	

rmdir	practice

This	will	delete	the	last	remnants	of	your	practice	session.

	

So	now	you	know	how	to	create,	copy,	move,	rename,	and	delete	files	and
directories.	You	also	learned	some	shortcuts,	like	typing	simply	cd	to	jump	to
your	home	directory,	and	how	.	and	..	refer	to	the	current	directory	and	its	parent,
respectively.	You	should	also	remember	the	concept	of	the	root	directory,	or	/,
and	the	alias	~	for	your	home	directory.

	

Dot	Files	and	ls	-a

	

When	you	type	ls,	files	beginning	with	a	dot	are	not	listed.

Traditionally,	files	that	contain	configuration	information,	user	preferences,
and	so	on	begin	with	a	dot;	these	are	hidden	and	out	of	your	way	while	you	do
your	day-to-day	work.	Sample	dot	files	are	/.emacs,	/.newsrc,	/.bashrc,
/.xsession,	and	/.fvwmrc.	These	are	used	by	Emacs,	news	readers,	the	Bash	shell,
the	X	Window	system,	and	the	fvwm	window	manager,	respectively.	It	is
conventional	to	end	the	dot	filename	with	rc,	but	some	programs	don’t.	There	are
also	directories	beginning	with	a	dot,	such	as	/.gimp	and	~/.netscape,	which
store	preferences	for	the	Gimp	and	Netscape.

	

Sometimes	a	program	will	create	a	dot	file	automatically;	for	example,
Netscape	allows	you	to	edit	your	preferences	with	a	graphical	dialog	box	and
then	it	saves	your	choices.	Other	times	you	will	create	them	yourself	using	a	text



editor;	this	is	the	traditional	way	to	do	it,	but	you	have	to	learn	the	peculiar
format	of	each	file	-	inconvenient	at	first,	but	it	can	give	you	a	lot	of	power.

	

To	see	dot	files,	you	must	use	the	-a	option	to	ls.	The	long	form	of	-a	is	-all,	if
you	find	that	easier	to	remember.	You	can	also	use	-A	or	-almost-all,	which
displays	all	dot	files	except	.	and	…	Remember	that	.

is	the	current	directory,	and	..	is	the	parent	of	the	current	directory;	because
these	are	guaranteed	to	be	in	every	directory,	there	is	no	real	reason	to	list	them
with	ls.	You	already	know	they	are	there.

	

Processes

	

We	mentioned	before	that	GNU/Linux	is	a	multitasking	system.	It	can	do
many	tasks	at	once.	Each	of	these	tasks	is	called	a	process.	The	best	way	to	get	a
sense	of	this	is	to	type	top	at	the	shell	prompt.	You’ll	get	a	list	of	processes,
sorted	according	to	how	much	of	the	computer’s	processing	time	they’re	using.
The	order	will	continuously	change	before	your	eyes.	At	the	top	of	the	display,
there’s	some	information	about	the	system:	how	many	users	are	logged	in,	how
many	total	processes	there	are,	how	much	memory	you	have	and	how	much
you’re	using.

	

In	the	far	left	column,	you’ll	see	the	user	owning	each	process.	The	far	right
column	shows	which	command	invoked	the	process.	You’ll	probably	notice	that
top	itself,	invoked	by	you,	is	near	the	top	of	the	list	(because	anytime	top	checks
on	CPU	usage,	it	will	be	active	and	using	CPU

to	do	the	check).

	

Note	that	in	all	the	commands	ending	in	“d”	-	such	as	kflushd	and	inetd	-	the



“d”	stands	for	daemon.

	

Daemon	originally	meant	Disks	And	Extensions	MONitor.	A	daemon	is	a
non-interactive	process,	that	is,	it’s	run	by	the	system	and	users	never	have	to
worry	about	it.	Daemons	provide	services	like	Internet	connectivity,	printing,	or
e-mail.

	

Now	press	u	and	give	top	your	username	when	it	asks.	The	u	command	asks
to	see	only	those	processes	belonging	to	you;	it	allows	you	to	ignore	all	the
daemons	and	whatever	other	people	are	doing.	You	might	notice	bash,	the	name
of	your	shell.	You’ll	pretty	much	always	be	running	bash.

	

Note	that	column	two	of	the	top	display	shows	you	the	PID,	or	Process
IDentification	number.	Each	process	is	assigned	a	unique	PID.	You	can	use	the
PID	to	control	individual	processes	(more	on	that	later).	Another	useful	trick	is
to	press	?	to	get	a	list	of	top	commands.

	

You	may	wonder	about	the	difference	between	a	“process”	and	a	“program.”
In	practice,	people	use	the	terms	interchangeably.

Technically,	the	program	is	the	set	of	instructions	written	by	a	programmer
and	kept	on	disk.	The	process	is	the	working	instantiation	of	the	program	kept	in
memory	by	Linux.	But	it’s	not	that	important	to	keep	the	terms	straight.

	

Much	of	your	interaction	with	a	computer	involves	controlling	processes.

You’ll	want	to	start	them,	stop	them,	and	see	what	they’re	up	to.	Your	primary
tool	for	this	is	the	shell.

	



The	Shell

	

The	shell	is	a	program	that	allows	you	to	interact	with	your	computer.

It’s	called	a	shell	because	it	provides	an	environment	for	you	to	work	in	-	sort
of	a	little	electronic	home	for	you	as	you	compute.	(Think	hermit	crab.)

	

The	simplest	function	of	the	shell	is	to	launch	other	programs.	You	type	the
name	of	the	program	you	want	to	run,	followed	by	the	arguments	you	want,	and
the	shell	asks	the	system	to	run	the	program	for	you.

	

Of	course,	graphical	windowing	systems	also	fill	this	need.	Technically,
Windows	95	provides	a	graphical	shell,	and	the	X	Window	system	is	another
kind	of	graphical	shell.	But	“shell”	is	commonly	used	to	mean	“command-line
shell.”

	

Needless	to	say,	the	hackers	who	work	on	shells	aren’t	satisfied	with	simply
launching	commands.	Your	shell	has	a	bewildering	number	of	convenient	and
powerful	features	if	you	would	like	to	take	advantage	of	them.

	

There	are	countless	different	shells	available;	most	are	based	on	either	the
Bourne	shell	or	the	C	shell,	two	of	the	oldest	shells.	The	original	Bourne	shell’s
program	name	is	sh,	while	csh	is	the	C	shell.	Bourne	shell	variants	include	the
Bourne	Again	Shell	from	the	GNU	project	(bash,	the	Debian	default),	the	Korn
shell	(ksh),	and	the	Z	shell	(zsh).	There	is	also	ash,	a	traditional	implementation
of	the	Bourne	shell.	The	most	common	C	shell	variant	is	tcsh	(the	t	pays	tribute
to	the	TENEX	and	TOPS-20	operating	systems,	which	inspired	some	of	tcsh’s
improvements	over	csh).

	



bash	is	probably	the	best	choice	for	new	users.	It	is	the	default	and	has	all	the
features	you’re	likely	to	need.	But	all	the	shells	have	loyal	followings;	if	you
want	to	experiment,	install	some	different	shell	packages	and	change	your	shell
with	the	chsh	command.	Just	type	chsh,	supply	a	password	when	asked,	and
choose	a	shell.	When	you	next	log	in,	you’ll	be	using	the	new	shell.

	

Managing	Processes	with	bash	Debian	is	a	multitasking	system,	so	you	need	a
way	to	do	more	than	one	thing	at	once.	Graphical	environments	like	X	provide	a
natural	way	to	do	this;	they	allow	multiple	windows	on	the	screen	at	any	one
time.

Naturally,	bash	(or	any	other	shell)	provides	similar	facilities.

	

Earlier	you	used	top	to	look	at	the	different	processes	on	the	system.

Your	shell	provides	some	convenient	ways	to	keep	track	of	only	those
processes	you’ve	started	from	the	command	line.	Each	command	line	starts	a	job
(also	called	a	process	group)	to	be	carried	out	by	the	shell.	A	job	can	consist	of	a
single	process	or	a	set	of	processes	in	a	pipeline	(more	on	pipelines	later).

	

Entering	a	command	line	will	start	a	job.	Try	typing	man	cp,	and	the	cp
manual	page	will	appear	on	the	screen.	The	shell	will	go	into	the	background
and	return	when	you	finish	reading	the	manual	page	(or	you	can	press	q	to	quit
rather	than	scrolling	through	the	whole	thing).

	

But	say	you’re	reading	the	manual	page,	and	you	want	to	do	something	else
for	a	minute.	No	problem.	Press	Ctrl-z	while	you’re	reading	to	suspend	the
current	foreground	job	and	put	the	shell	in	the	foreground.	When	you	suspend	a
job,	bash	will	first	give	you	some	information	on	it,	followed	by	a	shell	prompt.
You	will	see	something	like	this	on	the	screen:	NAME	cp	-	copy	files
SYNOPSIS	cp	[options]	source	-More-



	

[1]+	Stopped	man	cp

$

Note	the	last	two	lines.	The	next	to	last	is	the	job	information,	and	then	you
have	a	shell	prompt.

	

bash	assigns	a	job	number	to	each	command	line	you	run	from	the	shell.

This	allows	you	to	refer	to	the	process	easily.	In	this	case,	man	cp	is	job
number	1,	displayed	as	[1].	The	+	means	that	this	is	the	last	job	you	had	in	the
foreground.	bash	also	tells	you	the	current	state	of	the	job	-

Stopped	-	and	the	job’s	command	line.

	

There	are	many	things	you	can	do	with	jobs.	With	man	cp	still	suspended,	try
the	following	commands:

	

man	ls

Starts	a	new	job.

	

Ctrl-z

Suspends	the	man	ls	job;	you	should	see	its	job	information.

	

man	mv

Starts	yet	another	job.



	

Ctrl-z

Suspends	it.

	

jobs

Asks	bash	for	a	display	of	current	jobs.	The	result	looks	like	this:	{$}	jobs

	

[1]	Stopped	man	cp

	

[2]-	Stopped	man	ls

	

[3]+	Stopped	man	mv

{$}

Notice	the	-	and	+,	denoting	respectively	the	next	to	last	and	last	foreground
jobs.

	

fg

Places	the	last	foreground	job	(man	mv,	the	one	with	the	+)	in	the	foreground
again.	If	you	press	the	space	bar,	the	man	page	will	continue	scrolling.

	

Ctrl-z

Re-suspends	man	mv.



	

fg	%1

You	can	refer	to	any	job	by	placing	a	%	in	front	of	its	number.	If	you	use	fg
without	specifying	a	job,	the	last	active	one	is	assumed.

	

Ctrl-z

Re-suspends	man	cp.

	

kill	%1

Kills	off	job	1.	bash	will	report	the	job	information,	which	will	look	like	this:

	

$	kill	%1

	

[1]-	Terminated	man	cp

$

bash	is	only	asking	the	job	to	quit,	and	sometimes	a	job	will	not	want	to	do	so.
If	the	job	doesn’t	terminate,	you	can	add	the	-KILL5.1	option	to	kill	to	stop
asking	and	start	demanding.	For	example:	$	kill	-KILL	%1

	

[1]-	Killed	man	mv

$

The	-KILL	option	forcibly	and	unconditionally	kills	off	the	job.



	

In	technical	terms,	kill	simply	sends	a	signal.	By	default,	it	sends	a	signal	that
requests	termination	(TERM,	or	signal	15)	but	you	can	also	specify	a	signal,	and
signal	9	(KILL)	is	the	signal	that	forces	termination.	The	command	name	kill	is
not	necessarily	appropriate	to	the	signal	sent;	for	example,	sending	the	TSTP
(terminal	stop)	signal	suspends	the	process	but	allows	it	to	be	continued	later.

	

top

This	brings	the	top	display	back	up.	Give	the	u	command	in	top	to	see	only
your	processes.	Look	in	the	right-hand	column	for	the	man	ls	and	man	mv
commands.	man	cp	won’t	be	there	because	you	killed	it.	top	is	showing	you	the
system	processes	corresponding	to	your	jobs;	notice	that	the	PID	on	the	left	of
the	screen	does	not	correspond	to	the	job	number.

	

You	may	not	be	able	to	find	your	processes	because	they’re	off	the	bottom	of
the	screen;	if	you’re	using	X	(see	Chapter	9	on	page	[*]),	you	can	resize	the
xterm	to	solve	this	problem.

	

Even	these	simple	jobs	actually	consist	of	multiple	processes,	including	the
man	process	and	the	pager	more,	which	handles	scrolling	one	page	at	a	time.
You	may	notice	the	more	processes	are	also	visible	in	top.

	

You	can	probably	figure	out	how	to	clean	up	the	remaining	two	jobs.	You	can
either	kill	them	(with	the	kill	command)	or	foreground	each	one	(with	fg)	and
exit	it.	Remember	that	the	jobs	command	gives	you	a	list	of	existing	jobs	and
their	status.

	

One	final	note:	The	documentation	for	bash	is	quite	good,	but	it	is	found	in	the



Info	help	system	rather	than	the	man	pages.	To	read	it,	type	info	bash.	See
section	A.1.1	for	instructions	on	using	the	info	program.	bash	also	contains	a
very	good	summary	of	its	commands	accessible	by	the	help	command.	help
displays	a	list	of	available	topics;	more	information	about	each	of	them	is
accessible	with	the	command	help	topic	name.	Try	typing	help	cd,	for	example.
This	will	give	you	details	on	the	-P	and	-L

arguments	recognized	by	cd.

	

A	Few	bash	Features	This	section	mentions	just	a	few	of	the	most	commonly
used	Bash	features;	for	a	more	complete	discussion	see	Chapter	6.

	

Tab	Completion

	

The	bash	shell	can	guess	what	filename	or	command	you	are	trying	to	type
and	automatically	finish	typing	it	for	you.	Just	type	the	beginning	of	a	command
or	filename	and	press	Tab.	If	bash	finds	a	single	unique	completion,	it	will	finish
the	word	and	put	a	space	after	it.	If	it	finds	multiple	possible	completions,	it	will
fill	out	the	part	all	completions	have	in	common	and	beep.	You	can	then	enter
enough	of	the	word	to	make	it	unique	and	press	Tab	again.	If	it	finds	no
completions,	it	will	simply	beep.

	

Managing	Your	Identity	Unix-like	systems	are	multiuser,	and	so	you	have
your	own	electronic	identity	as	a	user	on	the	system.	Type	finger	yourusername
to	look	at	some	of	the	information	about	you	that’s	publically	available.	To
change	the	name	and	shell	listed	there,	you	can	use	the	commands	chfn	and
chsh.	Only	the	superuser	can	change	your	login	(username)	and	directory.	You’ll
notice	that	it	says	“No	plan.”	A	“plan”	is	just	some	information	you	can	make
available	to	others.	To	create	a	plan,	you	put	whatever	information	you	want
people	to	see	in	a	file	called	.plan.	To	do	this	you’ll	use	a	text	editor;	see	section
8.2	on	page	[*].	Then	finger	yourself	to	see	your	plan.	Others	can	finger	you	to
see	your	plan	and	to	check	whether	you’ve	received	new	mail	or	read	your	mail.



	

Note	that	this	finger	information	is	available	to	the	entire	Internet	by	default.
If	you	don’t	want	this,	read	about	configuring	inetd	and	the	file	etcservices.
Eventually	the	installation	manual	will	describe	this	configuration,	but	for	now
you	might	try	the	man	pages	or	just	put	nonsense	in	for	your	finger	information.

	

Using	the	Shell	As	you	have	been	reading	this	book,	you’ve	been	interacting
with	the	shell	already.	The	shell	is	the	program	that	reads	your	commands	and
then	does	what	you	ask	it	to.	In	this	chapter,	you	explore	the	shell	in	greater
detail,	with	a	special	eye	towards	customizing	the	shell	to	work	as	you	want	it	to.

	

Environment	Variables	Every	process	has	an	environment	associated	with	it.
An	environment	is	a	collection	of	environment	variables.	A	variable	is	a
changeable	value	with	a	fixed	name.	For	example,	the	name	EMAIL	could	refer
to	the	value	joe@nowhere.com.	The	value	can	vary;	EMAIL	could	also	refer	to
jane@somewhere.com.

	

Because	your	shell	is	a	process	like	any	other,	it	has	an	environment.	You	can
view	your	shell’s	environment	by	entering	the	printenv	command.

	

Figure	6.1:	Sample	printenv	output	\begin{figure}\par\par\begin{list}{}{
\setlength{\rightmargin}{\leftmargin}

\ra…	…ables}\index{shells!environments}

\par\_=usrbin/printenv\end{list}\end{figure}

	

Figure	6.1	on	page	[*]	has	some	sample	output	from	printenv.	On	your
system,	the	output	will	be	different	but	similar.



	

Environment	variables	are	one	way	to	configure	the	system.	For	example,	the
EDITOR	variable	lets	you	select	your	preferred	editor	for	posting	news,	writing
e-mail,	and	so	on.

	

Setting	environment	variables	is	simple.	For	practice,	try	customizing	your
shell’s	prompt	and	your	text	file	viewer	with	environment	variables.

First,	let’s	get	a	bit	of	background	information.

	

man	less

This	command	lets	you	view	the	online	manual	for	the	less	command.	In	order
to	show	you	the	text	one	screenful	at	a	time,	man	invokes	a	pager	that	shows	you
a	new	page	of	text	each	time	you	press	the	space	bar.	By	default,	it	uses	the
pager	called	more.

	

Go	ahead	and	glance	over	the	man	page	for	less,	which	is	an	enhanced	pager.
Scroll	to	a	new	page	by	pressing	space;	press	q	to	quit.	more	will	also	quit
automatically	when	you	reach	the	end	of	the	man	page.

	

export	PAGER=less

After	reading	about	the	advantages	of	less,	you	might	want	to	use	it	to	read
man	pages.	To	do	this,	you	set	the	environment	variable	PAGER.

	

The	command	to	set	an	environment	variable	within	bash	always	has	this
format:

	



export	NAME=value

export	means	to	move	the	variable	from	the	shell	into	the	environment.

This	means	that	programs	other	than	the	shell	(for	instance,	a	file	viewer)	will
be	able	to	access	it.

	

echo	$PAGER

This	is	the	easiest	way	to	see	the	value	of	a	variable.	$PAGER	tells	the	shell	to
insert	the	value	of	the	PAGER	variable	before	invoking	the	command.	echo
echoes	back	its	argument:	in	this	case,	it	echoes	the	current	PAGER	value,	less.

	

man	more

Displays	the	more	manual.	This	time,	man	should	have	invoked	the	less	pager.

	

less	has	lots	of	features	that	more	lacks.	For	example,	you	can	scroll	backward
with	the	b	key.	You	can	also	move	up	and	down	(even	sideways)	with	the	arrow
keys.	less	won’t	exit	when	it	reaches	the	end	of	the	man	page;	it	will	wait	for	you
to	press	q.

	

You	can	try	out	some	less-specific	commands,	like	b,	to	verify	that	they	don’t
work	with	more	and	that	you	are	indeed	using	more.

	

unset	PAGER

If	you	don’t	want	to	specify	a	pager	anymore,	you	can	unset	the	variable.

man	will	then	use	more	by	default,	just	as	it	did	before	you	set	the	variable.



	

echo	$PAGER

Because	PAGER	has	been	unset,	echo	won’t	print	anything.

	

PS1=hello:

	

Figure	6.2:	Changing	the	prompt	\begin{figure}\par\par\begin{list}{}{
\setlength{\rightmargin}{\leftmargin}

\ra…	…o~My~prompt~is~\$PS1}	\par	My~prompt~is~hello:	\par
hello:\end{list}\end{figure}

	

Just	for	fun,	change	your	shell	prompt.	$	should	now	change;	see	Figure	6.2
for	details.

	

export	is	not	necessary,	because	you’re	changing	the	shell’s	own	behavior.

There’s	no	reason	to	export	the	variable	into	the	environment	for	other
programs	to	see.	Technically,	PS1	is	a	shell	variable	rather	than	an	environment
variable.

	

If	you	wanted	to,	you	could	export	the	shell	variable,	transforming	it	into	an
environment	variable.	If	you	do	this,	programs	you	run	from	the	shell	can	see	it.

	

Where	Commands	Reside:	The	PATH	Variable	When	you	type	a	command
into	the	shell,	it	has	to	find	the	program	on	your	hard	disk	before	executing	it.	If
the	shell	had	to	look	all	over	the	disk,	it	would	be	very	slow;	instead,	it	looks	in	a



list	of	directories	contained	in	the	PATH	environment	variable.	This	list	of
directories	makes	up	the	shell’s	search	path;	when	you	enter	a	command,	it	goes
through	each	one	in	turn	looking	for	the	program	you	asked	to	run.

	

You	may	need	to	change	the	PATH	variable	if	you	install	programs	yourself	in
a	non-standard	location.	The	value	of	PATH	is	a	colon-separated	list	of
directories.	The	default	value	on	Debian	systems	is	as	follows:
usrlocal/bin:usrbin:/bin:usrbin/X11:usrgames	This	value	is	defined	in	the	file
etcprofile	and	applies	to	all	users.

You	can	easily	change	the	value,	just	as	you	can	change	any	environment
variable.	If	you	type	the	command	ls,	the	shell	will	first	look	in	usrlocal/bin;	ls
isn’t	there,	so	it	will	try	usrbin;	when	that	fails,	it	will	check	bin.	There	it	will
discover	bin/ls,	stop	its	search,	and	execute	the	program	binls.	If	usrbin/X11/ls
existed	(it	doesn’t,	but	pretend),	it	would	be	ignored.

	

You	can	see	which	ls	the	shell	is	going	to	use	with	the	type	command.

type	ls	will	give	you	the	answer	binls.	Try	it	yourself.

	

Try	asking	where	type	itself	resides:

	

$	type	type

	

type	is	a	shell	builtin

	

type	isn’t	actually	a	program;	it’s	a	function	provided	by	the	shell.

However,	you	use	it	just	like	an	external	program.



	

There	are	a	number	of	commands	like	this;	type	man	builtins	to	read	the	man
page	describing	them.	In	general,	you	don’t	need	to	know	whether	a	command	is
a	builtin	or	a	real	program;	however,	builtins	will	not	show	up	in	the	output	of	ps
or	top	because	they	aren’t	separate	processes.	They’re	just	part	of	the	shell.

	

Configuration	Files	Many	applications	on	Linux	systems	allow	you	to	alter
how	they	behave	at	certain	times	by	altering	files	containing	configuration
information.

These	configuration	files	may	contain	application	startup	information,	run-
time	settings	and	application	shutdown	settings.	In	general,	a	configuration
filename	is	based	on	the	name	of	the	application	for	which	it	contains	settings.
Such	a	naming	convention	allows	you	to	more	readily	determine	which
configuration	file	contains	settings	for	a	given	application.

	

System-Wide	Versus	User-Specific

Configuration

	

It’s	important	to	remember	that	there	are	two	different	kinds	of	configurations
on	a	Debian	system.	System-wide	configuration	affects	all	users.	System-wide
settings	are	made	in	the	/etc	directory,	so	you	generally	must	be	root	in	order	to
change	system-wide	settings.	You	might	configure	the	way	the	system	connects
to	the	Internet,	for	example,	or	have	web	browsers	on	the	system	always	start	on
the	company	home	page.

Since	you	want	these	settings	to	apply	to	all	users,	you	make	the	changes	in
/etc.	Sample	configuration	files	in	/etc	include	etcX11/XF86Config,	etclynx.cfg,
and	etcppp/options.	In	fact,	nearly	all	the	files	in	/etc	are	configuration	files.

	



User	configuration	affects	only	a	single	user.	Dotfiles	are	used	for	user
configuration.	For	example,	the	file	~/.newsrc	stores	a	list	of	which	USENET
(discussion	group)	articles	you	have	read	and	which	groups	you	subscribe	to.
This	allows	news	readers	such	as	trn	or	GNUS	to	display	unread	articles	in	the
groups	you’re	interested	in.	This	information	will	be	different	for	every	user	on
the	system,	so	each	user	has	his	own	.newsrc	file	in	his	home	directory.

	

Aliases

	

If	you	use	the	same	command	often,	you	might	get	tired	of	typing	it.	bash	lets
you	write	shorter	aliases	for	your	commands.

	

Say	you	always	use	the	-almost-all	and	-color=auto	options	to	ls.	You	quickly
get	tired	of	typing	ls	-almost-all	-color=auto.	So	you	make	an	alias:

	

alias	myls=‘ls	-almost-all	-color=auto’

Now	you	can	type	myls	instead	of	the	full	command.	To	see	what	myls	really
is,	run	the	command	type	myls.	To	see	a	list	of	aliases	you’ve	defined,	simply
type	alias	on	a	line	by	itself.

	

Controlling	Input	and	Output	Throughout	your	experiences	with	Linux,	you
will	most	likely	find	that	manipulating	application	input	and	output	can	be	a	very
powerful	thing	to	do.	This	section	describes	some	of	the	things	that	controlling
input	and	output	can	do	for	you.

	

stdin,	stdout,	Pipelines,	and	Redirection



	

Every	process	has	at	least	three	connections	to	the	outside	world.	The	standard
input	is	one	source	of	the	process’s	data;	the	standard	output	is	one	place	the
process	sends	data;	and	the	standard	error	is	a	place	the	process	can	send	error
messages.	(These	are	often	abbreviated	stdin,	stdout,	and	stderr.)

	

The	words	“source”	and	“place”	are	intentionally	vague.	These	standard	input
and	output	locations	can	be	changed	by	the	user;	they	could	be	the	screen,	the
keyboard,	a	file,	even	a	network	connection.	You	can	specify	which	locations	to
use.

	

When	you	run	a	program	from	the	shell,	usually	standard	input	comes	from
your	keyboard,	and	standard	output	and	error	both	go	to	your	screen.

However,	you	can	ask	the	shell	to	change	these	defaults.

	

For	example,	the	echo	command	sends	it	output	to	standard	output,	normally
the	screen.	But	you	can	send	it	to	a	file	instead	with	the	output	redirection
operator,	>.	For	example,	to	put	the	word	“Hello”	in	the	file	myfile,	use	this
command:

	

echo	Hello	>	myfile

Use	cat	or	your	text	file	pager	(more	or	less)	to	view	myfile’s	contents;	see
Figure	6.3	on	page	[*].

	

Figure	6.3:	Redirecting	output	\begin{figure}\par\par\begin{list}{}{
\setlength{\rightmargin}{\leftmargin}



\ra…	…llo~>~myfile}	\par\$~\textbf{cat~myfile}	\par	Hello
\par\$\end{list}\end{figure}

	

You	can	change	the	standard	input	of	a	command	with	the	input	redirection
operator,	<.	For	example,	cat	<	myfile	will	display	the	contents	of	myfile.	This	is
not	useful	in	practice;	for	convenience,	the	cat	command	accepts	a	filename
argument.	So	you	can	simply	say	cat	myfile,	and	the	effect	will	be	the	same.
redirection	operators	Under	the	hood,	cat	<	myfile	means	that	the	shell	opens
myfile	and	then	feeds	its	contents	to	the	standard	input	of	cat.	cat	myfile,	without
the	redirection	operator,	means	that	the	cat	command	receives	one	argument
(myfile)	opens	the	file	itself,	and	then	displays	the	file.

	

There’s	a	reason	for	the	double	functionality,	however.	For	example,	you	can
connect	the	standard	output	of	one	command	to	the	standard	input	of	another.
This	is	called	a	pipeline,	and	it	uses	the	pipe	operator6.1,	|.

	

Perhaps	you	want	to	see	the	GNU	General	Public	License	in	reverse.	To	do
this,	you	use	the	tac	command	(it’s	cat,	only	backward).	Try	it	out:	tac
usrdoc/copyright/GPL

Unfortunately,	it	goes	by	too	quickly	to	read.	So	you	only	get	to	see	a	couple
of	paragraphs.	The	solution	is	a	pipeline:	tac	usrdoc/copyright/GPL	|	less

This	takes	the	standard	output	of	tac,	which	is	the	GPL	in	reverse,	and	sends	it
to	the	standard	input	of	less.

	

You	can	chain	as	many	commands	together	as	you	like.	Say	you	have	an
inexplicable	desire	to	replace	every	G	with	Q.	For	this	you	use	the	command	tr
G	Q,	like	this:

	



tac	usrdoc/copyright/GPL	|	tr	G	Q	|	less	You	could	get	the	same	effect	using
temporary	files	and	redirection,	for	example:

	

tac	usrdoc/copyright/GPL	>	tmpfile	tr	G	Q	<	tmpfile	>	tmpfile2

	

less	<	tmpfile2

	

rm	tmpfile	tmpfile2

	

Clearly	a	pipeline	is	more	convenient.

	

Filename	Expansion	Often	you	want	a	command	to	work	with	a	group	of	files.
Wildcards	are	used	to	create	a	filename	expansion	pattern:	a	series	of	characters
and	wildcards	that	expands	to	a	list	of	filenames.	For	example,	the	pattern	etc*
expands	to	a	list	of	all6.2	the	files	in	/etc.

	

is	a	wildcard	that	can	stand	for	any	series	of	characters,	so	the	pattern	etc
will	expand	to	a	list	of	all	the	filenames	beginning	with	etc.

	

This	filename	list	is	most	useful	as	a	set	of	arguments	for	a	command.	For
example,	the	/etc	directory	contains	a	series	of	subdirectories	called	rc0.d,	rc1.d,
etc.	Normally	to	view	the	contents	of	these,	you	would	type	the	following:

	

ls	etcrc0.d	etcrc1.d	etcrc2.d	etcrc3.d	ls	etcrc4.d	etcrc5.d	etcrc6.d	etcrcS.d	This
is	tedious.	Instead,	you	can	use	the	?	wildcard	as	shown	here:	ls	etcrc?.d



etcrc?.d	expands	to	a	list	of	filenames	that	begin	with	rc,	followed	by	any
single	character,	followed	by	.d.

	

Available	wildcards	include	the	following:	*

Matches	any	group	of	0	or	more	characters.

	

?

Matches	exactly	one	character.

[…]

If	you	enclose	some	characters	in	brackets,	the	result	is	a	wildcard	that
matches	those	characters.	For	example,	[abc]	matches	either	a,	or	b,	or	c.	If	you
add	a	^	after	the	first	bracket,	the	sense	is	reversed;	so	[^abc]	matches	any
character	that	is	not	a,	b,	or	c.	You	can	include	a	range,	such	as	[a-j],	which
matches	anything	between	a	and	j.	The	match	is	case	sensitive,	so	to	allow	any
letter,	you	must	use	[a-zA-Z].

	

Expansion	patterns	are	simple	once	you	see	some	concrete	examples:	*.txt

This	will	give	you	a	list	of	all	filenames	that	end	in	.txt,	since	the	*	matches
anything	at	all.

	

*.[hc]

This	gives	a	list	of	filenames	that	end	in	either	.h	or	.c.

	

a??



This	gives	you	all	three-letter	filenames	that	begin	with	a.

	

[^a]??

This	gives	you	all	three-letter	filenames	that	do	not	begin	with	a.

	

a*

This	gives	you	every	filename	that	starts	with	a,	regardless	of	how	many
letters	it	has.

	

More	on	Files	In	section	5.2	on	page	[*],	we	covered	moving	and	renaming
files	with	mv,	copying	them	with	cp,	removing	them	with	rm,	removing
directories	with	rmdir,	and	creating	directories	with	mkdir.	This	chapter	will
cover	some	more	aspects	of	working	with	files.

	

Permissions	GNU	and	Unix	systems	are	set	up	to	allow	many	people	to	use
the	same	computer,	while	keeping	certain	files	private	or	keeping	certain	people
from	modifying	certain	files.	You	can	verify	this	for	yourself.	Log	in	as	yourself,
i.e.	NOT	as	root.

	

whoami

This	verifies	that	you	are	not	root.	Then	enter	the	following	command:	rm
etcresolv.conf

You	should	be	told	Permission	denied.	etcresolv.conf	is	an	essential	system
configuration	file;	you	aren’t	allowed	to	change	or	remove	it	unless	you’re	root.
This	keeps	you	from	accidentally	messing	up	the	system,	and	if	the	computer	is
a	public	one	(such	as	at	an	office	or	school),	it	keeps	users	from	messing	up	the



system	on	purpose.

	

Now	type	ls	-l	etcresolv.conf.

	

This	will	give	you	output	that	looks	something	like	this:	-rw-r-r-1	root	root
119	Feb	23	1997	etcresolv.conf	The	-l	option	to	ls	requests	all	that	additional
information.	The	info	on	the	right	is	easy:	The	size	of	the	file	is	119	bytes;	the
date	the	file	was	last	changed	is	February	23,	1997;	and	the	file’s	name	is
etcresolv.conf.	On	the	left	side	of	the	screen,	things	are	a	little	more	complicated.

	

First,	the	brief,	technical	explanation:	The	-rw-r-r-is	the	mode	of	the	file,	the	1
is	the	number	of	hard	links	to	this	file	(or	the	number	of	files	in	a	directory),	and
the	two	roots	are	the	user	and	group	owning	the	file,	respectively.

	

So	that	was	cryptic.	Let’s	go	through	it	slowly.

	

File	Ownership

	

Every	file	has	two	owners:	a	user	and	a	group.	The	above	case	is	a	little
confusing	because	there’s	a	group	called	root	in	addition	to	the	root	user.	Groups
are	just	collections	of	users	who	are	collectively	permitted	access	to	some	part	of
the	system.	A	good	example	is	a	games	group.	Just	to	be	mean,	you	might	create
a	group	called	games	on	your	computer	and	then	set	up	your	system	so	that	only
people	in	a	games	group	are	allowed	to	play	games.

	

Here’s	a	more	practical	example.	Consider	a	case	in	which	you’re	setting	up	a



computer	for	a	school.	You	might	want	certain	files	to	be	accessible	only	to
teachers,	not	students,	so	you	put	all	the	teachers	in	a	single	group.	Then	you	can
tell	the	system	that	certain	files	belong	to	members	of	the	group	teachers,	and
that	no	one	else	can	access	those	files.

	

Let’s	explore	groups	on	the	system.	First,	you	can	use	the	groups	command	at
the	shell	prompt.	This	will	show	you	a	list	of	the	groups	to	which	you	belong.
Here’s	an	example:

	

$	groups

	

system-wide	configuration!permissions!file	ownershipusername	dialout
cdrom	floppy	audio	It’s	likely	that	you’re	a	member	of	only	one	group,	which	is
identical	to	your	username.	However,	root	can	add	you	to	other	groups.	The
above	example	shows	a	person	that	is	a	member	of	five	groups.

	

less	etcgroup

This	file	lists	the	groups	that	exist	on	your	system.	Notice	the	root	group	(the
only	member	of	this	group	is	the	root	user),	and	the	group	that	corresponds	to
your	username.	There	are	also	groups	like	dialout	(users	who	are	allowed	to	dial
out	on	the	modem)	and	floppy	(users	who	can	use	the	floppy	drive).	However,
your	system	is	probably	not	configured	to	make	use	of	these	groups.	It’s	likely
that	only	root	can	use	the	floppy	or	the	modem	right	now.	For	details	about	this
file,	try	reading	man	group.

	

ls	-l	/home

This	command	shows	you	that	every	user’s	directory	is	owned	by	that	user
and	that	user’s	personal	group.



	

Tip:	If	you	just	installed	Debian,	you	may	be	the	only	user.	You	can	use	the
adduser	command	to	add	more	users	to	the	system.

	

Mode

	

In	addition	to	being	owned	by	one	user	and	one	group,	every	file	and	directory
also	has	a	mode,	which	determines	who’s	allowed	to	read,	write,	and	execute	the
file	(and	run	it,	if	it’s	a	program).	There	are	a	few	other	things	also	determined
by	the	mode,	but	they’re	advanced	topics	so	we’ll	skip	them	for	now.

	

The	mode	looks	like	this	in	the	ls	output:	-rw-r-r-.	For	now,	we’ll	consider
nine	of	these	parts:	those	that	control	read,	write,	and	execute	permissions	for	the
user	owning	the	file,	the	group	owning	the	file,	and	others	(everyone	on	the
system,	sometimes	called	world).

	

In	the	mode	line,	the	first	“element”	gives	the	file	type.	The	-	in	this	case
means	it’s	a	regular	file.	If	it	was	d,	we’d	be	looking	at	a	directory.	There	are
also	other	possibilities	too	complex	to	go	into	here;	for	details,	see	section	13.2.2
on	page	[*].

	

The	remaining	nine	elements	are	used	to	display	the	file’s	mode.	The	basic	9
bits	(read,	write,	and	execute	for	user,	group,	and	other)	are	displayed	as	three
blocks	of	rwx.

	

So	if	all	permissions	are	turned	on	and	this	is	a	regular	file,	the	mode	will	look
like	this:	-rwxrwxrwx.	If	it	was	a	directory	with	all	permissions	turned	off	for



others	and	full	permissions	for	user	and	group,	it	would	be	drwxrwx—.

	

Table	7.1:	Permissions	in	Linux	+––––––––––––––––––––––––––+

|	Code	|	Name	|	Allows	for	Files	|	Allows	for	Directories	|

|––+–––+––––––––—+–––––––––––-|

|	r	|	read	|	Examine	contents	of	file	|	List	contents	of	directory	|

|––+–––+––––––––—+–––––––––––-|

|	w	|	write	|	Modify	file	|	Add	or	remove	files	in	directory	|

|––+–––+––––––––—+–––––––––––-|

|	x	|	execute	|	Run	as	a	command	|	Access	files	in	directory	|

+––––––––––––––––––––––––––+

Table	7.1	describes	the	meaning	of	the	read,	write,	and	execute	permissions
for	both	files	and	directories.

	

Directory	modes	can	be	a	little	confusing,	so	here	are	some	examples	of	the
effects	of	various	combinations:

	

rThe	user,	group,	or	other	with	these	permissions	may	list	the	contents	of	the
directory,	but	can	do	nothing	else.	The	files	in	the	directory	can’t	be	read,
changed,	deleted,	or	manipulated	in	any	way.	The	only	permitted	action	is
reading	the	directory	itself,	that	is,	seeing	what	files	it	contains.

	

rw—



Write	permission	has	no	effect	in	the	absence	of	execute	permission,	so	this
mode	behaves	just	like	the	above	mode.

	

r-x

This	mode	permits	the	files	in	a	directory	to	be	listed	and	permits	access	to
those	files.	However,	files	can’t	be	created	or	deleted.	Access	means	that	you	can
view,	change,	or	execute	the	files	as	permitted	by	the	files’

own	permissions.

	

-x

Files	in	this	directory	can	be	accessed,	but	the	contents	of	the	directory	can’t
be	listed,	so	you	have	to	know	what	filename	you’re	looking	for	in	advance
(unless	you’re	exceptionally	good	at	guessing).	Files	can’t	be	created	or	deleted.

	

rwx

You	can	do	anything	you	want	with	the	files	in	this	directory,	as	long	as	it’s
permitted	by	the	permissions	on	the	files	themselves.

	

Directory	write	permission	determines	whether	you	can	delete	files	in	a
directory.	A	read-only	file	can	be	deleted	if	you	have	permission	to	write	to	the
directory	containing	it.	You	can’t	delete	a	file	from	a	read-only	directory	even	if
you’re	allowed	to	make	changes	to	the	file.

	

This	also	means	that	if	you	own	a	directory	you	can	always	delete	files	from
it,	even	if	those	files	belong	to	root.

	



Directory	execute	permission	determines	whether	you	have	access	to	files	-

and	thus	whether	file	permissions	come	into	play.	If	you	have	execute
permissions	to	a	directory,	file	permissions	for	that	directory	become	relevant.
Otherwise,	file	permissions	just	don’t	matter;	you	can’t	access	the	files	anyway.

	

Permissions	in	Practice

	

This	section	goes	through	a	short	example	session	to	demonstrate	how
permissions	are	used.	To	change	permissions,	we’ll	use	the	chmod	command.

	

cd;	touch	myfile

There	are	a	couple	of	new	tricks	here.	First,	you	can	use	;	to	put	two
commands	on	one	line.	You	can	type	the	above	as:	$	cd

	

$	touch	myfile

	

or	as:

	

$	cd;	touch	myfile

Either	way	the	same	thing	will	end	up	happening.

	

Recall	that	cd	by	itself	returns	you	to	your	home	directory.	touch	is	normally
used	to	change	the	modification	time	of	the	file	to	the	current	time.	But	it	has
another	interesting	feature:	If	the	file	doesn’t	exist,	touch	creates	the	file.	So



you’re	using	it	to	create	a	file	to	practice	with.	Use	ls	-l	to	confirm	that	the	file
has	been	created	and	notice	the	permissions	mode:

	

$	ls	-l

	

-rw-r-r-1	user	user	0	Nov	18	22:04	myfile	Obviously	the	time	and	user/group
names	will	be	different	when	you	try	it.

The	size	of	the	file	is	0,	because	touch	creates	an	empty	file.	-rw-r-r-is	the
default	permissions	mode	on	Debian.

	

chmod	u+x	myfile

This	command	means	to	add	(+)	execute	(x)	permissions	for	the	user	(u)	who
owns	the	file.	Use	ls	-l	to	see	the	effects.

	

chmod	go-r	myfile

Here	you’ve	subtracted	(-)	read	permission	(r)	from	the	group	(g)	owning	the
file	and	from	everyone	else	(others,	o).	Again,	use	ls	-l	to	verify	the	effects.

	

chmod	ugo=rx	myfile

Here	you’ve	set	(=)	user,	group,	and	other	permissions	to	read	and	execute.
This	sets	permissions	to	exactly	what	you’ve	specified	and	unsets	any	other
permissions.	So	all	rx	should	be	set,	and	all	w	should	be	unset.

Now,	no	one	can	write	to	the	file.

	



chmod	a-x	myfile

a	is	a	shortcut	for	ugo,	or	“all.”	So	all	the	x	permissions	should	now	be	unset.

	

rm	myfile

With	this	command,	you’re	removing	the	file,	but	without	write	permissions.
rm	will	ask	if	you’re	sure	by	displaying	the	following	message:

	

rm:	remove	`myfile’,	overriding	mode	0444?

You	should	respond	by	typing	y	and	pressing	Enter.	This	is	a	feature	of	rm,	not
a	fact	of	permissions.	Permission	to	delete	a	file	comes	from	the	directory
permissions,	and	you	have	write	permission	in	the	directory.

However,	rm	tries	to	be	helpful,	figuring	that	if	you	didn’t	want	to	change	the
file	(and	thus	remove	write	permission),	you	don’t	want	to	delete	it	either,	so	it
asks	you.

	

What	was	that	0444	business	in	the	question	from	rm?	The	permissions	mode
is	a	twelve-digit	binary	number,	like	this:	000100100100.	0444	is	this	binary
number	represented	as	an	octal	(base	8)	number,	which	is	the	conventional	way
to	write	a	mode.	So	you	can	type	chmod	444	myfile	instead	of	chmod	ugo=r
myfile.

	

Files	Present	and	Their	Locations	Now	that	you	can	navigate	the	directory
tree,	let’s	take	a	guided	tour	of	the	files	and	directories	you	created	when	you
installed	Debian.	If	you’re	curious,	cd	to	each	directory	and	type	ls	to	see	its
contents.	If	the	listing	doesn’t	fit	on	the	screen,	try	ls	|	less,	where	|	is	the	“pipe”

character,	generally	found	on	the	same	key	with	backslash.



/

As	already	mentioned,	this	is	the	root	directory,	which	contains	every	other
directory.

	

/root

But	don’t	get	confused	with	root!	root	is	the	home	directory	of	the	root	user,	or
superuser.	It’s	a	directory	called	root,	but	it	isn’t	the	root	directory	/.

	

/home

This	is	where	all	normal	users	-	that	is,	all	users	except	root	-

have	their	home	directories.	Each	home	directory	is	named	after	the	user	who
owns	it,	for	example,	homejane.	If	you’re	using	a	large	system	at	a	school	or
business,	your	system	administrator	may	create	additional	directories	to	contain
home	directories:	home1	and	home2	for	example.	On	some	other	systems,	you’ll
see	an	additional	level	of	subdirectories:	homestudents/username,
homestaff/username,	etc.

	

Your	home	directory	is	where	you	put	all	your	personal	work,	e-mail	and	other
documents,	and	personal	configuration	preferences.	It’s	your	home	on	the
system.

	

/bin

This	directory	contains	“binaries,”	executable	files	that	are	essential	to	the
operation	of	the	system.	Examples	are	the	shell	(bash)	and	file	commands	such
as	cp.

	



/sbin

This	directory	contains	“system	binaries,”	utilities	that	the	root	user	or	system
administrator	might	want	to	use,	but	that	you	probably	won’t	want	to	use	in	your
day-to-day	activities.

	

/usr

/usr	contains	most	of	the	files	you’ll	be	interested	in.	It	has	many
subdirectories.	usrbin	and	usrsbin	are	pretty	much	like	bin	and	sbin,	except	that
the	directories	in	/usr	are	not	considered	“essential	to	the	operation	of	the
system.”

	

While	not	essential	to	getting	the	computer	working,	/usr	does	contain	the
applications	you’ll	use	to	get	real	work	done.	Also	in	/usr,	you’ll	find	the
usrman,	usrinfo,	and	usrdoc	directories.	These	contain	manual	pages,	info	pages,
and	other	documentation,	respectively.	And	don’t	forget	usrgames!

	

usrlocal

The	Debian	system	doesn’t	install	anything	in	this	directory.	You	should	use	it
if	you	want	to	install	software	that	you	compile	yourself	or	any	software	not
contained	in	a	Debian	package.	You	can	also	install	software	in	your	home
directory	if	you’ll	be	the	only	one	using	it.

	

/etc

/etc	contains	all	the	system-wide	configuration	files.	Whenever	you	want	to
change	something	that	affects	all	users	of	your	computer	-	such	as	how	you
connect	to	the	Internet	or	what	kind	of	video	card	you	have	-	you’ll	probably
have	to	log	on	as	root	and	change	a	file	in	/etc.



	

/tmp

Here	you’ll	find	temporary	files,	most	of	them	created	by	the	system.	This
directory	is	generally	erased	on	a	regular	basis	or	every	time	you	reboot	the
system.	You	can	create	files	here	if	you	want,	just	be	aware	that	they	might	get
deleted	automatically.

	

/var

/var	contains	“variable”	files	that	the	system	changes	automatically.	For
example,	incoming	mail	is	stored	here.	The	system	keeps	a	log	of	its	actions
here.	There	are	a	number	of	other	automatically	generated	files	here	as	well.
You’ll	mostly	be	interested	in	the	contents	of	varlog,	where	you	can	find	error
messages	that	can	help	you	figure	out	what	you’re	system’s	up	to	if	something
goes	wrong.

	

Clearly	there	are	many	more	directories	on	the	system	-	far	too	many	to
describe	every	one.

	

For	changing	things,	you’ll	usually	want	to	confine	yourself	to	your	home
directory	and	/etc.	On	a	Debian	system,	there’s	rarely	an	occasion	to	change
anything	else,	because	everything	else	is	automatically	installed	for	you.

	

/etc	is	used	to	configure	the	system	as	a	whole.	You’ll	use	your	own	home
directory,	a	subdirectory	of	/home,	for	configuring	your	own	preferences	and
storing	your	personal	data.	The	idea	is	that	on	a	day-to-day	basis,	you	confine
yourself	to	homeyourname,	so	there’s	no	way	you	can	break	anything.
Occasionally	you	log	in	as	root	to	change	something	in	a	system-wide	directory,
but	only	when	it’s	absolutely	necessary.	Of	course,	if	you’re	using	Debian	at	a
school	or	business	and	someone	else	is	the	system	administrator,	you	won’t	have



root	access	and	will	be	able	to	change	only	your	home	directory	and	any	other
directory	that	you	own.	This	limits	what	you	can	do	with	the	system.

	

File	Compression	with	gzip	Often	it	would	be	nice	to	make	a	file	smaller	-	say,
to	download	it	faster,	or	so	it	takes	up	less	space	on	your	disk.	The	program	to	do
this	is	called	gzip	(GNU	zip).	Here’s	how	it	works:	$	cd;	cp	etcprofile
./mysamplefile	This	switches	to	your	home	directory	and	copies	an	arbitrarily
chosen	file	(etcprofile)	to	your	current	directory,	in	the	process	renaming	it
mysamplefile.	This	gives	you	a	file	to	play	with	when	using	gzip.

	

$	ls	-l

Lists	the	contents	of	the	current	directory.	Note	the	size	of	mysamplefile.

	

$	gzip	mysamplefile

Compresses	mysamplefile.

	

$	ls	-l

Observe	the	results	of	this	command:	mysamplefile	is	now	called
mysamplefile.gz	.	It’s	also	a	good	bit	smaller.

	

$	gunzip	mysamplefile.gz;	ls	-l

This	uncompresses	the	file.	Observe	that	mysamplefile	has	returned	to	its
original	state.	Notice	that	to	uncompress,	one	uses	gunzip,	not	gzip.

	

$	rm	mysamplefile



Use	this	command	to	remove	the	file,	since	it	was	just	to	practice	with.

	

Finding	Files	There	are	two	different	facilities	for	finding	files:	find	and
locate.

find	searches	the	actual	files	in	their	present	state.	locate	searches	an	index
generated	by	the	system	every	morning	at	6:42	a.m.	(this	is	a	cron	job,	explained
elsewhere	in	this	book).	locate	won’t	find	any	files	that	were	created	after	the
index	was	generated.	However,	because	locate	searches	an	index,	it’s	much
faster	-	like	using	the	index	of	a	book	rather	than	looking	through	the	whole
thing.

	

To	compare	the	two	ways	of	finding	files,	pretend	you	can’t	remember	where
the	X	configuration	file	XF86Config	resides.

	

$	locate	XF86Config

This	should	be	pretty	fast.	You’ll	get	a	list	of	filenames	that	contain
XF86Config,	something	like	this:

	

etcX11/XF86Config

	

usrX11R6/lib/X11/XF86Config

	

usrX11R6/lib/X11/XF86Config.eg

	

usrX11R6/man/man5/XF86Config.5x.gz	Now	try	the	find	command:



	

$	find	/	-name	XF86Config

You	will	hear	a	lot	of	disk	activity,	and	this	will	take	a	lot	longer.

Results	will	look	something	like	this:

	

etcX11/XF86Config

	

usrX11R6/lib/X11/XF86Config

	

find:	varspool/cron/atjobs:	Permission	denied	find:	varspool/cron/atspool:
Permission	denied	find:	varlib/xdm/authdir:	Permission	denied	Notice	that	find
found	only	files	that	were	named	exactly	XF86Config,	rather	than	any	files
containing	that	string	of	letters.	Also,	find	actually	tried	to	look	in	every
directory	on	the	system	-	including	some	where	you	didn’t	have	read
permissions.	That’s	why	you	got	the	Permission	denied	messages.

	

The	syntax	is	different	as	well.	With	find,	you	had	to	specify	what	directory	to
search	in,	whereas	locate	automatically	chose	the	root	directory.	And	you	had	to
specify	a	search	by	name	using	the	-name	option.

You	could	also	have	searched	for	files	using	many	other	criteria,	such	as
modification	date	or	owner.	To	have	find	search	for	files	whose	names	match
XF86Config,	you’d	have	to	use	a	wildcard:	$	find	/	-name	‘XF86Config’

Like	most	of	the	command	line	tools,	find	accepts	wildcards	as	arguments.

	

In	general,	find	is	a	more	powerful	utility,	and	locate	is	faster	for	everyday
quick	searches.	The	full	range	of	possible	searches	would	take	a	long	time	to



explain;	for	more	details	,	type	info	find,	which	will	bring	up	the	very	thorough
info	pages	on	find	and	locate.

	

Determining	a	File’s	Contents	Debian	comes	with	a	utility	that	can	guess	at
the	contents	of	a	file	for	you.	Although	it	is	not	100%	accurate,	you	can	use	the
following	command	to	explore	your	system:

	

$	file	bincp

You	should	see	something	like	this:

	

bincp:	ELF	32-bit	LSB	executable,	Intel	386,	version	1

	

Skipping	the	technical	parts,	this	is	an	executable	file	for	Intel	machines.

	

$	file	etcinit.d/boot

The	preceding	command	gives	this	response:	etcinit.d/boot:	Bourne	shell
script	text	meaning	that	this	is	a	text	file	containing	a	Bourne	shell	script.

	

Using	a	File	Manager	Instead	of	moving	files	around	by	hand,	you	can	use	a
file	manager.	If	you	move	a	lot	of	files	around,	a	file	manager	can	make	your
work	more	efficient.	There	are	text-based	file	managers,	such	as	GNU	Midnight
Commander	(mc),	and	a	number	of	file	managers	for	the	X	Window	system	(for
example	gmc	for	the	X	Window	version	of	GNU	Midnight	Commander).

	

Describing	each	of	these	is	outside	the	scope	of	this	book,	but	you	may	want



to	try	them	out	if	the	command	line	doesn’t	meet	your	needs.

	

Working	with	Text	Files	Text	files	are	prevelant	on	a	GNU/Linux	system.
They	hold	everything	from	documentation	to	configuration	files.	Fortunately,	it’s
easy	to	work	with	them.

	

Viewing	Text	Files	A	text	file	is	simply	a	normal	file	that	happens	to	contain
human-readable	text.	There’s	nothing	special	about	it	otherwise.	The	other	kind
of	file,	a	binary	file,	is	meant	to	be	interpreted	by	the	computer.

	

You	can	view	either	kind	of	file	with	the	less	file	pager	if	you	have	it	installed
(install	it	if	you	haven’t,	it’s	quite	useful).	Type	less	etcprofile	to	view	a	sample
text	file.	Notice	that	you	can	read	the	characters	even	if	their	meaning	is	obscure.
Type	less	binls	to	view	a	binary	file.	As	you	can	see,	the	ls	program	is	not	meant
to	be	read	by	humans.

	

Sometimes,	you’ll	find	files	that	end	with	.gz.	These	files	may	be	viewed	with
zless;	you	can	run	it	like	so:

	

zless	usrdoc/ae/changelog.Debian.gz	Tip:	zless	is	great	for	viewing
documentation,	which	is	often	shipped	in	.gz	form.

	

The	difference	between	the	two	kinds	of	files	is	purely	a	matter	of	what	they
contain,	unlike	in	some	other	systems	(such	as	DOS	and	MacOS),	which	actually
treat	the	files	differently.

	



Text	files	can	contain	shell	scripts,	documentation,	copyright	notices,	or	any
other	human-readable	text.

	

Incidentally,	this	illustrates	the	difference	between	source	code	and	binary
executables.	binls	is	a	binary	executable	you	can	download	from	Debian,	but	you
can	also	download	a	text	file	that	tells	the	computer	how	to	create	binls.	This	text
file	is	the	source	code.	Comparing	binls	to	etcprofile	illustrates	how	important
source	code	is	if	someone	wants	to	understand	and	modify	a	piece	of	software.
Free	software	provides	you	or	your	consultants	with	this	all-important	source
code.

	

Text	Editors	A	text	editor	is	a	program	used	to	create	and	change	the	contents
of	text	files.	Most	operating	systems	have	a	text	editor:	DOS	has	edit,	Windows
has	Notepad,	MacOS	has	SimpleText.

	

Debian	provides	a	large	variety	of	text	editors.	vi	and	Emacs	are	the	classic
two,	which	are	probably	both	the	most	powerful	and	the	most	widely	used.	Both
vi	and	Emacs	are	quite	complex	and	require	some	practice,	but	they	can	make
editing	text	extremely	efficient.	Emacs	runs	both	in	a	terminal	and	under	the	X
Window	system;	vi	normally	runs	in	a	terminal	but	the	vim	variant	has	a	-g
option	that	allows	it	to	work	with	X.	text	editors

	

Simpler	editors	include	nedit,	ae,	jed,	and	xcoral.	nedit	and	xcoral	provide
easy-to-use	X	Window	system	graphical	interfaces.	There	are	also	several	vi
variants.	Additionally,	you	can	find	and	a	GNU	Emacs	variant	called	XEmacs.

	

This	book	does	not	cover	the	use	of	any	particular	editor	in	detail,	though	we
will	briefly	introduce	ae	since	it	is	small,	fast,	and	can	be	found	even	on	the
Debian	rescue	disks,	so	it	pays	to	know	a	bit	about	it	for	usage	in	a	pinch.	When
you	need	to	do	more	serious	editing,	check	out	vim	or	GNU	Emacs.	Emacs



provides	an	excellent	interactive	tutorial	of	its	own;	to	read	it,	load	Emacs	with
the	emacs	command	and	type	F1	t.	Emacs	is	an	excellent	choice	for	new	users
interested	in	a	general-purpose	or	programming	editor.

	

Using	ae

	

You	can	start	ae	by	giving	it	the	name	of	a	file	to	edit,	like	so:	$	ae
filename.txt

This	will	bring	up	an	editor	screen.	The	top	part	of	this	screen	provides	some
quick	help;	the	bottom	shows	the	file	you’re	editing.	Moving	around	in	this
editor	is	simple;	just	use	the	arrow	keys.	You	can	save	the	file	by	pressing	C-x
C-s	and	then	exit	the	editor	by	pressing	C-x	C-c.	Once	you	feel	comfortable	with
the	editor,	you	can	press	C-x	C-h	to	turn	off	the	help.	That’s	it!	Knowing	this
will	let	you	do	basic	editing.	For	programming	or	more	detailed	editing	work,
you’ll	want	to	investigate	other	editors	as	discussed	earlier.

	

The	X	Window	System	This	chapter	describes	the	X	Window	system
graphical	user	interface.	It	assumes	that	you	have	already	successfully
configured	X	as	described	in	the	Installation	Manual	(again,	the	install	manual	is
not	yet	written;	for	now	you	will	need	to	use	the	XFree86	HOWTO,	the	contents
of	usrdoc/X11,	and	this	chapter).	Once	you	install	X,	you	can	enter	the	X
environment	by	typing	startx	or	via	xdm,	depending	on	your	choice	during
configuration.



Introduction	to	X

A	GUI	(Graphical	User	Interface)	is	part	and	parcel	of	the	Windows	and	Mac
operating	systems.	It’s	basically	impossible	to	write	an	application	for	those
systems	that	does	not	use	the	GUI,	and	the	systems	can’t	be	used	effectively
from	the	command	line.	GNU/Linux	is	more	modular,	that	is,	it’s	made	up	of
many	small,	independent	components	that	can	be	used	or	not	according	to	one’s
needs	and	preferences.	One	of	these	components	is	the	X

Window	system,	or	simply	X.

	

This	component	is	also	sometimes	called	X11.	Please	note	that	“X

Windows”	is	not	correct.

	

X	itself	is	a	means	for	programs	to	talk	to	your	mouse	and	video	card	without
knowing	what	kind	of	mouse	and	video	card	you	have.	That	is,	it’s	an	abstraction
of	the	graphics	hardware.	User	applications	talk	to	X	in	X’s	language;	X	then
translates	into	the	language	of	your	particular	hardware.	This	means	that
programs	only	have	to	be	written	once,	and	they	work	on	everyone’s	computer.

	

In	X	jargon,	the	program	that	speaks	to	the	hardware	is	known	as	an	X

server.	User	applications	that	ask	the	X	server	to	show	windows	or	graphics
on	the	screen	are	called	X	clients.	The	X	server	includes	a	video	driver,	so	you
must	have	an	X	server	that	matches	your	video	card.

	

The	X	server	doesn’t	provide	any	of	the	features	one	might	expect	from	a
GUI,	such	as	resizing	and	rearranging	windows.	A	special	X	client,	called	a
window	manager,	draws	borders	and	title	bars	for	windows,	resizes	and	arranges



windows,	and	provides	facilities	for	starting	other	X	clients	from	a	menu.
Specific	window	managers	may	have	additional	features.

	

Window	managers	available	on	a	Debian	system	include	fvwm,	fvwm2,
icewm,	afterstep,	olvwm,	wmaker,	twm,	and	enlightenment.	You’ll	probably
want	to	try	them	all	and	pick	your	favorite.

	

Neither	the	X	server	nor	the	window	manager	provide	a	file	manager;	that	is,
there	aren’t	any	windows	containing	icons	for	your	files	and	directories.	You	can
launch	a	file	manager	as	a	separate	application,	and	there	are	many	of	them
available.	The	GNOME	desktop	project	is	developing	an	icon-based	file
manager	and	other	GUI	facilities.	See	the	GNOME

homepage	for	the	latest	news	on	this.

	

A	final	feature	of	X	is	its	network	transparency,	meaning	that	X	clients	don’t
care	if	they’re	talking	to	an	X	server	on	the	same	machine	or	an	X

server	somewhere	on	the	network.	In	practical	terms,	this	means	you	can	run	a
program	on	a	more	powerful	remote	machine	but	display	it	on	your	desktop
computer.

	

Starting	the	X	Environment	There	are	two	ways	to	start	X.	The	first	is	to	start
X	manually	when	you	feel	like	using	it.	To	do	so,	log	in	to	one	of	the	text
consoles	and	type	startx.	This	will	start	X	and	switch	you	to	its	virtual	console.

	

The	second	(and	recommended)	way	to	use	X	is	with	xdm	or	X	Display
Manager.	Basically,	xdm	gives	you	a	nice	graphical	login	prompt	on	the	X

virtual	console	(probably	VC	7),	and	you	log	in	there.



	

By	default,	either	method	will	also	start	an	xterm,	which	is	a	small	window
containing	a	shell	prompt.	At	the	shell	prompt,	you	can	type	any	commands	just
as	you	would	on	a	text	VC.	So	you	can	follow	all	the	examples	in	this	book
using	xterm;	the	only	difference	between	an	xterm	and	the	text	console	is	that
you	don’t	have	to	log	on	to	the	xterm	because	you	already	logged	on	to	X.

	

There	are	also	a	lot	of	things	you	can	do	only	in	X,	which	are	covered	in	this
chapter.

	

One	note:	The	default	xterm	window	has	a	smallish	font.	If	you	have	a	small
monitor	or	very	high	resolution	or	bad	eyesight,	you	may	want	to	fix	this.	Follow
these	steps:

	

1.	Move	the	mouse	pointer	into	the	center	of	the	xterm	window.

2.	Hold	down	the	Control	key	and	the	right	mouse	button	simultaneously.

This	will	give	you	a	font	menu.

3.	Point	to	the	font	you	want	and	release	the	mouse	button.

	

Basic	X	Operations	There	are	certain	commonly	used	operations	in	X	that	you
should	familiarize	yourself	with.	This	section	describes	some	of	the	basic
operations	that	you	may	find	useful.

	

The	Mouse

	



The	mouse	in	X	works	pretty	much	the	same	as	the	mouse	on	other	systems,
except	that	it	has	three	buttons.	If	your	mouse	has	only	two,	you	can	simulate	the
middle	button	by	clicking	both	buttons	simultaneously.	This	is	kind	of	tricky	and
annoying,	so	investing	in	a	$15	three-button	mouse	probably	isn’t	a	bad	idea.
These	are	available	from	most	computer	retailers.

	

The	buttons	are	numbered	from	left	to	right	assuming	you	have	a	right-handed
mouse.	So	button	one	is	on	the	left,	two	is	in	the	middle,	and	three	is	on	the
right.	You	may	see	either	the	numbers	or	the	locations	in	documentation.

	

X	has	a	simple	builtin	copy-and-paste	facility.	To	select	text	to	copy,	you	click
and	drag	with	the	left	mouse	button.	This	should	select	the	text	to	copy,
assuming	the	application	you’re	using	has	copy-and-paste	support.

To	paste	the	text,	you	click	the	middle	mouse	button	in	a	different	X

application.	For	example,	if	you	receive	an	e-mail	containing	an	URL,	you	can
select	the	URL	with	the	left	button	and	then	click	in	your	web	browser’s
“Location”	field	with	the	middle	button	to	paste	it	in.

	

X	Clients

	

Programs	that	communicate	with	the	X	server	are	called	X	clients.	Most	of
these	programs	will	ask	the	X	server	to	display	windows	on	the	screen.

	

You	start	an	X	client	the	same	way	you	start	any	other	Debian	program.

Simply	type	the	name	of	the	client	on	the	command	line.	Try	typing	xterm
into	an	existing	xterm	window,	and	a	new	xterm	client	will	appear	on	the	screen.



	

You	may	notice	that	the	original	xterm	is	now	useless,	because	your	shell	is
waiting	for	the	second	xterm	to	finish.	To	avoid	this	problem,	you	can	run	the	X
client	in	the	backgroundby	adding	a	&	after	the	command	name	like	this:	xterm
&.	If	you	forget,	you	can	place	a	running	process	in	the	background.	First
suspend	the	process	with	CTRL-z,	and	then	place	it	in	the	background	with	the
bg	command.

	

If	you	use	a	program	often,	your	window	manager	will	generally	provide	a
way	to	put	that	program	on	a	convenient	graphical	menu.

	

Troubleshooting

	

Sometimes	when	you	launch	an	X	client	from	a	graphical	menu,	you	won’t	be
able	to	see	any	error	messages	if	it	fails.	You	can	find	any	error	messages	in	the
file	~/.xsession-errors.

	

Leaving	the	X	Environment

	

To	leave	X,	you	need	to	use	a	menu.	Unfortunately	for	beginners,	this	is
different	for	every	window	manager,	and	for	most	window	managers,	it	can	be
configured	in	many	ways.	If	there’s	an	obvious	menu,	look	for	an	entry	like
“Exit”	or	“Close	Window	Manager.”	If	you	don’t	see	a	menu,	try	clicking	each
of	the	mouse	buttons	on	the	background	of	the	screen.	If	all	else	fails,	you	can
forcibly	kill	the	X	server	by	pressing	CTRL-ALT-Backspace.	Forcibly	killing	the
server	destroys	any	unsaved	data	in	open	applications.

	



Customizing	Your	X	Startup	When	you	start	X,	Debian	runs	some	shell	scripts
that	start	your	window	manager	and	other	X	clients.	By	default,	a	window
manager,	an	xconsole,	and	an	xterm	are	started	for	you.

	

To	customize	your	X	startup,	the	file	etcX11/config	must	contain	the	line
allow-user-xsession.	If	it	does	not,	log	in	as	root	and	add	the	line	now.	Then	log
back	in	as	yourself	and	continue	the	tutorial.

	

You	can	see	how	Debian’s	X	startup	works	in	the	file	etcX11/	Xsession.

Note	that	you	can	change	the	behavior	of	etcX11/Xsession	by	modifying	the
file	etcX11/config,	which	specifies	a	few	system-wide	preferences.

	

To	run	the	clients	of	your	choice	when	X	starts,	you	create	an	executable	shell
script	called	.xsession	in	your	home	directory.

	

$	touch	~/.xsession

This	creates	the	file.

	

$	chmod	u+x	~/.xsession

This	makes	the	file	executable.

	

Once	.xsession	is	created,	you	need	to	edit	it	to	do	something	useful	with	your
favorite	text	editor.	You	can	do	anything	you	want	to	in	this	script.

However,	when	the	script’s	process	terminates,	X	also	terminates.



	

In	practical	terms,	this	means	that	you	often	end	the	script	with	a	call	to	exec.
Whatever	program	you	exec	will	replace	the	script	process	with	itself,	so
commands	found	after	the	exec	line	will	be	ignored.	The	program	you	exec	will
become	the	new	owner	of	the	script	process,	which	means	that	X	will	terminate
when	this	new	program’s	process	terminates.

	

Say	you	end	your	.xsession	with	the	line	exec	fvwm.	This	means	that	the
fvwm	window	manager	will	be	run	when	X	starts.	When	you	quit	the	fvwm
window	manager,	your	X	session	will	end,	and	all	other	clients	will	be	shut
down.	You	do	not	have	to	use	a	window	manager	here;	you	could	exec	xterm,	in
which	case	typing	exit	in	that	particular	xterm	would	cause	the	entire	X	session
to	end.

	

If	you	want	to	run	other	clients	before	you	use	exec,	you	will	need	to	run	them
in	the	background.	Otherwise	.xsession	will	pause	until	each	client	exits	and	then
continue	to	the	next	line.	See	the	previous	section	on	running	jobs	in	the
background	(basically	you	want	to	put	an	ampersand	at	the	end,	as	in	xterm	&).

	

You	can	take	advantage	of	this	behavior,	though.	If	you	want	to	run
commands	at	the	end	of	your	X	session,	you	can	have	your	.xsession	run	a
window	manager	or	the	like	and	wait	for	it	to	finish.	That	is,	leave	off	the	exec
and	the	&;	just	enter	fvwm	by	itself.	Then	put	the	commands	of	your	choice	after
fvwm.

	

It	would	probably	help	to	look	at	a	few	sample	.xsession	files.	In	all	the
examples,	replace	fvwm	with	the	window	manager	of	your	choice.

	

The	simplest	.xsession	just	runs	a	window	manager:	exec	fvwm



This	will	run	fvwm,	and	the	X	session	will	end	when	fvwm	exits.	If	you	do	it
without	the	exec,	everything	will	appear	to	behave	the	same	way,	but	behind	the
scenes	.xsession	will	hang	around	waiting	for	fvwm,	and	.xsession	will	exit	after
fvwm	does.	Using	exec	is	slightly	better	because	fvwm	replaces	.xsession
instead	of	leaving	it	waiting.	You	can	use	the	ps	or	top	command	to	verify	this.

	

A	more	useful	.xsession	runs	a	few	clients	before	starting	the	window
manager.	For	example,	you	might	want	some	xterms	and	an	xclock	whenever
you	start	X.	No	problem;	just	enter	xterm	&	xterm	&	xclock	&	exec	fvwm.

Two	xterms	and	an	xclock	start	up	in	the	background,	and	then	the	window
manager	is	launched.	When	you	quit	the	window	manager,	you’ll	also	quit	X.

	

You	might	try	it	without	the	backgrounding	just	to	see	what	happens.	Enter
this	command:	xterm	xclock	exec	fvwm.	xterm	will	start,	and	wait	for	you	to
exit	it.	Then	xclock	will	start;	you’ll	have	to	exit	xclock	before	fvwm	will	start.
The	commands	are	run	in	sequence,	since	the	script	waits	for	each	one	to	exit.

	

You	can	use	sequential	execution	to	your	advantage.	Perhaps	you	want	to	keep
track	of	when	you	stop	working	every	day:	xterm	&

	

xclock	&

	

fvwm

	

date	>>	~/logout-time

	



This	will	fork	off	an	xterm	and	an	xclock	and	then	run	fvwm	and	wait	for	it	to
finish.	When	you	exit	fvwm,	it	will	move	on	to	the	last	line,	which	appends	the
current	date	and	time	to	the	file	~/logout-time.

	

Finally,	you	can	have	a	program	other	than	the	window	manager	determine
when	X	exits:

	

xclock	&

	

fvwm	&

	

exec	xterm

	

This	script	will	run	xclock	and	fvwm	in	the	background	and	then	replace	itself
with	xterm.	When	you	exit	the	xterm,	your	X	session	will	end.

	

The	best	way	to	learn	how	to	use	.xsession	is	to	try	some	of	these	things	out.
Again,	be	sure	you	use	chmod	to	make	it	executable;	failure	to	do	so	is	a
common	error.

	

Filesystems	A	Debian	system	uses	a	filesystem	to	store	and	manage	your	data.
This	chapter	introduces	you	to	the	filesystem,	describes	how	to	add	and	remove
filesystems,	and	shows	you	how	to	back	up	your	system.

	

Concepts



	

It’s	probably	a	good	idea	to	explain	a	little	theory	before	discussing	the
mechanics	of	using	disks.	In	particular,	you	must	understand	the	concept	of	a
filesystem.	This	can	be	a	bit	confusing	because	it	has	several	meanings.

	

The	filesystem	refers	to	the	whole	directory	tree,	starting	with	the	root
directory	/,	as	described	in	earlier	chapters.

	

A	filesystem	in	general	means	any	organization	of	files	and	directories	on	a
particular	physical	device.	“Organization”	means	the	hierarchical	directory
structure	and	any	other	information	about	files	one	might	want	to	keep	track	of:
their	size,	who	has	permission	to	change	them,	etc.	So	you	might	have	one
filesystem	on	your	hard	disk,	and	another	one	on	each	floppy	disk.

	

“Filesystem”	is	also	used	to	mean	a	type	of	filesystem.	For	example,	MS-DOS
and	Windows	3.1	organize	files	in	a	particular	way,	with	particular	rules:
Filenames	can	have	only	eight	characters,	for	example,	and	no	permission
information	is	stored.	Linux	calls	this	the	msdos	filesystem.

Linux	also	has	its	own	filesystem,	called	the	ext2	filesystem	(version	two	of
the	ext	filesystem).	You’ll	use	the	ext2	filesystem	most	of	the	time	unless	you’re
accessing	files	from	another	operating	system	or	have	other	special	needs.

	

Any	physical	device	you	wish	to	use	for	storing	files	must	have	at	least	one
filesystem	on	it.	This	means	a	filesystem	in	the	second	sense	-	a	hierarchy	of
files	and	directories,	along	with	information	about	them.	Of	course,	any
filesystem	has	a	type,	so	the	third	sense	will	come	into	play	as	well.	If	you	have
more	than	one	filesystem	on	a	single	device,	each	filesystem	can	have	a	different
type	-	for	example,	you	might	have	both	a	DOS	partition	and	a	Linux	partition
on	your	hard	disk.



	

mount	and	etcfstab	This	section	describes	how	to	mount	a	floppy	or	Zip	disk,
discusses	the	/dev	directory,	and	addresses	distributing	the	directory	tree	over
multiple	physical	devices	or	partitions.

	

Mounting	a	Filesystem

	

On	a	GNU/Linux	system	there’s	no	necessary	correspondence	between
directories	and	physical	devices	as	there	is	in	Windows,	in	which	each	drive	has
its	own	directory	tree	beginning	with	a	letter	(such	as	C:\).

	

Instead,	each	physical	device	such	as	a	hard	disk	or	floppy	disk	has	one	or
more	filesystems	on	it.	In	order	to	make	a	filesystem	accessible,	it’s	assigned	to	a
particular	directory	in	another	filesystem.	To	avoid	circularity,	the	root
filesystem	(which	contains	the	root	directory	/)	is	not	stored	within	any	other
filesystem.	You	have	access	to	it	automatically	when	you	boot	Debian.

	

A	directory	in	one	filesystem	that	contains	another	filesystem	is	known	as	a
mount	point.	A	mount	point	is	a	directory	in	a	first	filesystem	on	one	device
(such	as	your	hard	disk)	that	“contains”	a	second	filesystem,	perhaps	on	another
device	(such	as	a	floppy	disk).	To	access	a	filesystem,	you	must	mount	it	at	some
mount	point.

	

So,	for	example,	you	might	mount	a	CD	at	the	mount	point	/cdrom.	This
means	that	if	you	look	in	the	directory	cdrom,	you’ll	see	the	contents	of	the	CD.
The	cdrom	directory	itself	is	actually	on	your	hard	disk.	For	all	practical
purposes,	the	contents	of	the	CD	become	a	part	of	the	root	filesystem,	and	when
you	type	commands	and	use	programs,	it	doesn’t	make	any	difference	what	the
actual	physical	location	of	the	files	is.	You	could	have	created	a	directory	on



your	hard	disk	called	/cdrom	and	put	some	files	in	it,	and	everything	would
behave	in	exactly	the	same	way.

Once	you	mount	a	filesystem,	there’s	no	need	to	pay	any	attention	to	physical
devices.

	

However,	before	you	can	mount	a	filesystem	or	actually	create	a	filesystem	on
a	disk	that	doesn’t	have	one	yet,	it’s	necessary	to	refer	to	the	devices	themselves.
All	devices	have	names,	which	are	located	in	the	/dev	directory.	If	you	type	ls
/dev	now,	you’ll	see	a	pretty	lengthy	list	of	every	possible	device	you	could	have
on	your	Debian	system.	For	a	summary	of	some	devices,	see	Table	2.1	on	page
[*].	A	more	thorough	list	can	be	found	on	your	system	in	the	file
usrsrc/linux/Documentation/devices.txt.

	

To	mount	a	filesystem,	we	want	to	tell	Linux	to	associate	whatever	filesystem
it	finds	on	a	particular	device	with	a	particular	mount	point.

In	the	process,	we	might	have	to	tell	Linux	what	kind	of	filesystem	to	look	for.

	

Example:	Mounting	a	CD-ROM

	

As	a	simple	demonstration,	we’ll	go	through	mounting	a	CD-ROM,	such	as
the	one	you	may	have	used	to	install	Debian.	You’ll	need	to	be	root	to	do	this,	so
be	careful;	whenever	you’re	root,	you	have	the	power	to	manipulate	the	whole
system,	not	just	your	own	files.	Also,	these	commands	assume	there’s	a	CD	in
your	drive;	you	should	put	one	in	the	drive	now.

Then	start	with	the	following	command:

	

su



If	you	haven’t	already,	you	need	to	either	log	in	as	root	or	gain	root	privileges
with	the	su	(super	user)	command.	If	you	use	su,	enter	the	root	password	when
prompted.

	

ls	/cdrom

Use	this	command	to	see	what’s	in	the	/cdrom	directory	before	you	start.

If	you	don’t	have	a	cdrom	directory,	you	may	have	to	make	one	using	mkdir
cdrom.

	

mount

Simply	typing	mount	with	no	arguments	lists	the	currently	mounted
filesystems.

	

mount	-t	iso9660	CD-device	/cdrom

For	this	command,	you	should	substitute	the	name	of	your	CD-ROM	device
for	CD-device	in	the	above	command	line.	If	you	aren’t	sure,	devcdrom	is	a
good	guess	because	the	install	process	should	have	created	this	symbolic	link	on
the	system.	If	that	fails,	try	the	different	IDE	devices:	devhdc,	etc.	You	should
see	a	message	like	this:	mount:	block	device	devhdc	is	write-protected,	mounting
read-only.

	

The	-t	option	specifies	the	type	of	the	filesystem,	in	this	case	iso9660.

Most	CDs	are	iso9660.	The	next	argument	is	the	name	of	the	device	to	mount,
and	the	final	argument	is	the	mount	point.	There	are	many	other	arguments	for
mount;	see	the	manual	page	for	details.

	



Once	a	CD	is	mounted,	you	may	find	that	your	drive	tray	will	not	open.	You
must	unmount	the	CD	before	removing	it.

	

ls	/cdrom

Confirms	that	/cdrom	now	contains	whatever	is	on	the	CD	in	your	drive.

	

mount

Displays	the	list	of	filesystems	again;	notice	that	your	CD	drive	is	now
mounted.

	

umount	/cdrom

This	unmounts	the	CD.	It’s	now	safe	to	remove	the	CD	from	the	drive.

Notice	that	the	command	is	umount	with	no	“n,”	even	though	it’s	used	to
unmount	the	filesystem.

	

exit

Don’t	leave	yourself	logged	on	as	root.	Log	out	immediately,	just	to	be	safe.

	

etcfstab:	Automating	the	Mount	Process

	

The	file	etcfstab	(it	stands	for	“filesystem	table”)	contains	descriptions	of
filesystems	that	you	mount	often.	These	filesystems	can	then	be	mounted	with	a
shorter	command,	such	as	mount	/cdrom.	You	can	also	configure	filesystems	to
mount	automatically	when	the	system	boots.	You’ll	probably	want	to	mount	all



of	your	hard	disk	filesystems	when	you	boot,	so	Debian	automatically	adds
entries	to	fstab	to	do	this	for	you.

	

Look	at	this	file	now	by	typing	more	etcfstab.	It	will	have	two	or	more	entries
that	were	configured	automatically	when	you	installed	the	system.

It	probably	looks	something	like	this:

	

#	etcfstab:	static	file	system	information.

#

#	<file	system>	<mount	point>	<type>	<options>	#<dump	>	<pass>

	

devhda1	/	ext2	defaults	0	1

	

devhda3	none	swap	sw	0	0

	

proc	/proc	proc	defaults	0	0

	

devhda5	/tmp	ext2	defaults	0	2

	

devhda6	/home	ext2	defaults	0	2

	

devhda7	/usr	ext2	defaults	0	2



	

devhdc	/cdrom	iso9660	ro,noauto	0	0

	

devfd0	/floppy	auto	noauto,sync	0	0

	

The	first	column	lists	the	device	the	filesystem	resides	on.	The	second	lists	the
mount	point,	the	third	indicates	the	filesystem	type.	The	line	beginning	by	proc
is	a	special	filesystem.	Notice	that	the	swap	partition	(devhda3	in	the	example)
has	no	mount	point,	so	the	mount	point	column	contains	none.

	

The	last	three	columns	may	require	some	explanation.

	

The	fifth	column	is	used	by	the	dump	utility	to	decide	when	to	back	up	the
filesystem.	In	most	cases,	you	can	put	0	here.

	

The	sixth	column	is	used	by	fsck	to	decide	in	what	order	to	check	filesystems
when	you	boot	the	system.	The	root	filesystem	should	have	a	1

in	this	field,	filesystems	that	don’t	need	to	be	checked	(such	as	the	swap
partition)	should	have	a	0,	and	all	other	filesystems	should	have	a	2.

It’s	worth	noting	that	the	swap	partition	isn’t	exactly	a	filesystem	in	the	sense
that	it	does	not	contain	files	and	directories	but	is	just	used	by	the	Linux	kernel
as	secondary	memory.	However,	for	historical	reasons,	the	swap	partitions	are
still	listed	in	the	same	file	as	the	filesystems.

	

Column	four	contains	one	or	more	options	to	use	when	mounting	the
filesystem.	You	can	check	the	mount	manpage	for	a	summary;	see	section	5.1



on	page	[*].

	

Removable	Disks	(Floppies,	Zip	Disks,	Etc.)

	

Add	the	following	lines	to	your	etcfstab	file:	devsda1	mntzip	ext2	noauto,user
0	0

	

devsda4	mntdos	msdos	noauto,user	0	0

	

From	now	on,	you’ll	be	able	to	mount	the	DOS-formatted	Zip	disks	with	the
command	mount	mntdos,	and	you	be	able	to	mount	Linux-formatted	Zip	disks
with	the	command	mount	mntzip.

	

If	you	have	SCSI	hard	disks	in	your	system,	you’ll	have	to	change	sda	to	sdb
or	sdc	in	the	example	above.

	

Backup	Tools	Backups	are	important	under	any	operating	system.	Debian
GNU/Linux	provides	several	different	utilities	that	you	might	want	to	use.

Additionally,	while	many	of	these	utilities	were	aimed	at	tape	backups
originally,	you’ll	find	that	they	are	now	being	used	for	other	things.	For	instance,
tar	is	being	used	for	distributing	programs	over	the	Internet.

Some	of	the	utilities	that	you’ll	find	include	the	following:	*	Taper	is	a	menu-
driven,	easy-to-learn	backup	program	that	can	back	up	to	a	variety	of	media.	Its
limitation	is	that	it	doesn’t	handle	large	(4GB	or	larger)	backups.

*	dump	is	designed	specifically	for	tapes;	its	main	strengths	are	its	interface
for	file	restores,	low-level	filesystem	backups,	and	incremental	backup



scheduling.	Its	limitations	include	the	inability	to	back	up	NFS	or	other	non-ext2
filesystems	and	some	rather	arcane	defaults.

*	GNU	tar	(short	for	Tape	ARchiver)	is	an	implementation	of	what	is	probably
the	most	widely	used	backup	or	archiving	utility	in	Linux	today.	It	makes	a	good
general	purpose	tool	and	can	deal	with	the	widest	variety	of	target	media.
Additionally,	many	different	systems	can	read	tar	files,	making	them	highly
portable.	tar’s	weaknesses	include	a	weaker	incremental	backup	system	than
dump	and	no	interactive	restore	selection	screen.

	

tar

	

Because	tar	is	used	so	much,	and	for	quite	a	bit	in	addition	to	backups,	it	is
being	described	here.	For	more	details,	see	the	tar	manual	page;	instructions	for
viewing	manual	pages	can	be	found	in	section	5.1	on	page	[*].

	

tar	is	an	archiver.	This	means	that	tar	can	take	many	files	and	combine	them
all	into	one	large	file	or	write	them	out	to	a	backup	device	such	as	a	tape	drive.
Once	you	have	this	one	large	file,	you	will	often	want	to	compress	it;	the	-z
option	is	great	for	this.	Hence,	tar	offers	a	great	way	to	distribute	programs	and
data	on	the	Internet,	and	you’ll	find	that	it	is	used	extensively	for	this	purpose.

	

Here’s	a	sample	tar	command	line:

	

tar	-zcvf	myfiles.tar.gz	usrlocal/bin	Let’s	take	a	look	at	how	this	command	can
be	broken	down:	tar

Name	of	the	command.

-



Tells	tar	that	options	will	follow.

	

z

Tells	tar	to	use	gzip	compression	automatically;	if	you	use	this,	it’s	good	to
add	a	.gz	extension	as	well.

	

c

Tells	tar	to	create	a	new	archive.

	

v

This	says	to	be	verbose;	that	is,	it	tells	tar	to	let	you	know	what	it’s	doing
while	it	creates	the	archive.

	

f

This	indicates	that	the	next	thing	on	the	command	line	is	the	name	of	the	file
to	be	created	or	the	device	to	be	used.	If	I	used	devst0	here,	for	instance,	it	would
write	the	backup	to	the	tape	drive.

	

myfiles.tar.gz

This	is	the	name	of	the	file	to	be	created.

	

usrlocal/bin

This	is	the	name	of	the	file	or	directory	to	store	in	the	archive.



It’s	also	possible	to	specify	several	items	here.

	

You	may	often	find	tar.gz	files	(or	simply	tgz	files)	on	the	Internet.	You	can
unpack	these	with	a	command	like:

	

tar	-zxvf	filename.tar.gz

	

Networking	One	of	the	key	benefits	of	GNU/Linux	over	other	systems	lies	in
its	networking	support.	Few	systems	can	rival	the	networking	features	present	in
GNU/Linux.	In	this	chapter,	we	tell	you	how	to	configure	your	network	devices.

	

PPP

	

This	section	is	a	quick-start	guide	to	setting	up	PPP	on	Debian.	If	it	turns	out
that	you	need	more	details,	see	the	excellent	|PPP	HOWTO|	from	the	Linux
Documentation	Project.	The	HOWTO	goes	into	much	more	detail	if	you’re
interested	or	have	unique	needs.



Introduction

If	you	connect	to	the	Internet	over	a	phone	line,	you’ll	want	to	use	PPP

(Point-to-Point	Protocol).	This	is	the	standard	connection	method	offered	by
ISPs	(Internet	service	providers).	In	addition	to	using	PPP	to	dial	your	ISP,	you
can	have	your	computer	listen	for	incoming	connections	-

this	lets	you	dial	your	computer	from	a	remote	location.

	

Preparation

	

Configuring	PPP	on	Debian	GNU/Linux	is	straightforward	once	you	have	all
the	information	you’ll	need.	Debian	makes	things	even	easier	with	its	simple
configuration	tools.

	

Before	you	start,	be	sure	you	have	all	the	information	provided	by	your	ISP.
This	might	include:

	

*	Username	or	login

*	Password

*	Your	static	IP	(Internet	Protocol)	address,	if	any	(these	look	like
209.81.8.242).	This	information	isn’t	needed	for	most	ISPs.

*	Bitmask	(this	will	look	something	like	255.255.255.248).	This	information
isn’t	needed	for	most	ISPs.

*	The	IP	addresses	of	your	ISP’s	name	servers	(or	DNS).



*	Any	special	login	procedure	required	by	the	ISP.

Next,	you’ll	want	to	investigate	your	hardware	setup:	whether	your	modem
works	with	GNU/Linux	and	which	serial	port	it’s	connected	to.

	

A	simple	rule	determines	whether	your	modem	will	work.	If	it’s	a
“winmodem”	or	“host-based	modem,”	it	won’t	work.	These	modems	are	cheap
because	they	have	very	little	functionality,	and	they	require	the	computer	to
make	up	for	their	shortcomings.	Unfortunately,	this	means	they	are	complex	to
program,	and	manufacturers	generally	do	not	make	the	specifications	available
for	developers.

	

If	you	have	a	modem	with	its	own	on-board	circuitry	or	an	external	modem,
you	should	have	no	trouble	at	all.

	

On	GNU/Linux	systems,	the	serial	ports	are	referred	to	as	devttyS0,	devttyS1,
and	so	on.	Your	modem	is	almost	certainly	connected	to	either	port	0	or	port	1,
equivalent	to	COM1:	and	COM2:	under	Windows.	If	you	don’t	know	which
your	modem	is	connected	to,	run	the	program	wvdialconf	to	try	to	detect	it	(see
below);	otherwise,	just	try	both	and	see	which	works.

	

If	you	want	to	talk	to	your	modem	or	dial	your	ISP	without	using	PPP,	you	can
use	the	minicom	program.	You	may	need	to	install	the	minicom	package	to	make
the	program	available.

	

The	Easy	Way:	wvdial

	

The	simplest	way	to	get	PPP	running	is	with	the	wvdial	program.	It	makes



some	reasonable	guesses	and	tries	to	set	things	up	for	you.	If	it	works,	you’re	in
luck.	If	it	guesses	wrong,	you’ll	have	to	do	things	manually.

	

Be	sure	you	have	the	following	packages	installed:	*	ppp

*	ppp-pam

*	wvdial

When	you	install	the	wvdial	package,	you	may	be	given	the	opportunity	to
configure	it.	Otherwise,	to	set	up	wvdial,	follow	these	simple	steps:	Log	in	as
root,	using	su	(as	described	in	an	earlier	chapter).

	

touch	etcwvdial.conf

touch	will	create	the	following	file	if	the	file	doesn’t	exist;	the	configuration
program	requires	an	existing	file.

	

wvdialconf	etcwvdial.conf

This	means	you’re	creating	a	configuration	file,	etcwvdial.conf.

	

Answer	any	questions	that	appear	on	the	screen.	wvdialconf	will	also	scan	for
your	modem	and	tell	you	which	serial	port	it’s	on;	you	may	want	to	make	a	note
of	this	for	future	reference.

	

Ethernet

	

Another	popular	way	to	connect	to	the	Internet	is	via	a	LAN	that	uses



Ethernet.	This	gives	you	a	high-speed	local	network	in	addition	to	Internet
access.	Fortunately,	though,	you	should	have	already	configured	Ethernet
networking	during	installation	so	there	isn’t	much	you	need	to	do	now.	If	you
ever	need	to	modify	your	configuration,	here	are	the	files	that	you	will	be
interested	in:

	

*	etcinit.d/network	has	things	such	as	your	IP	address,	netmask,	and	default
route.

*	etchostname	records	your	hostname.

*	etchosts	also	records	your	hostname	and	IP	address.

	

Removing	and	Installing	Software	This	chapter	describes	ways	of	installing
and	removing	software	packages.

There	are	several	ways	of	doing	both.	Here	we	discuss	installation	and
removal	of	pre-built	software,	such	as	Debian	packages,	and	installation	of
source	that	must	be	built	by	you.

	

What	a	Package	Maintenance	Utility	Does	An	application	or	utility	program
usually	involves	quite	a	few	files.	It	might	include	libraries,	data	files	like	game
scenarios	or	icons,	configuration	files,	manual	pages,	and	documentation.	When
you	install	the	program,	you	want	to	make	sure	you	have	all	the	files	you	need	in
the	right	places.

	

You’d	also	like	to	be	able	to	uninstall	the	program.	When	you	uninstall,	you
want	to	be	sure	all	the	associated	files	are	deleted.	However,	if	a	program	you
still	have	on	the	system	needs	those	files,	you	want	to	be	sure	you	keep	them.

	



Finally,	you’d	like	to	be	able	to	upgrade	a	program.	When	you	upgrade,	you
want	to	delete	obsolete	files	and	add	new	ones,	without	breaking	any	part	of	the
system.

	

The	Debian	package	system	solves	these	problems.	It	allows	you	to	install,
remove,	and	upgrade	software	packages,	which	are	neat	little	bundles	containing
the	program	files	and	information	that	helps	the	computer	manage	them
properly.	Debian	packages	have	filenames	ending	in	the	extension	.deb,	and
they’re	available	on	the	FTP	site	or	on	your	official	Debian	CD-ROM.

	

dpkg

	

The	simplest	way	to	install	a	single	package	you’ve	downloaded	is	with	the
command	dpkg	-i	(short	for	dpkg	-install).	Say	you’ve	downloaded	the	package
icewm_0.8.12-1.deb	and	you’d	like	to	install	it.	First	log	on	as	root,	and	then
type	dpkg	-i	icewm_0.8.12-1.deb,	and	icewm	version	0.8.12

will	be	installed.	If	you	already	had	an	older	version,	dpkg	will	upgrade	it
rather	than	installing	both	versions	at	once.

	

If	you	want	to	remove	a	package,	you	have	two	options.	The	first	is	most
intuitive:	dpkg	-r	icewm.	This	will	remove	the	icewm	package	(-r	is	short	for	-
remove).	Note	that	you	give	only	the	icewm	for	-remove,	whereas	-install
requires	the	entire	.deb	filename.

	

-remove	will	leave	configuration	files	for	the	package	on	your	system.	A
configuration	file	is	defined	as	any	file	you	might	have	edited	in	order	to
customize	the	program	for	your	system	or	your	preferences.	This	way,	if	you
later	reinstall	the	package,	you	won’t	have	to	set	everything	up	a	second	time.



	

However,	you	might	want	to	erase	the	configuration	files	too,	so	dpkg	also
provides	a	-purge	option.	dpkg	-purge	icewm	will	permanently	delete	every	last
file	associated	with	the	icewm	package.

	

dselect

	

dselect	is	a	great	frontend	for	dpkg.	dselect	provides	a	menu	interface	for
dpkg,	and	can	automatically	fetch	the	appropriate	files	from	a	CD-ROM

or	Internet	FTP	site.	For	details	on	using	dselect,	see	section	3.20	on	page	[*].

	

Compiling	Software	Many	programs	come	in	source	format,	often	in	tar.gz
form.	First,	you	must	unpack	the	tar.gz	file;	for	details	on	doing	this,	see	section
10.3.1	on	page	[*].	Before	you	can	compile	the	package,	you’ll	need	to	have	gcc,
libc6-dev,	and	other	relevant	“-dev”	packages	installed;	most	of	these	are	listed
in	the	devel	area	in	dselect.

	

With	the	appropriate	packages	installed,	cd	into	the	directory	that	tar	created
for	you.	At	this	point,	you’ll	need	to	read	the	installation	instructions.	Most
programs	provide	an	INSTALL	or	README	file	that	will	tell	you	how	to
proceed.

	

Advanced	Topics	By	now,	you	should	have	a	strong	base	for	which	to	build
your	GNU/Linux	skills	on.	In	this	chapter	we	cover	some	very	useful
information	regarding	some	advanced	GNU/Linux	features.

	



Regular	Expressions	A	regular	expression	is	a	description	of	a	set	of
characters.	This	description	can	be	used	to	search	through	a	file	by	looking	for
text	that	matches	the	regular	expression.	Regular	expressions	are	analogous	to
shell	wildcards	(see	section	6.6	on	page	[*]),	but	they	are	both	more	complicated
and	more	powerful.

	

A	regular	expression	is	made	up	of	text	and	metacharacters.	A	metacharacter
is	just	a	character	with	a	special	meaning.	Metacharacters	include	the	following:
.	*	[]	-	\^	$.

	

If	a	regular	expression	contains	only	text	(no	metacharacters),	it	matches	that
text.	For	example,	the	regular	expression	“my	regular	expression”

matches	the	text	“my	regular	expression,”	and	nothing	else.	Regular
expressions	are	usually	case	sensitive.

	

You	can	use	the	egrep	command	to	display	all	lines	in	a	file	that	contain	a
regular	expression.	Its	syntax	is	as	follows:	egrep	‘regexp’	filename1	…

The	single	quotation	marks	are	not	always	needed,	but	they	never	hurt.

	

For	example,	to	find	all	lines	in	the	GPL	that	contain	the	word	GNU,	you	type

	

egrep	‘GNU’	usrdoc/copyright/GPL

egrep	will	print	the	lines	to	standard	output.	If	you	want	all	lines	that	contain
freedom	followed	by	some	indeterminate	text,	followed	by	GNU,	you	can	do
this:

	



egrep	‘freedom.*GNU’	usrdoc/copyright/GPL

The	.	means	“any	character,”	and	the	means	“zero	or	more	of	the	preceding
thing,”	in	this	case	“zero	or	more	of	any	character.”	So	.

matches	pretty	much	any	text	at	all.	egrep	only	matches	on	a	line-by-line
basis,	so	freedom	and	GNU	have	to	be	on	the	same	line.

	

Here’s	a	summary	of	regular	expression	metacharacters:	.

Matches	any	single	character	except	newline.

*

Matches	zero	or	more	occurrences	of	the	preceding	thing.	So	the	expression
a*	matches	zero	or	more	lowercase	a,	and	.*	matches	zero	or	more	characters.

	

[characters]

The	brackets	must	contain	one	or	more	characters;	the	whole	bracketed
expression	matches	exactly	one	character	out	of	the	set.

So	[abc]matches	one	a,	one	b,	or	one	c;	it	does	not	match	zero	characters,	and
it	does	not	match	a	character	other	than	these	three.

^

Anchors	your	search	at	the	beginning	of	the	line.	The	expression	^The
matches	The	when	it	appears	at	the	beginning	of	a	line;	there	can’t	be	spaces	or
other	text	before	The.	If	you	want	to	allow	spaces,	you	can	permit	0	or	more
space	characters	like	this:	^

*The.

$

Anchors	at	the	end	of	the	line.	end$	requires	the	text	end	to	be	at	the	end	of



the	line,	with	no	intervening	spaces	or	text.

	

[^characters]

This	reverses	the	sense	of	a	bracketed	character	list.	So	[^abc]

matches	any	single	character,	except	a,	b,	or	c.

	

[character-character]

You	can	include	ranges	in	a	bracketed	character	list.	To	match	any	lowercase
letter,	use	[a-z].	You	can	have	more	than	one	range;	so	to	match	the	first	three	or
last	three	letters	of	the	alphabet,	try	[a-cx-z].	To	get	any	letter,	any	case,	try	[a-
zA-Z].	You	can	mix	ranges	with	single	characters	and	with	the	^metacharacter;
for	example,	[^a-zBZ]means	“anything	except	a	lowercase	letter,	capital	B,	or
capital	Z.”

	

()

You	can	use	parentheses	to	group	parts	of	the	regular	expression,	just	as	you
do	in	a	mathematical	expression.

|

|means	“or.”	You	can	use	it	to	provide	a	series	of	alternative	expressions.
Usually	you	want	to	put	the	alternatives	in	parentheses,	like	this:
c(ad|ab|at)matches	cad	or	cab	or	cat.

Without	the	parentheses,	it	would	match	cad	or	ab	or	at	instead	\

Escapes	any	special	characters;	if	you	want	to	find	a	literal	*,	you	type	\*.	The
slash	means	to	ignore	*‘s	usual	special	meaning.

	



Here	are	some	more	examples	to	help	you	get	a	feel	for	things:	c.pe

matches	cope,	cape,	caper.

	

c\	.pe

matches	c.pe,	c.per.

	

sto*p

matches	stp,	stop,	stoop.

	

car.*n

matches	carton,	cartoon,	carmen.

	

xyz.*

matches	xyz	and	anything	after	it;	some	tools,	like	egrep,	only	match	until	the
end	of	the	line.

	

^The

matches	The	at	the	beginning	of	a	line.

	

atime$

matches	atime	at	the	end	of	a	line.



	

^Only$

matches	a	line	that	consists	solely	of	the	word	Only	-	no	spaces,	no	other
characters,	nothing.	Only	Only	is	allowed.

	

b[aou]rn

matches	barn,	born,	burn.

	

Ver[D-F]

matches	VerD,	VerE,	VerF.

	

Ver[^0-9]

matches	Ver	followed	by	any	non-digit.

	

the[ir][re]

matches	their,	therr,	there,	theie.

	

[A-Za-z][A-Za-z]*

matches	any	word	which	consists	of	only	letters,	and	at	least	one	letter.	It	will
not	match	numbers	or	spaces.

	

Advanced	Files	Now	that	you	have	a	basic	understanding	of	files,	it	is	time	to



learn	more	advanced	things	about	them.

	

The	Real	Nature	of	Files:	Hard	Links	and	Inodes	Each	file	on	your	system	is
represented	by	an	inode	(for	Information	Node;	pronounced	“eye-node”).	An
inode	contains	all	the	information	about	the	file.	However,	the	inode	is	not
directly	visible.	Instead,	each	inode	is	linked	into	the	filesystem	by	one	or	more
hard	links.	Hard	links	contain	the	name	of	the	file	and	the	inode	number.	The
inode	contains	the	file	itself,	i.e.,	the	location	of	the	information	being	stored	on
disk,	its	access	permissions,	the	file	type,	and	so	on.	The	system	can	find	any
inode	if	it	has	the	inode	number.

	

A	single	file	can	have	more	than	one	hard	link.	What	this	means	is	that
multiple	filenames	refer	to	the	same	file	(that	is,	they	are	associated	with	the
same	inode	number).	However,	you	can’t	make	hard	links	across	filesystems:	All
hard	references	to	a	particular	file	(inode)	must	be	on	the	same	filesystem.	This
is	because	each	filesystem	has	its	own	set	of	inodes,	and	there	can	be	duplicate
inode	numbers	on	different	filesystems.

	

Because	all	hard	links	to	a	given	inode	refer	to	the	same	file,	you	can	make
changes	to	the	file,	referring	to	it	by	one	name,	and	then	see	those	changes	when
referring	to	it	by	a	different	name.	Try	this:	cd;	echo	“hello”	>	firstlink

cd	to	your	home	directory	and	create	a	file	called	firstlink	containing	the	word
“hello.”	What	you’ve	actually	done	is	redirect	the	output	of	echo	(echo	just
echoes	back	what	you	give	to	it),	placing	the	output	in	firstlink.	See	the	chapter
on	shells	for	a	full	explanation.

	

cat	firstlink

Confirms	the	contents	of	firstlink.

	



ln	firstlink	secondlink

Creates	a	hard	link:	secondlink	now	points	to	the	same	inode	as	firstlink.

	

cat	secondlink

Confirms	that	secondlink	is	the	same	as	firstlink.

	

ls	-l

Notice	that	the	number	of	hard	links	listed	for	firstlink	and
secondlinkfiles!inodes	is	2.

	

echo	“change”	>>	secondlink

This	is	another	shell	redirection	trick	(don’t	worry	about	the	details).

You’ve	appended	the	word	“change”	to	secondlink.	Confirm	this	with	cat
secondlink.

	

cat	firstlink

firstlink	also	has	the	word	“change”	appended!	That’s	because	firstlink	and
secondlink	refer	to	the	same	file.	It	doesn’t	matter	what	you	call	it	when	you
change	it.

	

chmod	a+rwx	firstlink

Changes	permissions	on	firstlink.	Enter	the	command	ls	-l	to	confirm	that
permissions	on	secondlink	were	also	changed.	This	means	that	permissions
information	is	stored	in	the	inode,	not	in	links.



	

rm	firstlink

Deletes	this	link.	This	is	a	subtlety	of	rm.	It	really	removes	links,	not	files.
Now	type	ls	-l	and	notice	that	secondlink	is	still	there.	Also	notice	that	the
number	of	hard	links	for	secondlink	has	been	reduced	to	one.

	

rm	secondlink

Deletes	the	other	link.	When	there	are	no	more	links	to	a	file,	Linux	deletes
the	file	itself,	that	is,	its	inode.

	

All	files	work	like	this	-	even	special	types	of	files	such	as	devices	(e.g.
devhda).

	

A	directory	is	simply	a	list	of	filenames	and	inode	numbers,	that	is,	a	list	of
hard	links.	When	you	create	a	hard	link,	you’re	just	adding	a	name-number	pair
to	a	directory.	When	you	delete	a	file,	you’re	just	removing	a	hard	link	from	a
directory.

	

Types	of	Files

	

One	detail	we’ve	been	concealing	up	to	now	is	that	the	Linux	kernel	considers
nearly	everything	to	be	a	file.	That	includes	directories	and	devices:	They’re	just
special	kinds	of	files.

	

As	you	may	remember,	the	first	character	of	an	ls	-l	display	represents	the	type
of	the	file.	For	an	ordinary	file,	this	will	be	simply	-.	Other	possibilities	include



the	following:

	

d

directory

	

l

symbolic	link

	

b

block	device

	

c

character	device

	

p

named	pipe

	

s

socket

	

Symbolic	Links



	

Symbolic	links	(also	called	“symlinks”	or	“soft	links”)	are	the	other	kind	of
link	besides	hard	links.	A	symlink	is	a	special	file	that	“points	to”	a	hard	link	on
any	mounted	filesystem.	When	you	try	to	read	the	contents	of	a	symlink,	it	gives
the	contents	of	the	file	it’s	pointing	to	rather	than	the	contents	of	the	symlink
itself.	Because	directories,	devices,	and	other	symlinks	are	types	of	files,	you	can
point	a	symlink	at	any	of	those	things.

	

So	a	hard	link	is	a	filename	and	an	inode	number.	A	file	is	really	an	inode:	a
location	on	disk,	file	type,	permissions	mode,	etc.	A	symlink	is	an	inode	that
contains	the	name	of	a	hard	link.	A	symlink	pairs	one	filename	with	a	second
filename,	whereas	a	hard	link	pairs	a	filename	with	an	inode	number.

	

All	hard	links	to	the	same	file	have	equal	status.	That	is,	one	is	as	good	as
another;	if	you	perform	any	operation	on	one,	it’s	just	the	same	as	performing
that	operation	on	any	of	the	others.	This	is	because	the	hard	links	all	refer	to	the
same	inode.	Operations	on	symlinks,	on	the	other	hand,	sometimes	affect	the
symlink’s	own	inode	(the	one	containing	the	name	of	a	hard	link)	and	sometimes
affect	the	hard	link	being	pointed	to.

	

There	are	a	number	of	important	differences	between	symlinks	and	hard	links.

	

Symlinks	can	cross	filesystems.	This	is	because	they	contain	complete
filenames,	starting	with	the	root	directory,	and	all	complete	filenames	are	unique.
Because	hard	links	point	to	inode	numbers,	and	inode	numbers	are	unique	only
within	a	single	filesystem,	they	would	be	ambiguous	if	the	filesystem	wasn’t
known.

	

You	can	make	symlinks	to	directories,	but	you	can’t	make	hard	links	to	them.



Each	directory	has	hard	links	-	its	listing	in	its	parent	directory,	its	.	entry,	and
the	..	entry	in	each	of	its	subdirectories	-	but	to	impose	order	on	the	filesystem,
no	other	hard	links	to	directories	are	allowed.	Consequently,	the	number	of	files
in	a	directory	is	equal	to	the	number	of	hard	links	to	that	directory	minus	two
(you	subtract	the	directory’s	name	and	the	.	link).	comparing!hard	links	and
symlinks	You	can	only	make	a	hard	link	to	a	file	that	exists,	because	there	must
be	an	inode	number	to	refer	to.	However,	you	can	make	a	symlink	to	any
filename,	whether	or	not	there	actually	is	such	a	filename.

	

Removing	a	symlink	removes	only	the	link.	It	has	no	effect	on	the	linked-to
file.	Removing	the	only	hard	link	to	a	file	removes	the	file.

	

Try	this:

	

cd;	ln	-s	tmpme	MyTmp

cd	to	your	home	directory.	ln	with	the	-s	option	makes	a	symbolic	link	-

in	this	case,	one	called	MyTmp	that	points	to	the	filename	tmpme.

	

ls	-l	MyTmp

Output	should	look	like	this:

	

lrwxrwxrwx	1	havoc	havoc	7	Dec	6	12:50	MyTmp	->	tmpme	The	date	and
user/group	names	will	be	different	for	you,	of	course.	Notice	that	the	file	type	is
l,	indicating	that	this	is	a	symbolic	link.	Also	notice	the	permissions:	Symbolic
links	always	have	these	permissions.	If	you	attempt	to	chmod	a	symlink,	you’ll
actually	change	the	permissions	on	the	file	being	pointed	to.



	

chmod	700	MyTmp

You	will	get	a	No	such	file	or	directory	error,	because	the	file	tmpme	doesn’t
exist.	Notice	that	you	could	create	a	symlink	to	it	anyway.

	

mkdir	tmpme

Creates	the	directory	tmpme.

	

chmod	700	MyTmp

Should	work	now.

	

touch	MyTmp/myfile

Creates	a	file	in	MyTmp.

	

ls	tmpme

The	file	is	actually	created	in	tmpme.

	

rm	MyTmp

Removes	the	symbolic	link.	Notice	that	this	removes	the	link,	not	what	it
points	to.	Thus	you	use	rm	not	rmdir.

	

rm	tmpme/myfile;	rmdir	tmpme



Lets	you	clean	up	after	yourself.	symlinks!removing	Device	Files

	

Device	files	refer	to	physical	or	virtual	devices	on	your	system,	such	as	your
hard	disk,	video	card,	screen,	and	keyboard.	An	example	of	a	virtual	device	is
the	console,	represented	by	devconsole.

	

There	are	two	kinds	of	devices:character	and	block.	Character	devices	can	be
accessed	one	character	at	a	time.	Remember	the	smallest	unit	of	data	that	can	be
written	to	or	read	from	the	device	is	a	character	(byte).

	

Block	devices	must	be	accessed	in	larger	units	called	blocks,	which	contain	a
number	of	characters.	Your	hard	disk	is	a	block	device.

	

You	can	read	and	write	device	files	just	as	you	can	from	other	kinds	of	files,
though	the	file	may	well	contain	some	strange	incomprehensible-to-humans
gibberish.	Writing	random	data	to	these	files	is	probably	a	bad	idea.	Sometimes
it’s	useful,	though.	For	example,	you	can	dump	a	postscript	file	into	the	printer
device	devlp0	or	send	modem	commands	to	the	device	file	for	the	appropriate
serial	port.

	

devnull

	

devnull	is	a	special	device	file	that	discards	anything	you	write	to	it.

If	you	don’t	want	something,	throw	it	in	devnull.	It’s	essentially	a	bottomless
pit.	If	you	read	devnull,	you’ll	get	an	end-of-file	(EOF)	character	immediately.
devzero	is	similar,	except	that	you	read	from	it	you	get	the	\0	character	(not	the
same	as	the	number	zero).



	

Named	Pipes	(FIFOs)

	

A	named	pipe	is	a	file	that	acts	like	a	pipe.	You	put	something	into	the	file,
and	it	comes	out	the	other	end.	Thus	it’s	called	a	FIFO,	or	First-In-First-Out,
because	the	first	thing	you	put	in	the	pipe	is	the	first	thing	to	come	out	the	other
end.

	

If	you	write	to	a	named	pipe,	the	process	that	is	writing	to	the	pipe	doesn’t
terminate	until	the	information	being	written	is	read	from	the	pipe.	If	you	read
from	a	named	pipe,	the	reading	process	waits	until	there’s	something	to	read
before	terminating.	The	size	of	the	pipe	is	always	zero:	It	doesn’t	store	data,	it
just	links	two	processes	like	the	shell	|.	However,	because	this	pipe	has	a	name,
the	two	processes	don’t	have	to	be	on	the	same	command	line	or	even	be	run	by
the	same	user.

	

You	can	try	it	by	doing	the	following:

	

cd;	mkfifo	mypipe

Makes	the	pipe.

	

echo	“hello”	>	mypipe	&

Puts	a	process	in	the	background	that	tries	to	write	“hello”	to	the	pipe.	Notice
that	the	process	doesn’t	return	from	the	background;	it	is	waiting	for	someone	to
read	from	the	pipe.

	



cat	mypipe

At	this	point,	the	echo	process	should	return,	because	cat	read	from	the	pipe,
and	the	cat	process	will	print	hello.

	

rm	mypipe

You	can	delete	pipes	just	like	any	other	file.

	

Sockets

	

Sockets	are	similar	to	pipes,	only	they	work	over	the	network.	This	is	how
your	computer	does	networking.	You	may	have	heard	of	“WinSock,”	which	is
sockets	for	Windows.

	

We	won’t	go	into	these	further	because	you	probably	won’t	have	occasion	to
use	them	unless	you’re	programming.	However,	if	you	see	a	file	marked	with
type	son	your	computer,	you	know	what	it	is.

	

The	proc	Filesystem

	

The	Linux	kernel	makes	a	special	filesystem	available,	which	is	mounted
under	/proc	on	Debian	systems.	This	is	a	“pseudo-filesystem”	because	it	doesn’t
really	exist	on	any	of	your	physical	devices.

	

The	proc	filesystem	contains	information	about	the	system	and	running
processes.	Some	of	the	“files”	in	/proc	are	reasonably	understandable	to	humans



(try	typing	cat	procmeminfo	or	cat	proccpuinfo);	others	are	arcane	collections	of
numbers.	Often,	system	utilities	use	these	to	gather	information	and	present	it	to
you	in	a	more	understandable	way.

	

People	frequently	panic	when	they	notice	one	file	in	particular	-

prockcore	-	which	is	generally	huge.	This	is	(more	or	less)	a	copy	of	the
contents	of	your	computer’s	memory.	It’s	used	to	debug	the	kernel.	It	doesn’t
actually	exist	anywhere,	so	don’t	worry	about	its	size.

	

If	you	want	to	know	about	all	the	things	in	/proc,	type	man	5	proc.

	

Large-Scale	Copying

	

Sometimes	you	may	want	to	copy	one	directory	to	another	location.	Maybe
you’re	adding	a	new	hard	disk	and	you	want	to	copy	usrlocal	to	it.	There	are
several	ways	you	can	do	this.

	

The	first	is	to	use	cp.	The	command	cp	-a	will	tell	cp	to	do	a	copy	preserving
all	the	information	it	can.	So,	you	might	use	cp	-a	usrlocal	/destination

However,	there	are	some	things	that	cp	-a	won’t	catch13.1.	So,	the	best	way	to
do	a	large	copy	job	is	to	chain	two	tar	commands	together,	like	so:	tar	-cSpf	-
usrlocal	|	tar	-xvSpf	-	-C	/destination	The	first	tar	command	will	archive	the
existing	directory	and	pipe	it	to	the	second.	The	second	command	will	unpack
the	archive	into	the	location	you	specify	with	-C.

	

Security



	

Back	in	section	7.1	on	page	[*],	we	discussed	file	permissions	in	Linux.

This	is	a	fundamental	way	to	keep	your	system	secure.	If	you	are	running	a
multiuser	system	or	a	server,	it	is	important	to	make	sure	that	permissions	are
correct.	A	good	rule	of	thumb	is	to	set	files	to	have	the	minimum	permissions
necessary	for	use.

	

If	you	are	running	a	network	server,	there	are	some	other	things	to	be	aware	of
as	well.	First,	you	ought	to	uninstall	or	turn	off	any	network	services	you’re	not
using.	A	good	place	to	start	is	the	file	etcinetd.conf;	you	can	probably	disable
some	of	these.	For	most	network	services,	it’s	also	possible	to	control	who	has
access	to	them;	the	etchosts.allow	and	etchosts.deny	files	(documented	in	man	5
hosts_access)	can	control	who	has	access	to	which	services.	You	also	ought	to
keep	up-to-date	with	patches	or	updates	to	Debian;	these	can	be	found	on	your
nearest	Debian	FTP	mirror.

	

Some	other	commonsense	rules	apply:

	

*	Never	tell	anyone	your	password.

*	Never	send	your	password	in	cleartext	across	the	Internet	by	using
something	like	telnet	or	FTP.	Instead,	use	encrypted	protocols	or	avoid	logging
in	remotely.

*	Avoid	using	root	as	much	as	possible.

*	Don’t	install	untrusted	software,	and	don’t	install	it	as	root.

*	Avoid	making	things	world-writable	whenever	possible.	/tmp	is	one
exception	to	this	rule.

While	this	is	probably	not	of	as	much	use	to	somebody	not	running	a	server,	it



is	still	pays	to	know	a	bit	about	security.	Debian’s	security	mechanism	is	what
protects	your	system	from	many	viruses.

	

Software	Development	with	Debian	Debian	makes	a	great	platform	for
software	development	and	programming.

Among	the	languages	and	near-languages	it	supports	are:	C,	C++,	Objective-
C,	Perl,	Python,	m4,	Ada,	Pascal,	Java,	awk,	Tcl/Tk,	SQL,	assembler,	Bourne
shell,	csh,	and	more.	Writing	programs	is	beyond	the	scope	of	this	book,	but	here
are	some	of	the	more	popular	development	programs	in	Debian:

	

gcc

The	GNU	C	Compiler,	a	modern	optimizing	C	compiler.

	

g++

The	C++	compiler	from	the	gcc	line.

	

cpp

The	C	preprocessor	from	gcc.

	

perl

The	Perl	interpreter.	Perl	is	a	great	“glue”	language.

	

gdb



GNU	Debugger,	used	to	debug	programs	in	many	different	languages.

	

gprof

Used	for	profiling,	this	program	helps	you	to	find	ways	to	improve	the
performance	of	your	programs.

	

emacs

GNU	Emacs	is	a	programmers’	editor	and	IDE.

	

as

The	GNU	Assembler.

	

Reference

	

Reading	Documentation	and	Getting	Help	Kinds	of	Documentation	On
Debian	systems,	you	can	find	documentation	in	at	least	the	following	places:

	

*	man	pages,	read	with	the	man	command.

*	info	pages,	read	with	the	info	command.

*	The	usrdoc/package	directories,	where	package	is	the	name	of	the	Debian
package.

	



Tip:

	

zless	is	useful	for	reading	the	files	in	usrdoc;	see	section	8.1

on	page	[*]	for	details.

	

*	usrdoc/HOWTO/contains	the	Linux	Documentation	Project’s	HOWTO
documents,	if	you’ve	installed	the	Debian	packages	containing	them.

	

*	Many	commands	have	an	-h	or	-help	option.	Type	the	command	name
followed	by	one	of	these	options	to	try	it.

*	The	Debian	Documentation	Project	has	written	some	manuals.

*	The	Debian	support	page	has	a	FAQ	and	other	resources.	You	can	also	try
the	Linux	web	site.

The	confusing	variety	of	documentation	sources	exists	for	many	reasons.

For	example,	info	is	supposed	to	replace	man,	but	man	hasn’t	disappeared	yet.
However,	it’s	nice	to	know	that	so	much	documentation	exists!

	

So	where	to	look	for	help?	Here	are	some	suggestions:	*	Use	the	man	pages
and	the	-help	or	-h	option	to	get	a	quick	summary	of	a	command’s	syntax	and
options.	Also	use	man	if	a	program	doesn’t	yet	have	an	info	page.

*	Use	info	if	a	program	has	info	documentation.

*	If	neither	of	those	works,	look	in	usrdoc/packagename.

*	usrdoc/packagename	often	has	Debian-specific	information,	even	if	there’s	a
man	page	or	info	page.



*	Use	the	HOWTOs	for	instructions	on	how	to	set	up	a	particular	thing	or	for
information	on	your	particular	hardware.	For	example,	the	Ethernet	HOWTO
has	a	wealth	of	information	on	Ethernet	cards,	and	the	PPP	HOWTO

explains	in	detail	how	to	set	up	PPP.

*	Use	the	Debian	Documentation	Project	manuals	for	conceptual	explanations
and	Debian-specific	information.

If	all	else	fails,	ask	someone.	See	section	A.1.3	on	page	[].

Using	man	pages	is	discussed	above	in	section	5.1	on	page	[*].	It’s	very
simple:	press	the	space	bar	to	go	to	the	next	page,	and	press	q	to	quit	reading.
Using	info,	viewing	files	in	usrdoc,	and	asking	for	help	from	a	person	are	all
discussed	in	the	remainder	of	this	chapter.

	

Using	info

	

info	is	the	GNU	documentation	viewer.	Some	programs	provide
documentationin	info	format,	and	you	can	use	info	to	view	that	documentation.
You	can	start	up	the	viewer	by	simply	typing	info,	or	by	supplying	a	topic	as
well:

	

info	emacs

You	can	also	bring	up	the	information	on	info	itself,	which	includes	a	tutorial,
like	so:

	

info	info

Now,	you	may	navigate	with	these	keys:

	



arrows

Move	the	cursor	around	the	document	m	RET

Select	the	menu	item	that’s	at	the	cursor	u

Move	“up”	in	the	document

	

n

Move	to	the	next	page

	

p

Move	to	the	previous	page

	

s

Search	for	something

	

g

Go	to	a	specific	page

	

q

Quit	info

	

You	might	notice	that	the	top	line	of	the	screen	indicates	the	next,	previous,



and	“up”	pages,	corresponding	nicely	to	the	actions	for	the	n,	p,	and	u	keys.

	

HOWTOs

	

In	addition	to	their	books,	the	Linux	Documentation	Project	has	made	a	series
of	short	documents	describing	how	to	set	up	particular	aspects	of	GNU/Linux.
For	instance,	the	SCSI-HOWTO	describes	some	of	the	complications	of	using
SCSI	-	a	standard	way	of	talking	to	devices	-	with	GNU/Linux.	In	general,	the
HOWTOs	have	more	specific	information	about	particular	hardware
configurations	and	will	be	more	up	to	date	than	this	manual.

	

There	are	Debian	packages	for	the	HOWTOs.	doc-linux-text	contains	the
various	HOWTOs	in	text	form;	the	doc-linux-html	package	contains	the
HOWTOs	in	(surprise!)	browsable	HTML	format.	Note	also	that	Debian	has
packaged	translations	of	the	HOWTOs	in	various	languages	that	you	may	prefer
if	English	is	not	your	native	language.	Debian	has	packages	for	the	German,
French,	Spanish,	Italian,	Japanese,	Korean,	Polish,	Swedish	and	Chinese
versions	of	the	HOWTOs.	These	are	usually	available	in	the	package	doc-linux-
languagecode,	where	languagecode	is	fr	for	French,	es	for	Spanish,	etc.	If	you’ve
installed	one	of	these,	you	should	have	them	in	usrdoc/HOWTO.	However,	you
may	be	able	to	find	more	recent	versions	on	the	Net	at	the	LDP	homepage.

	

Personal	Help

	

The	correct	place	to	ask	for	help	with	Debian	is	the	debian-user	mailing	list	at
debian-user@lists.debian.org.	If	you	know	how	to	use	IRC	(Internet	Relay
Chat),	you	can	use	the	#debian	channel	on	irc.debian.org.	You	can	find	general
GNU/Linux	help	on	the	comp.os.linux.*	USENET	hierarchy.	It	is	also	possible
to	hire	paid	consultants	to	provide	guaranteed	support	services.	The	Debian
website	has	more	information	on	many	of	these	resources.



	

Again,	please	do	not	ask	the	authors	of	this	book	for	help.	We	probably	don’t
know	the	answer	to	your	specific	problem	anyway;	if	you	mail	debian-user,	you
will	get	higher-quality	responses,	and	more	quickly.

	

Always	be	polite	and	make	an	effort	to	help	yourself	by	reading	the
documentation.	Remember,	Debian	is	a	volunteer	effort	and	people	are	doing
you	a	favor	by	giving	their	time	to	help	you.	Many	of	them	charge	hundreds	of
dollars	for	the	same	services	during	the	day.

	

Tips	for	asking	questions

	

*	Read	the	obvious	documentation	first.	Things	like	command	options	and
what	a	command	does	will	be	covered	there.	This	includes	manpages	and	info
documentation.

*	Check	the	HOWTO	documents	if	your	question	is	about	setting	up
something	such	as	PPP	or	Ethernet.

*	Try	to	be	sure	the	answer	isn’t	in	this	book.

*	Don’t	be	afraid	to	ask,	after	you’ve	made	a	basic	effort	to	look	it	up.

*	Don’t	be	afraid	to	ask	for	conceptual	explanations,	advice,	and	other	things
not	often	found	in	the	documentation.

*	Include	any	information	that	seems	relevant.	You’ll	almost	always	want	to
mention	the	version	of	Debian	you’re	using.	You	may	also	want	to	mention	the
version	of	any	pertinent	packages:	The	command	dpkg	-l	packagename	will	tell
you	this.	It’s	also	useful	to	say	what	you’ve	tried	so	far	and	what	happened.
Please	include	the	exact	error	messages,	if	any.

*	Don’t	apologize	for	being	new	to	Linux.	There’s	no	reason	everyone	should



be	a	GNU/Linux	expert	to	use	it,	any	more	than	everyone	should	be	a	mechanic
to	use	a	car.

*	Don’t	post	or	mail	in	HTML.	Some	versions	of	Netscape	and	Internet
Explorer	will	post	in	HTML	rather	than	plain	text.	Most	people	will	not	even
read	these	posts	because	the	posts	are	difficult	to	read	in	most	mail	programs.
There	should	be	a	setting	somewhere	in	the	preferences	to	disable	HTML.

*	Be	polite.	Remember	that	Debian	is	an	all-volunteer	effort,	and	anyone	who
helps	you	is	doing	so	on	his	or	her	time	out	of	kindness.

*	Re-mail	your	question	to	the	list	if	you’ve	gotten	no	responses	after	several
days.	Perhaps	there	were	lots	of	messages	and	it	was	overlooked.	Or	perhaps	no
one	knows	the	answer	-	if	no	one	answers	the	second	time,	this	is	a	good	bet.
You	might	want	to	try	including	more	information	the	second	time.

*	Answer	questions	yourself	when	you	know	the	answer.	Debian	depends	on
everyone	doing	his	or	her	part.	If	you	ask	a	question,	and	later	on	someone	else
asks	the	same	question,	you’ll	know	how	to	answer	it.	Do	so!

	

Getting	Information	from	the	System

	

When	diagnosing	problems	or	asking	for	help,	you’ll	need	to	get	information
about	your	system.	Here	are	some	ways	to	do	so:	*	Examine	the	files	in	varlog/.

*	Examine	the	output	of	the	dmesg	command.

*	Run	uname	-a.

	

Troubleshooting	In	Debian,	as	in	life,	things	don’t	always	work	as	you	might
expect	or	want	them	to.	While	Debian	has	a	well-deserved	reputation	for	being
rock-solid	and	stable,	sometimes	its	reaction	to	your	commands	may	be
unexpected.	Here,	we	try	to	shed	some	light	on	the	most	common	problems	that
people	encounter.



	

Common	Difficulties	This	section	provides	some	tips	for	handling	some	of	the
most	frequently	experienced	difficulties	users	have	encountered.

	

Working	with	Strangely-Named	Files

	

Occasionally,	you	may	find	that	you	have	accidentally	created	a	file	that
contains	a	character	not	normally	found	in	a	filename.	Examples	of	this	could
include	a	space,	a	leading	hyphen,	or	maybe	a	quotation	mark.	You	may	find	that
accessing,	removing,	or	renaming	these	files	can	be	difficult.

	

Here	are	some	tips	to	help	you:

	

*	Try	enclosing	the	filename	in	single	quotation	marks,	like	this:	less	‘File
With	Spaces.txt’

*	Insert	a	./	before	the	filename:

less	‘./-a	strange	file.txt’

*	Use	wildcards:

less	File?With?Spaces.txt

*	Use	a	backslash	before	each	unusual	character:	less	File\	With\	Spaces.txt

	

Printing

	



One	common	source	of	trouble	is	the	printing	system	in	Debian.

Traditionally,	printing	has	been	a	powerful	but	complex	aspect	of	Unix.

However,	Debian	makes	it	easier.	An	easy	way	to	print	is	with	the	package
called	magicfilter.	magicfilter	will	ask	you	a	few	questions	about	your	printer
and	then	configure	it	for	you.	If	you	are	having	troubles	printing,	give
magicfilter	a	try.

	

X	Problems

	

Many	questions	revolve	around	X.	Here	are	some	general	tips	for	things	to	try
if	you	are	having	difficulties	setting	up	the	X	Window	system:	*	For	mouse
problems,	run	XF86Setup	and	try	the	PS/2,	Microsoft,	MouseSystems,	and
Logitech	options.	Most	mice	will	fit	under	one	of	these.	Also,	the	device	for
your	mouse	is	devpsaux	for	PS/2	mice	and	a	serial	port	such	as	devttyS0	for
serial	mice.

*	If	you	don’t	know	what	video	chipset	you	have,	try	running	SuperProbe;	it
can	often	figure	this	out	for	you.

*	If	your	screen	doesn’t	have	a	lot	of	color,	try	selecting	a	different	video	card
or	tell	X	how	much	video	RAM	you	have.

*	If	your	screen	goes	blank	or	has	unreadable	text	when	you	start	X,	you
probably	selected	an	incorrect	refresh	rate.	Go	back	to	XF86Setup	or	xf86config
and	double-check	those	settings.

*	xvidtune	can	help	if	the	image	on	the	screen	is	shifted	too	far	to	the	left	or
right,	is	too	high	or	low,	or	is	too	narrow	or	wide.

*	xdpyinfo	can	give	information	about	a	running	X	session.

*	XF86Setup	can	set	your	default	color	depth.

*	You	can	select	your	default	window	manager	by	editing	etcX11/window-



managers.

*	varlog/xdm-errors	can	contain	useful	information	if	you	are	having	trouble
getting	xdm	to	start	properly.

As	a	final	reminder,	try	the	XF86Setup	or	xf86config	tools	for	configuring	or
reconfiguring	X	for	your	hardware.

	

Troubleshooting	the	Boot	Process	If	you	have	problems	during	the	boot
process,	such	as	the	kernel	hangs	during	the	boot	process,	the	kernel	doesn’t
recognize	peripherals	you	actually	have,	or	drives	are	not	recognized	properly,
the	first	things	to	check	are	the	boot	parameters.	They	can	be	found	by	pressing
F1	when	booting	from	the	rescue	disk.

	

Often,	problems	can	be	solved	by	removing	add-ons	and	peripherals	and	then
booting	again.	Internal	modems,	sound	cards,	and	Plug-n-Play	devices	are
especially	problematic.

	

Tecras	and	other	notebooks,	and	some	non-portables	fail	to	flush	the	cache
when	switching	on	the	A20	gate,	which	is	provoked	by	bzImage	kernels	but	not
by	zImage	kernels.	If	your	computer	suffers	from	this	problem,	you’ll	see	a
message	during	boot	saying	A20	gating	failed.	In	this	case,	you’ll	have	to	use	the
`tecra’	boot	images.

	

If	you	still	have	problems,	please	submit	a	bug	report.	Send	an	email	to
submit@bugs.debian.org.	You	must	include	the	following	as	the	first	lines	of	the
email:

	

Package:	boot-floppies



	

Version:	version

	

Make	sure	you	fill	in	version	with	the	version	of	the	boot-floppies	set	that	you
used.	If	you	don’t	know	the	version,	use	the	date	you	downloaded	the	floppies,
and	include	the	distribution	you	got	them	from	(e.g.,	“stable”	or	“frozen”).

	

You	should	also	include	the	following	information	in	your	bug	report:
architecture

i386

	

model

your	general	hardware	vendor	and	model	memory

amount	of	RAM

	

scsi

SCSI	host	adapter,	if	any

	

cd-rom

CD-ROM	model	and	interface	type,	i.e.,	ATAPI	network	card

network	interface	card,	if	any

	



pcmcia

details	of	any	PCMCIA	devices

	

Depending	on	the	nature	of	the	bug,	it	also	might	be	useful	to	report	the	disk
model,	the	disk	capacity,	and	the	model	of	video	card.

	

In	the	bug	report,	describe	what	the	problem	is,	including	the	last	visible
kernel	messages	in	the	event	of	a	kernel	hang.	Describe	the	steps	you	performed
that	put	the	system	into	the	problem	state.

	

Booting	the	System	This	appendix	describes	what	happens	during	the
GNU/Linux	boot	process.

	

How	you	boot	your	system	depends	on	how	you	set	things	up	when	you
installed	Debian.	Most	likely,	you	just	turn	the	computer	on.	But	you	may	have
to	insert	a	floppy	disk	first.

	

Linux	is	loaded	by	a	program	called	LILO,	or	LInux	LOader.	LILO	can	also
load	other	operating	systems	and	ask	you	which	system	you’d	like	to	load.

	

The	first	thing	that	happens	when	you	turn	on	an	Intel	PC	is	that	the	BIOS

executes.	BIOS	stands	for	Basic	Input	Output	System.	It’s	a	program
permanently	stored	in	the	computer	on	read-only	chips.	It	performs	some
minimal	tests	and	then	looks	for	a	floppy	disk	in	the	first	disk	drive.	If	it	finds
one,	it	looks	for	a	“boot	sector”	on	that	disk	and	starts	executing	code	from	it,	if
there	is	any.	If	there	is	a	disk	but	no	boot	sector,	the	BIOS	will	print	a	message



like	this:	Non-system	disk	or	disk	error.	Removing	the	disk	and	pressing	a	key
will	cause	the	boot	process	to	resume.

	

If	there	isn’t	a	floppy	disk	in	the	drive,	the	BIOS	looks	for	a	master	boot
record	(MBR)	on	the	hard	disk.	It	will	start	executing	the	code	found	there,
which	loads	the	operating	system.	On	GNU/Linux	systems,	LILO	can	occupy
the	MBR	and	will	load	GNU/Linux.

	

Thus,	if	you	opted	to	install	LILO	on	your	hard	drive,	you	should	see	the	word
LILO	as	your	computer	starts	up.	At	that	point,	you	can	press	the	left	Shift	key
to	select	which	operating	system	to	load	or	press	Tab	to	see	a	list	of	options.
Type	in	one	of	those	options	and	press	Enter.	LILO

will	boot	the	requested	operating	system.

	

If	you	don’t	press	the	Shift	key,	LILO	will	automatically	load	the	default
operating	system	after	about	5	seconds.	If	you	like,	you	can	change	what	system
LILO	loads	automatically,	which	systems	it	knows	how	to	load,	and	how	long	it
waits	before	loading	one	automatically.

	

If	you	didn’t	install	LILO	on	your	hard	drive,	you	probably	created	a	boot
disk.	The	boot	disk	will	have	LILO	on	it.	All	you	have	to	do	is	insert	the	disk
before	you	turn	on	your	computer,	and	the	BIOS	will	find	it	before	it	checks	the
MBR	on	the	hard	drive.	To	return	to	a	non-Linux	OS,	take	out	the	boot	disk	and
restart	the	computer.	From	Linux,	be	sure	you	follow	the	proper	procedure	for
restarting;	see	section	4.5	on	page	[*]	for	details.

	

LILO	loads	the	Linux	kernel	from	disk	and	then	lets	the	kernel	take	over.

(The	kernel	is	the	central	program	of	the	operating	system,	which	is	in	control



of	all	other	programs.)	The	kernel	discards	the	BIOS	and	LILO.

	

On	non-Intel	platforms,	things	work	a	little	differently.	But	once	you	boot,
everything	is	more	or	less	the	same.

	

Linux	looks	at	the	type	of	hardware	it’s	running	on.	It	wants	to	know	what
type	of	hard	disks	you	have,	whether	or	not	you	have	a	bus	mouse,	whether	or
not	you’re	on	a	network,	and	other	bits	of	trivia	like	that.	Linux	can’t	remember
things	between	boots,	so	it	has	to	ask	these	questions	each	time	it	starts	up.
Luckily,	it	isn’t	asking	you	these	questions	-	it’s	asking	the	hardware!	While	it
boots,	the	Linux	kernel	will	print	messages	on	the	screen	describing	what	it’s
doing.

	

The	query	process	can	cause	problems	with	your	system,	but	if	it	was	going
to,	it	probably	would	have	when	you	first	installed	GNU/Linux.	If	you’re	having
problems,	consult	the	installation	instructions	or	ask	questions	on	a	mailing	list.

	

The	kernel	merely	manages	other	programs,	so	once	it	is	satisfied	everything
is	okay,	it	must	start	another	program	to	do	anything	useful.

The	program	the	kernel	starts	is	called	init.	After	the	kernel	starts	init,	it	never
starts	another	program.	The	kernel	becomes	a	manager	and	a	provider	of
services.

	

Once	init	is	started,	it	runs	a	number	of	scripts	(files	containing	commands),
which	prepare	the	system	to	be	used.	They	do	some	routine	maintenance	and
start	up	a	lot	of	programs	that	do	things	like	display	a	login	prompt,	listen	for
network	connections,	and	keep	a	log	of	the	computer’s	activities.

	



The	GNU	General	Public	License	GNU	GENERAL	PUBLIC	LICENSE

	

Version	2,	June	1991

	

Copyright	(C)	1989,	1991	Free	Software	Foundation,	Inc.

	

59	Temple	Place,	Suite	330,	Boston,	MA	02111-1307	USA	Everyone	is
permitted	to	copy	and	distribute	verbatim	copies	of	this	license	document,	but
changing	it	is	not	allowed.

	

Preamble	The	licenses	for	most	software	are	designed	to	take	away	your
freedom	to	share	and	change	it.	By	contrast,	the	GNU	General	Public	License	is
intended	to	guarantee	your	freedom	to	share	and	change	free	software-to	make
sure	the	software	is	free	for	all	its	users.	This	General	Public	License	applies	to
most	of	the	Free	Software	Foundation’s	software	and	to	any	other	program
whose	authors	commit	to	using	it.	(Some	other	Free	Software	Foundation
software	is	covered	by	the	GNU	Library	General	Public	License	instead.)	You
can	apply	it	to	your	programs,	too.

	

When	we	speak	of	free	software,	we	are	referring	to	freedom,	not	price.	Our
General	Public	Licenses	are	designed	to	make	sure	that	you	have	the	freedom	to
distribute	copies	of	free	software	(and	charge	for	this	service	if	you	wish),	that
you	receive	source	code	or	can	get	it	if	you	want	it,	that	you	can	change	the
software	or	use	pieces	of	it	in	new	free	programs;	and	that	you	know	you	can	do
these	things.

	

To	protect	your	rights,	we	need	to	make	restrictions	that	forbid	anyone	to	deny
you	these	rights	or	to	ask	you	to	surrender	the	rights.



	

These	restrictions	translate	to	certain	responsibilities	for	you	if	you	distribute
copies	of	the	software,	or	if	you	modify	it.

	

For	example,	if	you	distribute	copies	of	such	a	program,	whether	gratis	or	for
a	fee,	you	must	give	the	recipients	all	the	rights	that	you	have.	You	must	make
sure	that	they,	too,	receive	or	can	get	the	source	code.	And	you	must	show	them
these	terms	so	they	know	their	rights.

	

We	protect	your	rights	with	two	steps:	(1)	copyright	the	software,	and	(2)	offer
you	this	license	which	gives	you	legal	permission	to	copy,	distribute	and/or
modify	the	software.

	

Also,	for	each	author’s	protection	and	ours,	we	want	to	make	certain	that
everyone	understands	that	there	is	no	warranty	for	this	free	software.	If	the
software	is	modified	by	someone	else	and	passed	on,	we	want	its	recipients	to
know	that	what	they	have	is	not	the	original,	so	that	any	problems	introduced	by
others	will	not	reflect	on	the	original	authors’	reputations.

	

Finally,	any	free	program	is	threatened	constantly	by	software	patents.	We
wish	to	avoid	the	danger	that	redistributors	of	a	free	program	will	individually
obtain	patent	licenses,	in	effect	making	the	program	proprietary.	To	prevent	this,
we	have	made	it	clear	that	any	patent	must	be	licensed	for	everyone’s	free	use	or
not	licensed	at	all.

	

The	precise	terms	and	conditions	for	copying,	distribution	and	modification
follow.

	



GNU	GENERAL	PUBLIC	LICENSE

	

TERMS	AND	CONDITIONS	FOR	COPYING,	DISTRIBUTION	AND
MODIFICATION

	

0.	This	License	applies	to	any	program	or	other	work	which	contains	a	notice
placed	by	the	copyright	holder	saying	it	may	be	distributed	under	the	terms	of
this	General	Public	License.	The	“Program”,	below,	refers	to	any	such	program
or	work,	and	a	“work	based	on	the	Program”

	

means	either	the	Program	or	any	derivative	work	under	copyright	law:	that	is
to	say,	a	work	containing	the	Program	or	a	portion	of	it,	either	verbatim	or	with
modifications	and/or	translated	into	another	language.	(Hereinafter,	translation	is
included	without	limitation	in	the	term	“modification”.)	Each	licensee	is
addressed	as	“you”.

	

Activities	other	than	copying,	distribution	and	modification	are	not	covered	by
this	License;	they	are	outside	its	scope.	The	act	of	running	the	Program	is	not
restricted,	and	the	output	from	the	Program	is	covered	only	if	its	contents
constitute	a	work	based	on	the	Program	(independent	of	having	been	made	by
running	the	Program).

	

Whether	that	is	true	depends	on	what	the	Program	does.

	

1.	You	may	copy	and	distribute	verbatim	copies	of	the	Program’s	source	code
as	you	receive	it,	in	any	medium,	provided	that	you	conspicuously	and
appropriately	publish	on	each	copy	an	appropriate	copyright	notice	and
disclaimer	of	warranty;	keep	intact	all	the	notices	that	refer	to	this	License	and	to



the	absence	of	any	warranty;	and	give	any	other	recipients	of	the	Program	a	copy
of	this	License	along	with	the	Program.

	

You	may	charge	a	fee	for	the	physical	act	of	transferring	a	copy,	and	you	may
at	your	option	offer	warranty	protection	in	exchange	for	a	fee.

	

2.	You	may	modify	your	copy	or	copies	of	the	Program	or	any	portion	of	it,
thus	forming	a	work	based	on	the	Program,	and	copy	and	distribute	such
modifications	or	work	under	the	terms	of	Section	1

	

above,	provided	that	you	also	meet	all	of	these	conditions:	a)	You	must	cause
the	modified	files	to	carry	prominent	notices	stating	that	you	changed	the	files
and	the	date	of	any	change.

	

b)	You	must	cause	any	work	that	you	distribute	or	publish,	that	in	whole	or	in
part	contains	or	is	derived	from	the	Program	or	any	part	thereof,	to	be	licensed	as
a	whole	at	no	charge	to	all	third	parties	under	the	terms	of	this	License.

	

c)	If	the	modified	program	normally	reads	commands	interactively	when	run,
you	must	cause	it,	when	started	running	for	such	interactive	use	in	the	most
ordinary	way,	to	print	or	display	an	announcement	including	an	appropriate
copyright	notice	and	a	notice	that	there	is	no	warranty	(or	else,	saying	that	you
provide	a	warranty)	and	that	users	may	redistribute	the	program	under	these
conditions,	and	telling	the	user	how	to	view	a	copy	of	this	License.	(Exception:
if	the	Program	itself	is	interactive	but	does	not	normally	print	such	an
announcement,	your	work	based	on	the	Program	is	not	required	to	print	an
announcement.)	These	requirements	apply	to	the	modified	work	as	a	whole.	If
identifiable	sections	of	that	work	are	not	derived	from	the	Program,	and	can	be
reasonably	considered	independent	and	separate	works	in	themselves,	then	this
License,	and	its	terms,	do	not	apply	to	those	sections	when	you	distribute	them



as	separate	works.	But	when	you	distribute	the	same	sections	as	part	of	a	whole
which	is	a	work	based	on	the	Program,	the	distribution	of	the	whole	must	be	on
the	terms	of	this	License,	whose	permissions	for	other	licensees	extend	to	the
entire	whole,	and	thus	to	each	and	every	part	regardless	of	who	wrote	it.

	

Thus,	it	is	not	the	intent	of	this	section	to	claim	rights	or	contest	your	rights	to
work	written	entirely	by	you;	rather,	the	intent	is	to	exercise	the	right	to	control
the	distribution	of	derivative	or	collective	works	based	on	the	Program.

	

In	addition,	mere	aggregation	of	another	work	not	based	on	the	Program	with
the	Program	(or	with	a	work	based	on	the	Program)	on	a	volume	of	a	storage	or
distribution	medium	does	not	bring	the	other	work	under	the	scope	of	this
License.

	

3.	You	may	copy	and	distribute	the	Program	(or	a	work	based	on	it,	under
Section	2)	in	object	code	or	executable	form	under	the	terms	of	Sections	1	and	2
above	provided	that	you	also	do	one	of	the	following:	a)	Accompany	it	with	the
complete	corresponding	machine-readable	source	code,	which	must	be
distributed	under	the	terms	of	Sections	1	and	2	above	on	a	medium	customarily
used	for	software	interchange;	or,

	

b)	Accompany	it	with	a	written	offer,	valid	for	at	least	three	years,	to	give	any
third	party,	for	a	charge	no	more	than	your	cost	of	physically	performing	source
distribution,	a	complete	machine-readable	copy	of	the	corresponding	source
code,	to	be	distributed	under	the	terms	of	Sections	1	and	2	above	on	a	medium
customarily	used	for	software	interchange;	or,	c)	Accompany	it	with	the
information	you	received	as	to	the	offer	to	distribute	corresponding	source	code.
(This	alternative	is	allowed	only	for	noncommercial	distribution	and	only	if	you
received	the	program	in	object	code	or	executable	form	with	such	an	offer,	in
accord	with	Subsection	b	above.)	The	source	code	for	a	work	means	the
preferred	form	of	the	work	for	making	modifications	to	it.	For	an	executable
work,	complete	source	code	means	all	the	source	code	for	all	modules	it



contains,	plus	any	associated	interface	definition	files,	plus	the	scripts	used	to
control	compilation	and	installation	of	the	executable.	However,	as	a	special
exception,	the	source	code	distributed	need	not	include	anything	that	is	normally
distributed	(in	either	source	or	binary	form)	with	the	major	components
(compiler,	kernel,	and	so	on)	of	the	operating	system	on	which	the	executable
runs,	unless	that	component	itself	accompanies	the	executable.

	

If	distribution	of	executable	or	object	code	is	made	by	offering	access	to	copy
from	a	designated	place,	then	offering	equivalent	access	to	copy	the	source	code
from	the	same	place	counts	as	distribution	of	the	source	code,	even	though	third
parties	are	not	compelled	to	copy	the	source	along	with	the	object	code.

	

4.	You	may	not	copy,	modify,	sublicense,	or	distribute	the	Program	except	as
expressly	provided	under	this	License.	Any	attempt	otherwise	to	copy,	modify,
sublicense	or	distribute	the	Program	is	void,	and	will	automatically	terminate
your	rights	under	this	License.

	

However,	parties	who	have	received	copies,	or	rights,	from	you	under	this
License	will	not	have	their	licenses	terminated	so	long	as	such	parties	remain	in
full	compliance.

	

5.	You	are	not	required	to	accept	this	License,	since	you	have	not	signed	it.
However,	nothing	else	grants	you	permission	to	modify	or	distribute	the	Program
or	its	derivative	works.	These	actions	are	prohibited	by	law	if	you	do	not	accept
this	License.	Therefore,	by	modifying	or	distributing	the	Program	(or	any	work
based	on	the	Program),	you	indicate	your	acceptance	of	this	License	to	do	so,
and	all	its	terms	and	conditions	for	copying,	distributing	or	modifying	the
Program	or	works	based	on	it.

	

6.	Each	time	you	redistribute	the	Program	(or	any	work	based	on	the



Program),	the	recipient	automatically	receives	a	license	from	the	original
licensor	to	copy,	distribute	or	modify	the	Program	subject	to	these	terms	and
conditions.	You	may	not	impose	any	further	restrictions	on	the	recipients’
exercise	of	the	rights	granted	herein.

	

You	are	not	responsible	for	enforcing	compliance	by	third	parties	to	this
License.

	

7.	If,	as	a	consequence	of	a	court	judgment	or	allegation	of	patent
infringement	or	for	any	other	reason	(not	limited	to	patent	issues),	conditions	are
imposed	on	you	(whether	by	court	order,	agreement	or	otherwise)	that	contradict
the	conditions	of	this	License,	they	do	not	excuse	you	from	the	conditions	of	this
License.	If	you	cannot	distribute	so	as	to	satisfy	simultaneously	your	obligations
under	this	License	and	any	other	pertinent	obligations,	then	as	a	consequence
you	may	not	distribute	the	Program	at	all.	For	example,	if	a	patent	license	would
not	permit	royalty-free	redistribution	of	the	Program	by	all	those	who	receive
copies	directly	or	indirectly	through	you,	then	the	only	way	you	could	satisfy
both	it	and	this	License	would	be	to	refrain	entirely	from	distribution	of	the
Program.

	

If	any	portion	of	this	section	is	held	invalid	or	unenforceable	under	any
particular	circumstance,	the	balance	of	the	section	is	intended	to	apply	and	the
section	as	a	whole	is	intended	to	apply	in	other	circumstances.

	

It	is	not	the	purpose	of	this	section	to	induce	you	to	infringe	any	patents	or
other	property	right	claims	or	to	contest	validity	of	any	such	claims;	this	section
has	the	sole	purpose	of	protecting	the	integrity	of	the	free	software	distribution
system,	which	is	implemented	by	public	license	practices.	Many	people	have
made	generous	contributions	to	the	wide	range	of	software	distributed	through
that	system	in	reliance	on	consistent	application	of	that	system;	it	is	up	to	the
author/donor	to	decide	if	he	or	she	is	willing	to	distribute	software	through	any
other	system	and	a	licensee	cannot	impose	that	choice.



	

This	section	is	intended	to	make	thoroughly	clear	what	is	believed	to	be	a
consequence	of	the	rest	of	this	License.

	

8.	If	the	distribution	and/or	use	of	the	Program	is	restricted	in	certain	countries
either	by	patents	or	by	copyrighted	interfaces,	the	original	copyright	holder	who
places	the	Program	under	this	License	may	add	an	explicit	geographical
distribution	limitation	excluding	those	countries,	so	that	distribution	is	permitted
only	in	or	among	countries	not	thus	excluded.	In	such	case,	this	License
incorporates	the	limitation	as	if	written	in	the	body	of	this	License.

	

9.	The	Free	Software	Foundation	may	publish	revised	and/or	new	versions	of
the	General	Public	License	from	time	to	time.	Such	new	versions	will	be	similar
in	spirit	to	the	present	version,	but	may	differ	in	detail	to	address	new	problems
or	concerns.

	

Each	version	is	given	a	distinguishing	version	number.	If	the	Program
specifies	a	version	number	of	this	License	which	applies	to	it	and	“any	later
version”,	you	have	the	option	of	following	the	terms	and	conditions	either	of	that
version	or	of	any	later	version	published	by	the	Free	Software	Foundation.	If	the
Program	does	not	specify	a	version	number	of	this	License,	you	may	choose	any
version	ever	published	by	the	Free	Software	Foundation.

	

10.	If	you	wish	to	incorporate	parts	of	the	Program	into	other	free	programs
whose	distribution	conditions	are	different,	write	to	the	author	to	ask	for
permission.	For	software	which	is	copyrighted	by	the	Free	Software	Foundation,
write	to	the	Free	Software	Foundation;	we	sometimes	make	exceptions	for	this.
Our	decision	will	be	guided	by	the	two	goals	of	preserving	the	free	status	of	all
derivatives	of	our	free	software	and	of	promoting	the	sharing	and	reuse	of
software	generally.



	

NO	WARRANTY

	

11.	BECAUSE	THE	PROGRAM	IS	LICENSED	FREE	OF	CHARGE,
THERE	IS	NO	WARRANTY

	

FOR	THE	PROGRAM,	TO	THE	EXTENT	PERMITTED	BY	APPLICABLE
LAW.	EXCEPT	WHEN

	

OTHERWISE	STATED	IN	WRITING	THE	COPYRIGHT	HOLDERS
AND/OR	OTHER	PARTIES

	

PROVIDE	THE	PROGRAM	“AS	IS”	WITHOUT	WARRANTY	OF	ANY
KIND,	EITHER	EXPRESSED

	

OR	IMPLIED,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF

	

MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.
THE	ENTIRE	RISK	AS

	

TO	THE	QUALITY	AND	PERFORMANCE	OF	THE	PROGRAM	IS	WITH
YOU.	SHOULD	THE

	



PROGRAM	PROVE	DEFECTIVE,	YOU	ASSUME	THE	COST	OF	ALL
NECESSARY	SERVICING,	REPAIR	OR	CORRECTION.

	

12.	IN	NO	EVENT	UNLESS	REQUIRED	BY	APPLICABLE	LAW	OR
AGREED	TO	IN

	

WRITING	WILL	ANY	COPYRIGHT	HOLDER,	OR	ANY	OTHER	PARTY
WHO	MAY	MODIFY	AND/

	

OR	REDISTRIBUTE	THE	PROGRAM	AS	PERMITTED	ABOVE,	BE
LIABLE	TO	YOU	FOR

	

DAMAGES,	INCLUDING	ANY	GENERAL,	SPECIAL,	INCIDENTAL	OR
CONSEQUENTIAL

	

DAMAGES	ARISING	OUT	OF	THE	USE	OR	INABILITY	TO	USE	THE
PROGRAM	(INCLUDING

	

BUT	NOT	LIMITED	TO	LOSS	OF	DATA	OR	DATA	BEING	RENDERED
INACCURATE	OR

	

LOSSES	SUSTAINED	BY	YOU	OR	THIRD	PARTIES	OR	A	FAILURE	OF
THE	PROGRAM	TO

	

OPERATE	WITH	ANY	OTHER	PROGRAMS),	EVEN	IF	SUCH	HOLDER



OR	OTHER	PARTY

	

HAS	BEEN	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGES.

	

END	OF	TERMS	AND	CONDITIONS

	

How	to	Apply	These	Terms	to	Your	New	Programs	If	you	develop	a	new
program,	and	you	want	it	to	be	of	the	greatest	possible	use	to	the	public,	the	best
way	to	achieve	this	is	to	make	it	free	software	which	everyone	can	redistribute
and	change	under	these	terms.

	

To	do	so,	attach	the	following	notices	to	the	program.	It	is	safest	to	attach
them	to	the	start	of	each	source	file	to	most	effectively	convey	the	exclusion	of
warranty;	and	each	file	should	have	at	least	the	“copyright”	line	and	a	pointer	to
where	the	full	notice	is	found.

	

<one	line	to	give	the	program’s	name	and	a	brief	idea	of	what	it	does.>

	

Copyright	(C)	19yy	<name	of	author>

	

This	program	is	free	software;	you	can	redistribute	it	and/or	modify	it	under
the	terms	of	the	GNU	General	Public	License	as	published	by	the	Free	Software
Foundation;	either	version	2	of	the	License,	or	(at	your	option)	any	later	version.

	

This	program	is	distributed	in	the	hope	that	it	will	be	useful,	but	WITHOUT



ANY	WARRANTY;	without	even	the	implied	warranty	of
MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.	See	the
GNU	General	Public	License	for	more	details.

	

You	should	have	received	a	copy	of	the	GNU	General	Public	License	along
with	this	program;	if	not,	write	to	the	Free	Software	Foundation,	Inc.,	59	Temple
Place,	Suite	330,	Boston,	MA	02111-1307

	

USA

	

Also	add	information	on	how	to	contact	you	by	electronic	and	paper	mail.

	

If	the	program	is	interactive,	make	it	output	a	short	notice	like	this	when	it
starts	in	an	interactive	mode:	Gnomovision	version	69,	Copyright	(C)	19yy	name
of	author	Gnomovision	comes	with	ABSOLUTELY	NO	WARRANTY;	for
details	type	`show	w’.

	

This	is	free	software,	and	you	are	welcome	to	redistribute	it	under	certain
conditions;	type	`show	c’	for	details.

	

The	hypothetical	commands	`show	w’	and	`show	c’	should	show	the
appropriate

parts	of	the	General	Public	License.	Of	course,	the	commands	you	use	may	be
called	something	other	than	`show	w’	and	`show	c’;	they	could	even	be	mouse-
clicks	or	menu	items-whatever	suits	your	program.

	



You	should	also	get	your	employer	(if	you	work	as	a	programmer)	or	your
school,	if	any,	to	sign	a	“copyright	disclaimer”	for	the	program,	if	necessary.
Here	is	a	sample;	alter	the	names:	Yoyodyne,	Inc.,	hereby	disclaims	all	copyright
interest	in	the	program	`Gnomovision’	(which	makes	passes	at	compilers)
written	by	James	Hacker.

	

<signature	of	Ty	Coon>,	1	April	1989

	

Ty	Coon,	President	of	Vice

	

This	General	Public	License	does	not	permit	incorporating	your	program	into
proprietary	programs.	If	your	program	is	a	subroutine	library,	you	may	consider
it	more	useful	to	permit	linking	proprietary	applications	with	the	library.	If	this	is
what	you	want	to	do,	use	the	GNU	Library	General	Public	License	instead	of
this	License.

	

Index

	

$	(dollar	sign)

regular	expression

Regular	Expressions

()	(parentheses)

regular	expression

Regular	Expressions

(caret)



regular	expression

Regular	Expressions

*	(regular	expression)

Regular	Expressions

*	(wildcard)

Filename	Expansion

.	(regular	expression)

Regular	Expressions

/	(slash)

root	directory

Files	and	Directories	|	Files	and	Directories	/bin	directory

Files	Present	and	Their

/etc	(directory)

system-wide	configuration

System-Wide	Versus	User-Specific	Configuration	|

System-Wide	Versus	User-Specific	Configuration	/etc	directory

Files	Present	and	Their	|	Files	Present	and	Their	|	Files	Present	and	Their

etcX11/Xsession

modifying

Customizing	Your	X	Startup	/root	directory

Files	Present	and	Their



/sbin	directory

Files	Present	and	Their

/user	directory

Files	Present	and	Their

/var	directory

Files	Present	and	Their

/tmp	directory

Files	Present	and	Their

?	wildcard

Filename	Expansion

[]	(brackets)

regular	expression

Regular	Expressions

(tilde)

Using	Files:	A	Tutorial

absolute	filenames

Files	and	Directories	|	Using	Files:	A	Tutorial	abstractions



Introduction	to	X

Access	screen

dselect

Access

accessing

files

Mode

filesystems

Mounting	a	Filesystem	Help	file	(installation)

Select

accounts

ordinary	user

Create	an	Ordinary	User	|	Create	an	Ordinary	User	permissions

Permissions	|	Permissions	example	sessions	Permissions	in	Practice	|
Permissions	in	Practice	|	Permissions	in	Practice	file	mode

Mode	|	Mode	|	Mode	file	ownership

File	Ownership	|	File	Ownership	root	user

Working	as	Root	|	Working	as	Root	superuser

Set	the	Root	Password	user

logging	in



First	Steps	|	First	Steps	plans

Managing	Your	Identity	|	Managing	Your	Identity	Acknowledgments

no	title

activating

swap	partition

Initialize	and	Activate	a	|	Initialize	and	Activate	a	ae

no	title

ae	(text	editor)

Text	Editors	|	Using	ae

alias

Aliases

aliases

Aliases

Alt	key

Conventions	|	Conventions

APM

Shutting	Down

APM	(Advanced	Power	Management)

Shutting	Down

application	software

What	Is	Debian?



applications

cfdisk

Partition	a	Hard	Disk	|	Partition	a	Hard	Disk	configuration	files

Configuration	Files

dbootstrap

Step-by-Step	Installation	network	configuration	Configure	the	Network
dselect

Select	and	Install	Profiles	|	Introduction	|



Introduction

Access	screen

Access

multi-CD	installation	Access

multi-NFS,	multi-mount	installation	Access

package	states

Select	|	Select	Update	screen

Update	|	Select	|	Select	|	Select	|

Select

exiting

How	to	Read	This

file	managers



Introduction	to	X

GNU	documentation	viewer

Using	info	|	Using	info	gzip

File	Compression	with	gzip	|	File	Compression	with	gzip

multitasking

A	Multiuser,	Multitasking	Operating	system	binaries

Files	Present	and	Their	tasks

Select	and	Install	Profiles	|	Select	and	Install	Profiles

text	editores

Text	Editors	|	Text	Editors	text	editors

ae

Using	ae	archiving	utilities

Backup	Tools

arguments

The	Command	Line	and

arranging

hard	drive

Partitioning	Your	Hard	Drive	|	Background	|

Background

asking	technical	questions



Personal	Help	|	Tips	for	asking	questions	assigning

job	numbers	to	command	lines

Managing	Processes	with	bash	authentication

shadow	passwords

Shadow	Password	Support	automatic	filesystem	mounting

etcfstab:	Automating	the	Mount	|	etcfstab:	Automating	the	Mount

backing	up

disks

Last	Chance	to	Back

backups

performing

Before	You	Start

utilities

Backup	Tools

GNU	tar

tar

base	system

no	title	|	no	title

configuring

Debian	Installation	Steps	|	Choosing	Your	Installation	Media

installation



Install	the	Base	System	|	Configure	the	Base	System	bash

Managing	Processes	with	bash	|	Managing	Processes	with	bash	commands

aliases

Aliases

environment	variables

setting

Environment	Variables	|	Environment	Variables	Info	help	system

displaying

Managing	Processes	with	bash	binary	executables

comparing	to	source	code

Viewing	Text	Files

binary	files

Working	with	Text	Files

viewing

Viewing	Text	Files

BIOS	(Basic	Input/Output	System)

Booting	the	System

black-and-white	display

selecting

Select	Color	or	Monochrome	block	devices

Device	Files	|	devnull



blocks

Device	Files

bold	face

typographical	conventions

Conventions

boot	floppies

creating

Make	a	Boot	Floppy

boot	loaders

Before	You	Start

LILO

Make	Linux	Bootable	Directly	boot	partition

PC	Disk	Limitations

boot	process

LILO	(Linux	Loader)

Booting	the	System

query	process

Booting	the	System

troubleshooting

Troubleshooting	the	Boot	Process	booting

Debian



Booting	Debian

from	CD-ROM

Choosing	Your	Installation	Media	from	floppies

Booting	from	Floppies	operating	systems

multiple

Make	Linux	Bootable	Directly	smoke	test

The	Moment	of	Truth

Bourne	shell

The	Shell

bug	reports

submitting

Troubleshooting	the	Boot	Process	builtin	dependencies

packages

Select	|	Select

builtin	programs

Where	Commands	Reside:	The

buttons

mouse	operation

The	Mouse

C	shell

The	Shell



canceling

selections	(dselect)

Select

cd

Using	Files:	A	Tutorial

cd	command

Using	Files:	A	Tutorial	|	Using	Files:	A	Tutorial	CD-ROM

booting	from

Choosing	Your	Installation	Media	CD-ROMs

mounting

Example:	Mounting	a	CD-ROM	|	Example:	Mounting	a	CD-ROM

unmounting

Example:	Mounting	a	CD-ROM

CDs

multi-CD	installation

Access	|	Access

multi-NFS,	multi-mount	installation	Access

cfdisk

Partition	a	Hard	Disk	|	Partition	a	Hard	Disk	|	Partition	a	Hard	Disk

Change	Directory

see	cd



character	devices

Device	Files	|	devnull

characters

metacharacters

Regular	Expressions

clients

X	clients



Introduction	to	X

network	transparency	Introduction	to	X

X	windows	system

X	Clients	|	X	Clients	selecting

Customizing	Your	X	Startup	|	Customizing	Your	X	Startup	closing

programs

How	to	Read	This

color	display

selecting

Select	Color	or	Monochrome	Comand	Line

History

no	title

command	history

Command	History	and	Editing

command	line

Command	History	and	Editing	|	Command	History	and	Editing	|	no	title	|
Describing	the	Command	Line	|	Describing	the	Command	Line	structure

The	Command	Line	and

command	lines

job	numbers



assigning

Managing	Processes	with	bash	command-line	shell

The	Shell	|	The	Shell

commands

aliases

Aliases

arguments

The	Command	Line	and

Bash

wildcards

Tab	Completion	cd

Using	Files:	A	Tutorial	|	Using	Files:	A	Tutorial	documentation

Kinds	of	Documentation	|	Kinds	of	Documentation	info

Using	info	|	Using	info	egrep

Regular	Expressions

ls

Using	Files:	A	Tutorial	|	Using	Files:	A	Tutorial	|

Dot	Files	and	ls	-a

man	less

Environment	Variables	mkdir

Using	Files:	A	Tutorial	more



Using	Files:	A	Tutorial	parameters

The	Command	Line	and

shell	commands

typing

First	Steps	su

Working	as	Root

whoami

Working	as	Root

commercial	software

comparing	to	proprietary

What	Is	Free	Software?

comparing

binary	and	text	files

Viewing	Text	Files

crackers	and	hackers

What	Is	Free	Software?

hard	links	and	symlinks

Symbolic	Links

programs	and	processes

Processes

software



commercial	and	proprietary	What	Is	Free	Software?

system-wide	and	user-specific	configuration	System-Wide	Versus	User-
Specific	Configuration	|

System-Wide	Versus	User-Specific	Configuration	compiling

packages

Compiling	Software

compressing

files

File	Compression	with	gzip	|	File	Compression	with	gzip

Configuration

Base	system

no	title

comparing	system-wide	and	user-specific	System-Wide	Versus	User-Specific
Configuration	|

System-Wide	Versus	User-Specific	Configuration	Device	drivers

no	title

Modules

no	title

networking

Ethernet

Ethernet	PPP

The	Easy	Way:	wvdial	|	The	Easy	Way:	wvdial



PCMCIA

no	title	|	Configure	PCMCIA	Support	system-wide

/etc	directory

Files	Present	and	Their	automatic	filesystem	mounting	etcfstab:	Automating
the	Mount	|

etcfstab:	Automating	the	Mount	networking

Networking	|	PPP	|	Preparation	user-specific

dotfiles

System-Wide	Versus	User-Specific	Configuration	configuring

base	system

Debian	Installation	Steps	|	Choosing	Your	Installation	Media

device	drivers

Configure	Device	Driver	Modules	keyboard

Configure	the	Keyboard	network

Configure	the	Network	packages

Configure

connections

networking

Ethernet

Ethernet	PPP

PPP	|	Preparation	|	The	Easy	Way:	wvdial	|	The	Easy	Way:	wvdial	consoles



A	Multiuser,	Multitasking	Operating	virtual	consoles

Virtual	Consoles	|	Virtual	Consoles	controllers

SCSI

partitions,	naming	Device	Names	in	Linux	controlling

processes

The	Shell	|	The	Shell	conventions

typographical

Conventions	|	Conventions	spaces

Conventions	copy-and-paste

mouse	operation	(X)

The	Mouse

copying

large-scale

Large-Scale	Copying	|	Large-Scale	Copying	crackers

comparing	to	hackers

What	Is	Free	Software?

creating

accounts

ordinary	user

Create	an	Ordinary	User	|	Create	an	Ordinary	User	superuser

Set	the	Root	Password	directories



Using	Files:	A	Tutorial	disk	images

Creating	Floppies	from	Disk	|	Creating	Floppies	from	Disk

plans

Managing	Your	Identity	|	Managing	Your	Identity	csh	(C	shell)

The	Shell

current	working	directories

Using	Files:	A	Tutorial

Current	Working	Directory

Using	Files:	A	Tutorial

customizing

X	windows	system

Customizing	Your	X	Startup	cylinder	translation

PC	Disk	Limitations

daemon

Processes

dbootstrap

Step-by-Step	Installation

network	configuration

Configure	the	Network	Debian

booting

Booting	Debian



from	CD-ROM

Choosing	Your	Installation	Media	Web	site

What	Is	Free	Software?

Debian	base	system

Debian	Installation	Steps	|	Choosing	Your	Installation	Media	Debian	mailing
list

Personal	Help	|	Personal	Help

deleting

directories

Using	Files:	A	Tutorial	files

Using	Files:	A	Tutorial	hard	links

The	Real	Nature	of

named	pipes

Named	Pipes	(FIFOs)

symlinks

Symbolic	Links	|	Symbolic	Links	Deleting	Files

see	rm

dependencies

packages

Select	|	Select

deselect



package	maintenance

dselect

Devel_comp	(profile)

Planning	Use	of	the

developing

Free	Software

Social	Contract

What	Is	Free	Software?

software

free	software

What	Is	Free	Software?	|	What	Is	Free	Software?

development

Who	Creates	Debian?

device	drivers

configuring

Configure	Device	Driver	Modules	device	files

Device	Files	|	devnull

Device	Names

no	title

devices

Device	Names	in	Linux	|	Device	Names	in	Linux	abstractions



Introduction	to	X

base	system

installing

Install	the	Base	System	|	Configure	the	Base	System	block	devices

Device	Files	|	devnull	character	devices

Device	Files	|	devnull	daemons

Processes

files

symlinks

Symbolic	Links	filesystems

Concepts

automatic	mounting	etcfstab:	Automating	the	Mount	|

etcfstab:	Automating	the	Mount	hard	links

The	Real	Nature	of	|	The	Real	Nature	of	mount	points

Mounting	a	Filesystem	mounting

Mounting	a	Filesystem	|	Mounting	a	Filesystem	|	Example:	Mounting	a	CD-
ROM

|	Example:	Mounting	a	CD-ROM	|	Removable	Disks	(Floppies,	Zip	proc

The	proc	Filesystem	symlinks

Symbolic	Links	|	Symbolic	Links	|



Symbolic	Links	naming

Device	Names	in	Linux	output

redirecting

stdin,	stdout,	Pipelines,	and	|	stdin,	stdout,	Pipelines,	and	PCMCIA

configuring

Configure	PCMCIA	Support	printers

troubleshooting

Printing	SCSI	drives

partitions

Device	Names	in	Linux	swap	partitions

Recommended	Partitioning	Scheme	|	Recommended	Partitioning	Scheme

Dialup	profile

Planning	Use	of	the

Directories

no	title	|	Files	and	Directories	|	Files	and	Directories	|	Files	and	Directories	|
Files	Present	and	Their	/etc

Files	Present	and	Their	|	Files	Present	and	Their	|

Files	Present	and	Their	system-wide	configuration	System-Wide	Versus	User-
Specific	Configuration	|	System-Wide	Versus	User-Specific	Configuration	/root

Files	Present	and	Their	/tmp

Files	Present	and	Their	/user

Files	Present	and	Their	/var



Files	Present	and	Their	contents,	displaying

Files	Present	and	Their	|	Files	Present	and	Their	copying

Large-Scale	Copying	|	Large-Scale	Copying	creating

Using	Files:	A	Tutorial	current	working	directory

Using	Files:	A	Tutorial	file	systems

mount	points

Mounting	a	Filesystem	filename	expansion	patterns

Filename	Expansion	|	Filename	Expansion	files

hard	links

The	Real	Nature	of	|	The	Real	Nature	of	inodes

The	Real	Nature	of	|	The	Real	Nature	of	locating

Finding	Files	|	Finding	Files	symlinks

Symbolic	Links	filesystems

Concepts

mounting

Mounting	a	Filesystem	|	Mounting	a	Filesystem	|	Example:	Mounting	a	CD-
ROM

|	Example:	Mounting	a	CD-ROM	|	Removable	Disks	(Floppies,	Zip	hard	links

removing

The	Real	Nature	of	home	directory

Files	Present	and	Their	modes



Mode

parent	directories

Using	Files:	A	Tutorial	paths

Files	and	Directories	permissions

example	session

Permissions	in	Practice	|	Permissions	in	Practice	|	Permissions	in	Practice
removing

Using	Files:	A	Tutorial	search	path	(shell)

Where	Commands	Reside:	The	|	Where	Commands	Reside:	The

shortcut	directories

Using	Files:	A	Tutorial	symlinks

Symbolic	Links

system-wide

files,	modifying	Files	Present	and	Their	disk	blocks

scanning

Initialize	and	Activate	a	disk	cache

Shutting	Down

disk	space

installation	requirements

Memory	and	Disk	Space	disks

backing	up



Last	Chance	to	Back

boot	disks

LILO

Booting	the	System	boot	floppies

creating

Make	a	Boot	Floppy	filesystems

mount	points

Mounting	a	Filesystem	mounting

Mounting	a	Filesystem	|	Mounting	a	Filesystem	|	Example:	Mounting	a	CD-
ROM

|	Example:	Mounting	a	CD-ROM	|	Removable	Disks	(Floppies,	Zip	floppies

booting	from

Booting	from	Floppies	images

writing	to	floppies	Creating	Floppies	from	Disk	|	Creating	Floppies	from	Disk
removable

mounting	filesystem	Removable	Disks	(Floppies,	Zip	displaying

directory	contents

Files	Present	and	Their	|	Files	Present	and	Their	file	contents

Determining	a	File’s	Contents	files

filename	expansion	pattern	Filename	Expansion	Info	help	system

Managing	Processes	with	bash	mounted	filesystems

Example:	Mounting	a	CD-ROM



text	files

Viewing	Text	Files

displays

ae	(text	editor)

Using	ae

dselect

Access	screen

Access

X	windows	system

windows	manager



Introduction	to	X

dividing

partitions

Lossless	Repartitioning	documentation

Kinds	of	Documentation	|	Kinds	of	Documentation	GNU	General	Public
License

The	GNU	General	Public	|	The	GNU	General	Public	|	The	GNU	General
Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public

HOWTOs

HOWTOs

info



Using	info	|	Using	info	DOS	(Disk	Operating	System)

partitioning

Partitioning	from	DOS	or	|	Lossless	Repartitioning	|

Debian	Installation	Steps	Dotfiles

no	title	|	Dot	Files	and	ls	-a	|	System-Wide	Versus	User-Specific	Configuration

dpkg

no	title

package	maintenance

dpkg

dselect

Select	and	Install	Profiles	|	no	title	|	Introduction	|

Introduction	|	Access	|	no	title

Access	menu

no	title

Access	screen

Access

multi-CD	installation

Access

package	states

Select	|	Select

packages



configuring

Configure	installing

Install	|	Install	Select

no	title

Select	screen

Select	|	Select	|	Select	|	Select	|	Select	exiting

Select

Update

no	title

Update	screen

Update

dump

Backup	Tools

dump	(backup	utility

Backup	Tools

editing

text

Text	Editors	|	Text	Editors	Editors

no	title

egrep	command

Regular	Expressions



Emacs	(text	editor)

Text	Editors	|	Text	Editors

email

bug	reports

troubleshooting

Troubleshooting	the	Boot	Process	Debian	mailing	list

Personal	Help	|	Personal	Help	environment

variables

importing

Environment	Variables	environment	variables

no	title	|	Environment	Variables

bash

setting

Environment	Variables	|	Environment	Variables	PATH

Where	Commands	Reside:	The	|	Where	Commands	Reside:	The

proxy	servers

setting

Access

environments

Environment	Variables

error	messages



standard	error

stdin,	stdout,	Pipelines,	and	X	windows	system

troubleshooting

Troubleshooting	Ethernet

configuration

Ethernet

example	session

permissions

Permissions	in	Practice	|	Permissions	in	Practice	|

Permissions	in	Practice	execute	permission

Mode

executing

programs

search	path

Where	Commands	Reside:	The	|	Where	Commands	Reside:	The	exiting

ae	(text	editor)

Using	ae

programs

How	to	Read	This

Select	screen	(dselect)

Select



X	windows	system

Leaving	the	X	Environment	|	Customizing	Your	X

Startup	|	Customizing	Your	X	Startup	expansion	patterns

Filename	Expansion	|	Filename	Expansion	see	also	wildcards

Filename	Expansion

exporting

shell	variables

Environment	Variables	variables	to	environment

Environment	Variables	ext2	filesystem

Concepts

extended	partitions

PC	Disk	Limitations	|	Device	Names	in	Linux	FIFO	(first-in-first-out)

Named	Pipes	(FIFOs)

file	manager

Using	a	File	Manager

file	managers

icon-based



Introduction	to	X

file	pagers

text	files

viewing

Viewing	Text	Files	file	systems

Partitioning	Your	Hard	Drive	|	Background	|	Background	filename	expansion
pattern

Filename	Expansion

filename	expansion	patterns

Filename	Expansion

files

no	title	|	Files	and	Directories	|	Files	and	Directories	|	Files	and	Directories

etcX11/Xsession

modifying

Customizing	Your	X	Startup	access

Mode

binary

Working	with	Text	Files	viewing

Viewing	Text	Files	compressing

File	Compression	with	gzip	|	File	Compression	with	gzip



configuration	files

Configuration	Files

contents

displaying

Determining	a	File’s	Contents	current	working	directory

Using	Files:	A	Tutorial	deleting

Using	Files:	A	Tutorial	device	files

Device	Files	|	devnull	disk	images

Creating	Floppies	from	Disk	|	Creating	Floppies	from	Disk

dotfiles

Dot	Files	and	ls	-a	|	System-Wide	Versus	User-Specific	Configuration	Editors

no	title

hard	links

The	Real	Nature	of	|	The	Real	Nature	of	inodes

The	Real	Nature	of

large-scale	copying

Large-Scale	Copying	|	Large-Scale	Copying	locating

Finding	Files	|	Finding	Files	moving

Using	Files:	A	Tutorial	named	pipes

Named	Pipes	(FIFOs)

naming	conventions



troubleshooting

Working	with	Strangely-Named	Files	permissions

Permissions	|	Permissions	|	Security	example	sessions	Permissions	in	Practice
|	Permissions	in	Practice	|	Permissions	in	Practice	mode

Mode	|	Mode	|	Mode	ownership

File	Ownership	|	File	Ownership	plans

creating

Managing	Your	Identity	|	Managing	Your	Identity	regular	expressions

Regular	Expressions	|	Regular	Expressions	|	Regular	Expressions

sockets

Sockets

symlinks

Symbolic	Links

removing

Symbolic	Links	|	Symbolic	Links	temporary

Files	Present	and	Their	Text

no	title

editing

Text	Editors	|	Text	Editors	|	Using	ae	viewing

Viewing	Text	Files	text	files

Working	with	Text	Files	uncompressing



File	Compression	with	gzip	filesystems

Filesystems

automatic	mounting

etcfstab:	Automating	the	Mount	|	etcfstab:	Automating	the	Mount

backing	up

Backup	Tools

GNU	tar

tar

ext2

Concepts

hard	links

The	Real	Nature	of	|	The	Real	Nature	of	deleting

The	Real	Nature	of	listing

Example:	Mounting	a	CD-ROM

mount	points

Mounting	a	Filesystem	mounting

Mounting	a	Filesystem	|	Mounting	a	Filesystem	|

Example:	Mounting	a	CD-ROM	|	Example:	Mounting	a	CD-ROM	|
Removable	Disks	(Floppies,	Zip	proc

The	proc	Filesystem

symlinks



Symbolic	Links

finding

documentation

Kinds	of	Documentation	|	Kinds	of	Documentation	files

Finding	Files	|	Finding	Files	system	information

Getting	Information	from	the	finger	information

plans

creating

Managing	Your	Identity	FIPS

Lossless	Repartitioning	|	Lossless	Repartitioning	floppies

boot	floppies

creating

Make	a	Boot	Floppy	booting	from

Booting	from	Floppies	disk	images

writing

Creating	Floppies	from	Disk	|	Creating	Floppies	from	Disk	filesystem

mounting

Removable	Disks	(Floppies,	Zip	filesystems

Mounting	a	Filesystem	Floppy	Disks

no	title

fonts



selecting

Starting	the	X	Environment	xterm

increasing	size

Starting	the	X	Environment	Free	Software

What	Is	Free	Software?

developing

What	Is	Free	Software?

Social	Contract

What	Is	Free	Software?

Free	Software	Foundation

What	Is	Free	Software?

fully-qualified	filenames

Files	and	Directories

functionality

What	Is	Debian?

General	Public	License

The	GNU	General	Public	|	The	GNU	General	Public	|	The	GNU	General
Public	|	The	GNU	General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU	General	Public	|

The	GNU	General	Public	|	The	GNU	General	Public	|	The	GNU	General
Public	|	The	GNU	General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU	General	Public	|



The	GNU	General	Public	|	The	GNU	General	Public	|	The	GNU	General
Public	|	The	GNU	General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	glossary

Glossary

GNOME	desktop	project



Introduction	to	X

GNU	documentation	viewer

Using	info	|	Using	info

GNU	General	Public	License

The	GNU	General	Public	|	The	GNU	General	Public	|	The	GNU	General
Public	|	The	GNU	General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU	General	Public	|

The	GNU	General	Public	|	The	GNU	General	Public	|	The	GNU	General
Public	|	The	GNU	General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU	General	Public	|

The	GNU	General	Public	|	The	GNU	General	Public	|	The	GNU	General
Public	|	The	GNU	General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	GNU	Midnight	Commander

Using	a	File	Manager

GNU	Project

What	Is	Debian?

GNU	tar

tar

GNU	tar	(backup	utility

Backup	Tools

GNU/Linux



multiuser	environment

A	Multiuser,	Multitasking	Operating	graphical	user	interfaces

see	GUIs

The	X	Window	System	|	Introduction	to	X

GUIs

abstractions



Introduction	to	X

icon-based	file	managers



Introduction	to	X

X	Window

The	X	Window	System	|	Introduction	to	X

X	windows	system

clients

X	Clients	|	X	Clients	clients,	selecting	Customizing	Your	X	Startup	|
Customizing	Your	X	Startup	customizing

Customizing	Your	X	Startup	exiting

Leaving	the	X	Environment	|	Customizing	Your	X	Startup	|	Customizing	Your
X

Startup

mouse	operation

The	Mouse	starting

Starting	the	X	Environment	troubleshooting

Troubleshooting	|	X	Problems	xdm

Starting	the	X	Environment	gzip

File	Compression	with	gzip	|	File	Compression	with	gzip	Hacker	Ethic

What	Is	Free	Software?

hackers

What	Is	Free	Software?

hard	disk



Linux	partition

initializing

Initialize	a	Linux	Partition	|

Initialize	a	Linux	Partition	partitioning

PC	BIOS

PC	Disk	Limitations	swap	partition

initializing

Initialize	and	Activate	a	|	Initialize	and	Activate	a	hard	disks

partitioning

Lossless	Repartitioning	|	Debian	Installation	Steps	|

Partition	a	Hard	Disk	|	Partition	a	Hard	Disk	partitions

mounting

Initialize	a	Linux	Partition	scanning

Initialize	and	Activate	a	hard	drive

organizing

Partitioning	Your	Hard	Drive	|	Background	|

Background

partition

boot	partition

PC	Disk	Limitations	partitioning

Partitioning	Your	Hard	Drive	|	Background	|



Background

cylinder	translation	PC	Disk	Limitations	root	partition

Background	swap	partition

Background	hard	drives

filesystems

Mounting	a	Filesystem	LILO

operating	system,	booting	Booting	the	System	partitioning

swap	partitions

Recommended	Partitioning	Scheme	|

Recommended	Partitioning	Scheme	partitions

mounting

Mount	a	Previously-Initialized	Partition	hard	links

The	Real	Nature	of	|	The	Real	Nature	of	comparing	to	symlinks

Symbolic	Links	|	Symbolic	Links	deleting

The	Real	Nature	of

symlinks

Symbolic	Links

hardware

abstractions



Introduction	to	X

device	files

Device	Files	|	devnull	video	cards

support	for

Supported	Hardware	Hardware,	supported

no	title

Help	file	(installation)

accessing

Select

help	system

HOWTOs

HOWTOs

hierarchies

Concepts

filesystems

Concepts

mount	points

Mounting	a	Filesystem	mounting

Mounting	a	Filesystem	|	Mounting	a	Filesystem	|	Example:	Mounting	a	CD-
ROM



|	Example:	Mounting	a	CD-ROM	|	Removable	Disks	(Floppies,	Zip	History

see	Command	Line	History

home	directories

Files	Present	and	Their

home	directory

Using	Files:	A	Tutorial

HOWTOs

HOWTOs

icon-based	file	managers



Introduction	to	X

images	(disk)

writing	to	floppies

Creating	Floppies	from	Disk	|	Creating	Floppies	from	Disk

importing

variables	to	environment

Environment	Variables	info

no	title	|	Using	info	|	Using	info	Info	help	system

Managing	Processes	with	bash

initializing

Linux	partition

Initialize	a	Linux	Partition	|	Initialize	a	Linux	Partition

swap	partition

Initialize	and	Activate	a	|	Initialize	and	Activate	a	inodes

The	Real	Nature	of	|	The	Real	Nature	of	hard	links

removing

The	Real	Nature	of	Installation

backups,	performing

Before	You	Start

base	system



Install	the	Base	System	|	Configure	the	Base	System	base	system,	configuring

Debian	Installation	Steps	|	Choosing	Your	Installation	Media

boot	floppies

creating

Make	a	Boot	Floppy	CD-ROM

no	title

device	drivers

configuring

Configure	Device	Driver	Modules	disks

backing	up

Last	Chance	to	Back	dselect



Introduction

Access	screen

Access

Floppies

no	title

hard	disks

partitioning

Partition	a	Hard	Disk	|	Partition	a	Hard	Disk

hard	drive

partitioning

Background	|	Background	partitioning

Partitioning	Your	Hard	Drive	Help	file

accessing

Select

kernel

Install	Operating	System	Kernel	keyboard	configuration

Configure	the	Keyboard	Linux	partition

initialization

Initialize	a	Linux	Partition	|

Initialize	a	Linux	Partition	main	menu



Debian	GNU/Linux	Installation	Main	master	boot	record

Make	Linux	Bootable	Directly	Media

no	title

memory	requirements

Memory	and	Disk	Space	Menu

no	title

monitor	display

color,	selecting	Select	Color	or	Monochrome	multi-NFS,	multi-mount

Access

multi_cd

Access	|	Access

network

configuring

Configure	the	Network	packages

Package	Installation	with	dselect	partitioning

Partitioning	Prior	to	Installation	|	Partitioning	from	DOS	or	|	Lossless
Repartitioning	|	Debian	Installation	Steps

PCMCIA	support

configuring

Configure	PCMCIA	Support	Prerequisites

no	title



profiles

Planning	Use	of	the

selecting

Select	and	Install	Profiles	root	password

setting

Set	the	Root	Password	smoke	test

The	Moment	of	Truth

swap	partition

initialization

Initialize	and	Activate	a	|	Initialize	and	Activate	a	tasks

selecting

Select	and	Install	Profiles	time	zone

specifying

Configure	the	Base	System	installations

network	workstations

Information	You	Will	Need	operating	systems,	multiple

Before	You	Start

installing

packages

Install	|	Install

Internet



Debian	mailing	list

Personal	Help	|	Personal	Help	online	manual

viewing

Environment	Variables	IRC	(Internet	Relay	Chat)

Debian	mailing	list

Personal	Help	|	Personal	Help	ISPs

PPP

PPP	|	Preparation

italics

typographical	conventions

Conventions

job

Managing	Processes	with	bash

job	numbers

assigning	to	command	lines

Managing	Processes	with	bash	jobs

Managing	Processes	with	bash	|	Managing	Processes	with	bash	listing

Managing	Processes	with	bash	starting

Managing	Processes	with	bash	status

displaying

Managing	Processes	with	bash	suspending



Managing	Processes	with	bash	|	Managing	Processes	with	bash

terminating

Managing	Processes	with	bash	|	Managing	Processes	with	bash

kernel

boot	process

troubleshooting

Troubleshooting	the	Boot	Process	installing

Install	Operating	System	Kernel	PCMCIA

removing

Remove	PCMCIA	virtual	consoles

Virtual	Consoles	|	Virtual	Consoles	kernel:LILO	(Linux	Loader)

Booting	the	System	|	Booting	the	System	key	combinations

dselect

Select

keyboard

configuring

Configure	the	Keyboard	killing

jobs

Managing	Processes	with	bash	|	Managing	Processes	with	bash

X	server

Leaving	the	X	Environment	Korn	shell



The	Shell

languages

programming

Software	Development	with	Debian	|	Software	Development	with	Debian
LANs

Ethernet

configuration

Ethernet	large-scale	copying

Large-Scale	Copying	|	Large-Scale	Copying	legal	documentation

GNU	General	Public	License

The	GNU	General	Public	|	The	GNU	General	Public	|	The	GNU	General
Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public



licenses

GNU	General	Public	License

The	GNU	General	Public	|	The	GNU	General	Public	|	The	GNU	General
Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public

LILO

Make	Linux	Bootable	Directly

LILO	(Linux	Loader)

Booting	the	System	|	Booting	the	System	limitations

partitions

PC	Disk	Limitations

Linux



devices

Device	Names	in	Linux	|	Device	Names	in	Linux	|

Device	Names	in	Linux	GNU	General	Public	License

The	GNU	General	Public	|	The	GNU	General	Public	|	The	GNU	General
Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public	|	The	GNU	General	Public	|	The	GNU

General	Public

kernel

command	line

Describing	the	Command	Line	|	Describing	the	Command	Line	disk	cache

Shutting	Down	virtual	console

Virtual	Consoles	|	Virtual	Consoles	Linux	Documentation	Project

Supported	Hardware



HOWTOs

HOWTOs

Linux	native	partition

creating

Partition	a	Hard	Disk	|	Partition	a	Hard	Disk	Linux	partition

initializing

Initialize	a	Linux	Partition	|	Initialize	a	Linux	Partition

Linux	partitions

mounting

Initialize	a	Linux	Partition	|	Initialize	a	Linux	Partition

Linux	swap	partition

creating

Partition	a	Hard	Disk	|	Partition	a	Hard	Disk	listing

aliases

Aliases

jobs

Managing	Processes	with	bash	mounted	filesystems

Example:	Mounting	a	CD-ROM

processes

Processes

locating



documentation

Kinds	of	Documentation	|	Kinds	of	Documentation	files

Finding	Files	|	Finding	Files	system	information

Getting	Information	from	the	logging	in

First	Steps	|	First	Steps

logical	partitions

PC	Disk	Limitations	|	Device	Names	in	Linux	long	form

options

The	Command	Line	and

ls

Using	Files:	A	Tutorial	|	no	title	ls	command

Using	Files:	A	Tutorial	|	Using	Files:	A	Tutorial	|	Dot	Files	and	ls	-a

mailing	list

Debian

Personal	Help	|	Personal	Help	main	menu

installation

Debian	GNU/Linux	Installation	Main	mainenance

packages

What	a	Package	Maintenance	|	What	a	Package	Maintenance

deselect

dselect



dpkg

dpkg

man	less	command

Environment	Variables

man	pages

The	Command	Line	and

managing

files

Using	a	File	Manager

manual	startup

X	windows	system

Starting	the	X	Environment	master	boot	record

installation

Make	Linux	Bootable	Directly	memory

disk	cache

Shutting	Down

installation	requirements

Memory	and	Disk	Space	swap	partitions

Recommended	Partitioning	Scheme	|	Recommended	Partitioning	Scheme

menus

installation



Debian	GNU/Linux	Installation	Main	Partition	a	Hard	Disk	Partition	a	Hard
Disk	|	Partition	a	Hard	Disk

messages

error

standard	error

stdin,	stdout,	Pipelines,	and	metacharacters

regular	expressions

Regular	Expressions	|	Regular	Expressions	|	Regular	Expressions

mkdir	command

Using	Files:	A	Tutorial

mode	(files)

Mode	|	Mode	|	Mode

modifier	keys

Conventions	|	Conventions

modifying

files

hard	links

The	Real	Nature	of	modularity



Introduction	to	X

modules

device	drivers

configuring

Configure	Device	Driver	Modules	installation

Install	Operating	System	Kernel	monitor

display	color

selecting

Select	Color	or	Monochrome	monochrome	display

selecting

Select	Color	or	Monochrome	more	command

Using	Files:	A	Tutorial

mount	points

Mounting	a	Filesystem

mounting

CD-ROM

Example:	Mounting	a	CD-ROM	|	Example:	Mounting	a	CD-ROM

filesystems

Mounting	a	Filesystem	|	Mounting	a	Filesystem	|

Example:	Mounting	a	CD-ROM	|	Example:	Mounting	a	CD-ROM	|



Removable	Disks	(Floppies,	Zip	automatic

etcfstab:	Automating	the	Mount	|

etcfstab:	Automating	the	Mount	floppy	disks

Removable	Disks	(Floppies,	Zip	initialized	partitions

Mount	a	Previously-Initialized	Partition	partitions

Initialize	a	Linux	Partition	|	Initialize	a	Linux	Partition

mouse	operation

X	windows	system

The	Mouse

moving

files

Using	Files:	A	Tutorial	msdos	filesystem

Concepts

multi-NFS,	multi-mount	installation

Access

multi_cd	installation

Access	|	Access

multiple	operating	systems

booting

Make	Linux	Bootable	Directly	multitasking

A	Multiuser,	Multitasking	Operating	|	A	Multiuser,	Multitasking	Operating



processes

Processes

Multiuser

A	Multiuser,	Multitasking	Operating	multiuser	environment

GNU/Linux

A	Multiuser,	Multitasking	Operating	multiuser	environments

virtual	console

Virtual	Consoles	|	Virtual	Consoles	mv	command

Using	Files:	A	Tutorial

named	pipes

Named	Pipes	(FIFOs)

naming

devices

Device	Names	in	Linux	|	Device	Names	in	Linux	|

Device	Names	in	Linux	naming	conventions

files

troubleshooting

Working	with	Strangely-Named	Files	navigating

dbootstrap

Step-by-Step	Installation	nedit	(text	editor

Text	Editors



netowrks

devices

output,	redirecting	stdin,	stdout,	Pipelines,	and	|	stdin,	stdout,	Pipelines,	and
network

configuring

Configure	the	Network	Network	Configuration

no	title

network	transparency



Introduction	to	X

networking

Networking

Ethernet

configuration

Ethernet	PPP

PPP	|	Preparation

configuration

The	Easy	Way:	wvdial	|	The	Easy	Way:	wvdial

sockets

Sockets

networks

servers

partitioning

Recommended	Partitioning	Scheme	terminals

A	Multiuser,	Multitasking	Operating	virtual	console

Virtual	Consoles	|	Virtual	Consoles	workstations

installation

Information	You	Will	Need	X	servers



Introduction	to	X

online	manual

builtin	programs

Where	Commands	Reside:	The	text,	paging

Environment	Variables	viewing

Environment	Variables	Open	Source	Software

What	Is	Free	Software?

operating	system

booting

LILO	(Linux	Loader)	Booting	the	System	kernel

installing

Install	Operating	System	Kernel	operating	systems

What	Is	Debian?

backup	tools

Backup	Tools

GNU	tar

tar

boot	loaders

Before	You	Start

Debian



booting

Booting	Debian	functionality

What	Is	Debian?

GNU	Linux

multiuser	environment	A	Multiuser,	Multitasking	Operating	installation

partitioning

Partitioning	Prior	to	Installation	|

Partitioning	from	DOS	or	|	Lossless	Repartitioning	|	Debian	Installation	Steps

LILO

Make	Linux	Bootable	Directly	modularity



Introduction	to	X

multiple	installations

Before	You	Start

multiple,	booting

Make	Linux	Bootable	Directly	root	password

setting

Set	the	Root	Password	swap	partitions

Background

X	windows	system

troubleshooting

X	Problems	options	(commands)

The	Command	Line	and

ordinary	user	accounts

Create	an	Ordinary	User	|	Create	an	Ordinary	User	organization

files

Files	and	Directories	|	Files	and	Directories	organizing

files

Concepts

hard	drive

Partitioning	Your	Hard	Drive	|	Background	|



Background

ouput

redirecting

pipelines

stdin,	stdout,	Pipelines,	and	output

redirecting

stdin,	stdout,	Pipelines,	and	|	stdin,	stdout,	Pipelines,	and	|	stdin,	stdout,
Pipelines,	and	reversing

stdin,	stdout,	Pipelines,	and	overriding

package	dependencies

Select

ownership	(files)

File	Ownership	|	File	Ownership

packages

Glossary

canceling	selection	(dselect)	Select

compiling

Compiling	Software

configuring

Configure

Debian	base	system



Debian	Installation	Steps	|	Choosing	Your	Installation	Media

dependencies

Select	|	Select

development

Who	Creates	Debian?

installation

Package	Installation	with	dselect	multi-CD

Access	|	Access	multi-NFS,	multi-mount	Access

installing

Install	|	Install

maintenance	utilities

What	a	Package	Maintenance	|	What	a	Package	Maintenance

deselect

dselect

dpkg

dpkg

profiles

Planning	Use	of	the

see	also	dselect

Introduction	|	Introduction	selecting

Select	and	Install	Profiles	|	Select	|	Select	|



Select

states	(dselect)

Select	|	Select

PAGER	environment	variable

Environment	Variables

parameters

The	Command	Line	and

parent	directories

Using	Files:	A	Tutorial

partition

boot	partition

PC	Disk	Limitations

Initialization

no	title

Swap

no	title	Lossless

no	title

Partitioning

no	title	|	Device	Names	in	Linux

cylinder	translation

PC	Disk	Limitations



hard	disks

Partition	a	Hard	Disk	|	Partition	a	Hard	Disk	hard	drive

Partitioning	Your	Hard	Drive	|	Background	|

Background

root	partition

Background	swap	partition

Background	Linux	partition

initializing

Initialize	a	Linux	Partition	|

Initialize	a	Linux	Partition	PC	BIOS

PC	Disk	Limitations

SCSI	drives

PC	Disk	Limitations

servers

Recommended	Partitioning	Scheme	swap	partition

initializing

Initialize	and	Activate	a	|	Initialize	and	Activate	a	swap	partitions

Recommended	Partitioning	Scheme	|	Recommended	Partitioning	Scheme

partitions

mounting

Initialize	a	Linux	Partition	|	Initialize	a	Linux	Partition	|	Mount	a	Previously-



Initialized	Partition	surface	scanning

Initialize	and	Activate	a	passwords

logging	in

First	Steps	|	First	Steps	root	password

setting

Set	the	Root	Password	shadow	passwords

Shadow	Password	Support	superuser

Working	as	Root

PATH

no	title

paths

Files	and	Directories

PC	BIOS

PC	Disk	Limitations

PCMCIA

no	title

configuring

Configure	PCMCIA	Support	removing

Remove	PCMCIA

Permissions

no	title	|	Permissions	|	Permissions	|	Security	access



Mode

example	session

Permissions	in	Practice	|	Permissions	in	Practice	|

Permissions	in	Practice	file	ownership

File	Ownership	|	File	Ownership	hard	links

The	Real	Nature	of

mode

Mode	|	Mode	|	Mode

PID

Processes

PID	(Process	Identification	Number)

Processes

pipe	operators

stdin,	stdout,	Pipelines,	and

pipeline

Managing	Processes	with	bash

pipelines

stdin,	stdout,	Pipelines,	and

output

reversing

stdin,	stdout,	Pipelines,	and	pipes



named	pipes

Named	Pipes	(FIFOs)

plans

Managing	Your	Identity	|	Managing	Your	Identity	PPP

configuration

PPP	|	Preparation

wvdial

The	Easy	Way:	wvdial	|	The	Easy	Way:	wvdial

primary	partitions

PC	Disk	Limitations

printenv

Environment	Variables	|	Environment	Variables	Printing

no	title

troubleshooting

Printing

proc	filesystem

The	proc	Filesystem

process	groups

Managing	Processes	with	bash	|	Managing	Processes	with	bash	Process
Management

no	title



Processes

no	title	|	Processes

boot	process

troubleshooting

Troubleshooting	the	Boot	Process	comparing	to	programs

Processes

controlling

The	Shell	|	The	Shell	daemons

Processes

environments

Environment	Variables	jobs

listing

Managing	Processes	with	bash	starting

Managing	Processes	with	bash	suspending

Managing	Processes	with	bash	|	Managing	Processes	with	bash	terminating

Managing	Processes	with	bash	|	Managing	Processes	with	bash	named	pipes

Named	Pipes	(FIFOs)

PID	(Process	Identification	Number)	Processes

redirection	operators

stdin,	stdout,	Pipelines,	and	|	stdin,	stdout,	Pipelines,	and

standard	input



stdin,	stdout,	Pipelines,	and	standard	output

stdin,	stdout,	Pipelines,	and	profiles

Planning	Use	of	the	|	Planning	Use	of	the	selecting

Select	and	Install	Profiles	|	Select	and	Install	Profiles

programming

Software	Development	with	Debian	|	Software	Development	with	Debian

programs

bash

aliases

Aliases

BIOS	(Basic	Input/Output	System)	Booting	the	System

builtin

Where	Commands	Reside:	The	cfdisk

Partition	a	Hard	Disk	|	Partition	a	Hard	Disk	comparing	to	processes

Processes

dbootstrap

Step-by-Step	Installation	network	configuration	Configure	the	Network
dselect

Select	and	Install	Profiles	|	Introduction	|



Introduction

Access	screen

Access

multi-CD	installation	Access

multi-NFS,	multi-mount	installation	Access

package	states

Select	|	Select	packages,	configuring	Configure	packages,	installing	Install	|
Install	Update	screen

Update	|	Select	|	Select	|	Select	|

Select

executing

search	path

Where	Commands	Reside:	The	|	Where	Commands	Reside:	The	exiting

How	to	Read	This

file	managers



Introduction	to	X

functionality

What	Is	Debian?

gzip

File	Compression	with	gzip	|	File	Compression	with	gzip

multitasking

A	Multiuser,	Multitasking	Operating	packages

maintenance	utilities	What	a	Package	Maintenance	|	What	a	Package
Maintenance	|	dpkg	|	dselect	shell

The	Shell	|	The	Shell	software	development

Software	Development	with	Debian	|	Software	Development	with	Debian
tasks

Select	and	Install	Profiles	|	Select	and	Install	Profiles

text	editors

Text	Editors	|	Text	Editors	ae

Using	ae	wvdial

PPP	configuration	The	Easy	Way:	wvdial	|	The	Easy	Way:	wvdial

X	clients

X	Clients	|	X	Clients	Prompt,	Changing

Environment	Variables	|	Environment	Variables	prompts

shell	prompts



First	Steps

proprietary	software

comparing	to	commercial

What	Is	Free	Software?

proxy	servers

environment	variables

setting

Access

PS1

Environment	Variables	|	Environment	Variables	pwd

Using	Files:	A	Tutorial

pwd	command

Using	Files:	A	Tutorial	|	Using	Files:	A	Tutorial	query	process

Booting	the	System

questions

technical	support

Personal	Help	|	Tips	for	asking	questions	quitting

ae	(text	editor)

Using	ae

X	windows	system

Customizing	Your	X	Startup	|	Customizing	Your	X



Startup

RAM

disk	cache

Shutting	Down

RAM	(Random	Access	Memory)

installation	requirements

Memory	and	Disk	Space	reading

device	files

Device	Files

redirecting

output

stdin,	stdout,	Pipelines,	and	pipelines

stdin,	stdout,	Pipelines,	and	Redirection

no	title

redirection	operators

stdin,	stdout,	Pipelines,	and

hard	links

The	Real	Nature	of

output

reversing

stdin,	stdout,	Pipelines,	and	regular	expressions



Regular	Expressions	|	Regular	Expressions	|	Regular	Expressions	reinitializing

swap	partition

Initialize	and	Activate	a	removable	disks

mounting	filesystem

Removable	Disks	(Floppies,	Zip	removing

directories

Using	Files:	A	Tutorial	hard	links

The	Real	Nature	of

PCMCIA

Remove	PCMCIA

symlinks

Symbolic	Links	|	Symbolic	Links	repartitioning

from	Windows

Partitioning	from	DOS	or	|	Lossless	Repartitioning	hard	drive

Partitioning	Your	Hard	Drive	|	Background	|

Background

requirements

installation

memory

Memory	and	Disk	Space	restrictions

partitions



PC	Disk	Limitations

reversing

output

stdin,	stdout,	Pipelines,	and	rm

Using	Files:	A	Tutorial

root	directory

Files	and	Directories	|	Files	and	Directories	root	partition

Background

root	password

setting

Set	the	Root	Password	root	user

Working	as	Root	|	Working	as	Root

see	also	superuser

Files	Present	and	Their	saving

edited	files	(ae)

Using	ae

scanning

hard	disk

Initialize	and	Activate	a	screen

display	color

selecting



Select	Color	or	Monochrome	screens

ae	(text	editor)

Using	ae

dselect

Select

Select	|	Select	|	Select	|	Select	|

Select

Update

Update

X	windows	system

windows	manager



Introduction	to	X

scrolling

commands

Command	History	and	Editing	SCSI	drives

partitioning

PC	Disk	Limitations

partitions

Device	Names	in	Linux	search	path

Where	Commands	Reside:	The	|	Where	Commands	Reside:	The	security

backups,	performing

Before	You	Start

passwords

logging	in

First	Steps	|	First	Steps	shadow	passwords	Shadow	Password	Support
permissions

Permissions	|	Permissions	|	Security	example	session

Permissions	in	Practice	|	Permissions	in	Practice	|	Permissions	in	Practice	file
mode

Mode	|	Mode	|	Mode	file	ownership

File	Ownership	|	File	Ownership	root	password

setting



Set	the	Root	Password	root	user

Working	as	Root	|	Working	as	Root	Select	screen	(dselect)

Select	|	Select	|	Select	|	Select

selecting

color	display

Select	Color	or	Monochrome	fonts,	xterm

Starting	the	X	Environment	monochrome	display

Select	Color	or	Monochrome	packages

Select	and	Install	Profiles	|	Select	|	Select	|

Select

see	also	dselect	Introduction	|	Introduction	profiles

Select	and	Install	Profiles	|	Select	and	Install	Profiles

X	clients

Customizing	Your	X	Startup	|	Customizing	Your	X

Startup

Server	profile

Planning	Use	of	the

servers

partitioning

Recommended	Partitioning	Scheme	proxy	servers

environment	variables,	setting	Access



X	server

killing

Leaving	the	X	Environment	X	servers



Introduction	to	X

clients

X	Clients	|	X	Clients	network	transparency	Introduction	to	X

sh	(Bourne	shell)

The	Shell

shadow	passwords

Shadow	Password	Support

sharing

software

What	Is	Free	Software?	|	What	Is	Free	Software?

Shell

no	title	|	The	Shell	|	The	Shell	|	no	title	builtin	programs

Where	Commands	Reside:	The	filename	expansion	patterns

Filename	Expansion

output

reversing

stdin,	stdout,	Pipelines,	and	redirection	operator

stdin,	stdout,	Pipelines,	and	|	stdin,	stdout,	Pipelines,	and

search	path

Where	Commands	Reside:	The	|	Where	Commands	Reside:	The



shell	commands

typing

First	Steps

shell	prompt

command	history

Command	History	and	Editing	command	line

Command	History	and	Editing	|	Command	History	and	Editing

shells

Bourne	shell

The	Shell

C	shell

The	Shell

command	lines

job	numbers,	assigning	Managing	Processes	with	bash	current	working
directory

Using	Files:	A	Tutorial	environments

Environment	Variables	jobs

suspending

Managing	Processes	with	bash	pipelines

stdin,	stdout,	Pipelines,	and	process	groups

Managing	Processes	with	bash	|	Managing	Processes	with	bash



redirection	operators

hard	links

The	Real	Nature	of	variables

exporting

Environment	Variables	xterms

Starting	the	X	Environment	shortcut	directories

Using	Files:	A	Tutorial

shortcuts

aliases

Aliases

Shutdown

no	title

shutting	down

Shutting	Down

sites

Web

Debian

What	Is	Free	Software?

Free	Software	Foundation	What	Is	Free	Software?

Multi	Disk	HOWTO

Recommended	Partitioning	Scheme	video	cards,	support	for	Supported



Hardware	smoke	test

The	Moment	of	Truth

Social	Contract

What	Is	Free	Software?	|	What	Is	Free	Software?	|	What	Is	Free	Software?

sockets

Sockets

soft	links

Symbolic	Links

software

applications

What	Is	Debian?

development

Who	Creates	Debian?

free

developing

What	Is	Free	Software?

Social	Contract

What	Is	Free	Software?

Free	Software

What	Is	Free	Software?

Open	Source



What	Is	Free	Software?

packages

mainenance	utilities	What	a	Package	Maintenance	|	dpkg	|

dselect

sofware

development

Software	Development	with	Debian	|	Software	Development	with	Debian
Source	code

Viewing	Text	Files

comparing	to	binary	executables	Viewing	Text	Files

spaces

typographical	convention

Conventions

specifying

time	zone

Configure	the	Base	System	splitting

partitions

Lossless	Repartitioning	Stallman,	Richard	M.

Why	Software	Should	be	Free

What	Is	Free	Software?

standard	error



stdin,	stdout,	Pipelines,	and

standard	input

stdin,	stdout,	Pipelines,	and

standard	output

stdin,	stdout,	Pipelines,	and

starting

ae	(text	editor)

Using	ae

jobs

Managing	Processes	with	bash	|	Managing	Processes	with	bash	|	Managing
Processes	with	bash	X	windows	system

Starting	the	X	Environment	startup

boot	process

BIOS

Booting	the	System	query	process

Booting	the	System	X	windows	system

customizing

Customizing	Your	X	Startup	states

packages	(dselect)

Select	|	Select

status



jobs

displaying

Managing	Processes	with	bash	stdin

no	title

stdout

no	title

structure

command	line

The	Command	Line	and

directories

Files	and	Directories	su	command

Working	as	Root

subdirectories

filename	expansion	patterns

Filename	Expansion	|	Filename	Expansion	submitting

bug	reports

Troubleshooting	the	Boot	Process	superuser

Working	as	Root	|	Working	as	Root

home	directory

Files	Present	and	Their	superuser	account

Set	the	Root	Password



surface	scanning

hard	disks

Initialize	and	Activate	a	suspending

jobs

Managing	Processes	with	bash	|	Managing	Processes	with	bash

swap	partition

Background

initializing

Initialize	and	Activate	a	|	Initialize	and	Activate	a	swap	partitions

Recommended	Partitioning	Scheme	|	Recommended	Partitioning	Scheme
Linux	swap	partition

creating

Partition	a	Hard	Disk	|	Partition	a	Hard	Disk

symlinks

Symbolic	Links

comparing	to	hard	links

Symbolic	Links	|	Symbolic	Links	removing

Symbolic	Links

syntax

commands

The	Command	Line	and	|	Describing	the	Command	Line	|



Describing	the	Command	Line	file	searches

Finding	Files

system	binaries

Files	Present	and	Their

system	clock

setting

Configure	the	Base	System	system	configuration

Debian	Installation	Steps	|	Choosing	Your	Installation	Media	dbootstrap

Step-by-Step	Installation	system-wide	configuration

System-Wide	Versus	User-Specific	Configuration	/etc	directory

Files	Present	and	Their	automatic	filesystem	mounting	etcfstab:	Automating
the	Mount	|	etcfstab:	Automating	the	Mount

networking

Networking

Ethernet

Ethernet	PPP

PPP	|	Preparation	|	The	Easy	Way:	wvdial	|	The	Easy	Way:	wvdial	packages

selecting

Select	|	Select	|	Select	permissions

file	mode

Mode	|	Mode	|	Mode	file	ownership



File	Ownership	X	windows	system

customizing

Customizing	Your	X	Startup	system-wide	configuratoin

System-Wide	Versus	User-Specific	Configuration	Taper

Backup	Tools

taper	(backup	utility)

Backup	Tools

tar

Backup	Tools	|	no	title

tar	(tape	archiver

tar

tasks

Select	and	Install	Profiles	|	Select	and	Install	Profiles	tcsh

The	Shell

technical	support

asking	questions

Personal	Help	|	Tips	for	asking	questions	temporary	files

Files	Present	and	Their

Terminal

A	Multiuser,	Multitasking	Operating	terminals

A	Multiuser,	Multitasking	Operating	consoles



A	Multiuser,	Multitasking	Operating	terminating

jobs

Managing	Processes	with	bash	|	Managing	Processes	with	bash

testing

installation

smoke	test

The	Moment	of	Truth	text

bold	face

typographical	conventions	Conventions	fonts

xterm,	selecting	Starting	the	X	Environment	italicized

typographical	conventions	Conventions	online	manual

paging

Environment	Variables	output

reversing

stdin,	stdout,	Pipelines,	and	regular	expressions

Regular	Expressions	|	Regular	Expressions	|	Regular	Expressions

wildcards

-

Filename	Expansion	?

Filename	Expansion	file	searches

Finding	Files	filename	expansion	patterns	Filename	Expansion	text	editors



Text	Editors

ae

Using	ae

text	files

Working	with	Text	Files	|	no	title	viewing

Viewing	Text	Files

time	zone

specifying

Configure	the	Base	System	tools

backups

Backup	Tools

GNU	tar

tar

FIPS

Lossless	Repartitioning	|	Lossless	Repartitioning	troubleshooting

boot	process

Troubleshooting	the	Boot	Process	files

naming	conventions	Working	with	Strangely-Named	Files	printing

Printing

X	windows	system

Troubleshooting	|	X	Problems	type



Where	Commands	Reside:	The

typing

Bash	commands

wildcards

Tab	Completion	command	line

Command	History	and	Editing	|	Command	History	and	Editing

commands

aliases

Aliases

modifier	keys

Conventions	|	Conventions	shell	commands

First	Steps

wildcards

?

Filename	Expansion	filename	expansion	pattern	Filename	Expansion
typographical	conventions

Conventions	|	Conventions

bold	face

Conventions

italics

Conventions



modifier	keys

Conventions	|	Conventions	spaces

Conventions

uncompressing

files

File	Compression	with	gzip	unmounting

CD-ROMs

Example:	Mounting	a	CD-ROM

Update	screen	(dselect)

Update

user	accounts

logging	in

First	Steps	|	First	Steps	ordinary	user

Create	an	Ordinary	User	|	Create	an	Ordinary	User	permission

Permissions	|	Permissions	permissions

example	session

Permissions	in	Practice	|	Permissions	in	Practice	|	Permissions	in	Practice	file
ownership

File	Ownership	|	File	Ownership	mode

Mode	|	Mode	|	Mode	plans

Managing	Your	Identity	|	Managing	Your	Identity	root	user



Working	as	Root	|	Working	as	Root	superuser

Set	the	Root	Password	user-specific	configuration

System-Wide	Versus	User-Specific	Configuration	|	System-Wide	Versus	User-
Specific	Configuration	dotfiles

System-Wide	Versus	User-Specific	Configuration	utilities

archiving

Backup	Tools

backup	tools

Backup	Tools

GNU	tar

tar

dbootstrap

network	configuration	Configure	the	Network	dselect

Select	and	Install	Profiles	|	Introduction	|



Introduction

Access	screen

Access

multi-CD	installation	Access

multi-NFS,	multi-mount	installation	Access

package	states

Select	|	Select	packages,	configuring	Configure	packages,	installing	Install	|
Install	Update	screen

Update	|	Select	|	Select	|	Select	|

Select

file	manager

Using	a	File	Manager

FIPS

Lossless	Repartitioning	|	Lossless	Repartitioning	GNU	documentation	viewer

Using	info	|	Using	info	gzip

File	Compression	with	gzip	|	File	Compression	with	gzip

package	maintenance

What	a	Package	Maintenance	|	What	a	Package	Maintenance

deselect

dselect



dpkg

dpkg

system	binaries

Files	Present	and	Their	tasks

Select	and	Install	Profiles	|	Select	and	Install	Profiles

text	editors

Text	Editors	|	Text	Editors	ae

Using	ae	variables

Environment	Variables

exporting

Environment	Variables	shell

exporting

Environment	Variables	vi	(text	editor)

Text	Editors	|	Text	Editors

video	cards

support	for

Supported	Hardware

viewing

directory	contents

Files	Present	and	Their	|	Files	Present	and	Their	file	contents

Using	Files:	A	Tutorial	|	Determining	a	File’s	Contents



files

filename	expansion	pattern	Filename	Expansion	Info	help	system

Managing	Processes	with	bash	job	status

Managing	Processes	with	bash	mounted	filesystems

Example:	Mounting	a	CD-ROM

online	manual

Environment	Variables	text	files

Viewing	Text	Files

Virtual	Consoles

no	title	|	Virtual	Consoles	|	Virtual	Consoles	virtual	devices

Device	Files	|	devnull

web	sites

Debian

What	Is	Free	Software?	|	Personal	Help	|	Personal	Help

Free	Software	Foundation

What	Is	Free	Software?

Multi	Disk	HOWTO

Recommended	Partitioning	Scheme	Web	sites:video	cards,	support	for

Supported	Hardware

whoami	command

Working	as	Root



Why	Software	Should	be	Free	(Stallman,	Richard	M.)	What	Is	Free	Software?

wildcards

no	title	|	Filename	Expansion

*

Filename	Expansion

?

Filename	Expansion

Bash	commands

Tab	Completion

file	searches

Finding	Files

filename	expansion	pattens

Filename	Expansion

regular	expressions

Regular	Expressions	|	Regular	Expressions	|	Regular	Expressions

window	managers



Introduction	to	X

Windows

partitioning

Partitioning	from	DOS	or	|	Lossless	Repartitioning	|

Debian	Installation	Steps	Work	profile

Planning	Use	of	the

workstations

installation

Information	You	Will	Need	write	permission

Mode

writing

disk	images	to	floppies

Creating	Floppies	from	Disk	|	Creating	Floppies	from	Disk

to	device	files

Device	Files

to	named	pipes

Named	Pipes	(FIFOs)

wvdial

PPP	configuration

The	Easy	Way:	wvdial	|	The	Easy	Way:	wvdial	X	clients



Introduction	to	X

network	transparency



Introduction	to	X

selecting

Customizing	Your	X	Startup	|	Customizing	Your	X

Startup

X	servers



Introduction	to	X

X	Window

The	X	Window	System	|	Introduction	to	X

X	windows	system

clients

X	Clients	|	X	Clients	selecting

Customizing	Your	X	Startup	|	Customizing	Your	X	Startup	customizing

Customizing	Your	X	Startup	exiting

Leaving	the	X	Environment	|	Customizing	Your	X

Startup	|	Customizing	Your	X	Startup	mouse	operation

The	Mouse

network	transparency



Introduction	to	X

starting

Starting	the	X	Environment	troubleshooting

Troubleshooting	|	X	Problems	xdm

Starting	the	X	Environment	X,	troubleshooting

no	title

xcoral	(text	editor)

Text	Editors

xdm	(X	Display	Manager)

Starting	the	X	Environment

xterm

font	size,	increasing

Starting	the	X	Environment	fonts

selecting

Starting	the	X	Environment	xterms

Starting	the	X	Environment

Zip	Disks

no	title

	

About	this	document	…



	

Debian	GNU/Linux:	Guide	to	Installation	and	Usage	This	document	was
generated	using	the	LaTeX2HTML	translator	Version	2K.1beta	(1.48)

	

Copyright	(c)	1993,	1994,	1995,	1996,	Nikos	Drakos,	Computer	Based
Learning	Unit,	University	of	Leeds.

Copyright	(c)	1997,	1998,	1999,	Ross	Moore,	Mathematics	Department,
Macquarie	University,	Sydney.

	

The	command	line	arguments	were:

latex2html	-html_version	4.0,table	-split	0	-t	‘Debian	GNU/Linux:	Guide	to
Installation	and	Usage’	-toc_stars	-local_icons	-address	‘John	Goerzen	/

Ossama	Othman’	debian-tutorial.tex

	

The	translation	was	initiated	by	John	Goerzen	on	2002-12-12

–––––––––––––––––––––––-

Footnotes

	

…	NAME=“87”>.1.1

A	terminal	is	just	a	keyboard	and	a	screen	that	are	connected	to	the	computer
through	the	network,	over	a	modem,	or	directly.	Your	keyboard	and	monitor
form	a	terminal	that	is	directly	attached	to	the	computer:	This	special	terminal	is
often	called	the	console.

	



…	Hacker1.2

Note	that	the	term	“hacker”	should	not	be	confused	with	the	term	“cracker.”	In
short,	a	hacker	is	benevolent,	whereas	a	cracker	is	generally	considered
malevolent.	Movies	and	other	forms	of	media	many	times	incorrectly	use	the
term	“hacker”	instead	of	“cracker.”

	

…	loader2.1

A	boot	loader	is	responsible	starting	an	operating	system’s	boot	procedure.

	

…	drivers2.2

See	your	hard	drive	manual	for	a	description	of	these	features.

	

…-KILL5.1

Many	people	use	the	signal	number	-9	instead	of	the	signal	name	-KILL.
However,	it’s	technically	more	portable	to	use	the	signal	name.

	

…	operator6.1

Depending	on	your	keyboard,	this	may	either	appear	as	a	vertical	bar	or	a
broken	vertical	bar,	but	it	can	almost	always	be	found	above	the	backslash	(\).

	

…	all6.2

Actually,	files	beginning	with	.	are	not	included	in	the	expansion	of	*.

	



…	catch13.1

Sparse	files	and	hard	links	are	two	examples.

–––––––––––––––––––––––-

John	Goerzen	/	Ossama	Othman

	

***	END	OF	THE	PROJECT	GUTENBERG	EBOOK,	DEBIAN	GNU/LINUX:
GUIDE	TO	INSTALLATION	AND	USAGE	***

	

This	file	should	be	named	dguid10.txt	or	dguid10.zip	Corrected	EDITIONS	of
our	eBooks	get	a	new	NUMBER,	dguid11.txt	VERSIONS	based	on	separate
sources	get	new	LETTER,	dguid10a.txt	Project	Gutenberg	eBooks	are	often
created	from	several	printed	editions,	all	of	which	are	confirmed	as	Public
Domain	in	the	US

unless	a	copyright	notice	is	included.	Thus,	we	usually	do	not	keep	eBooks	in
compliance	with	any	particular	paper	edition.

	

We	are	now	trying	to	release	all	our	eBooks	one	year	in	advance	of	the	official
release	dates,	leaving	time	for	better	editing.

Please	be	encouraged	to	tell	us	about	any	error	or	corrections,	even	years	after
the	official	publication	date.

	

Please	note	neither	this	listing	nor	its	contents	are	final	til	midnight	of	the	last
day	of	the	month	of	any	such	announcement.

The	official	release	date	of	all	Project	Gutenberg	eBooks	is	at	Midnight,	Central
Time,	of	the	last	day	of	the	stated	month.	A	preliminary	version	may	often	be
posted	for	suggestion,	comment	and	editing	by	those	who	wish	to	do	so.



	

Most	people	start	at	our	Web	sites	at:

http://gutenberg.net	or

http://promo.net/pg

	

These	Web	sites	include	award-winning	information	about	Project	Gutenberg,
including	how	to	donate,	how	to	help	produce	our	new	eBooks,	and	how	to
subscribe	to	our	email	newsletter	(free!).

	

Those	of	you	who	want	to	download	any	eBook	before	announcement	can	get	to
them	as	follows,	and	just	download	by	date.	This	is	also	a	good	way	to	get	them
instantly	upon	announcement,	as	the	indexes	our	cataloguers	produce	obviously
take	a	while	after	an	announcement	goes	out	in	the	Project	Gutenberg
Newsletter.

	

http://www.ibiblio.org/gutenberg/etext04	or

ftp://ftp.ibiblio.org/pub/docs/books/gutenberg/etext04

	

Or	/etext03,	02,	01,	00,	99,	98,	97,	96,	95,	94,	93,	92,	92,	91	or	90

	

Just	search	by	the	first	five	letters	of	the	filename	you	want,	as	it	appears	in	our
Newsletters.

	

Information	about	Project	Gutenberg	(one	page)	We	produce	about	two	million
dollars	for	each	hour	we	work.	The	time	it	takes	us,	a	rather	conservative



estimate,	is	fifty	hours	to	get	any	eBook	selected,	entered,	proofread,	edited,
copyright	searched	and	analyzed,	the	copyright	letters	written,	etc.	Our	projected
audience	is	one	hundred	million	readers.	If	the	value	per	text	is	nominally
estimated	at	one	dollar	then	we	produce	$2

million	dollars	per	hour	in	2002	as	we	release	over	100	new	text	files	per	month:
1240	more	eBooks	in	2001	for	a	total	of	4000+

We	are	already	on	our	way	to	trying	for	2000	more	eBooks	in	2002

If	they	reach	just	1-2%	of	the	world’s	population	then	the	total	will	reach	over
half	a	trillion	eBooks	given	away	by	year’s	end.

	

The	Goal	of	Project	Gutenberg	is	to	Give	Away	1	Trillion	eBooks!

This	is	ten	thousand	titles	each	to	one	hundred	million	readers,	which	is	only
about	4%	of	the	present	number	of	computer	users.

	

Here	is	the	briefest	record	of	our	progress	(*	means	estimated):	eBooks	Year
Month

	

1	1971	July

10	1991	January

100	1994	January

1000	1997	August

1500	1998	October

2000	1999	December

2500	2000	December



3000	2001	November

4000	2001	October/November

6000	2002	December*

9000	2003	November*

10000	2004	January*

	

The	Project	Gutenberg	Literary	Archive	Foundation	has	been	created	to	secure	a
future	for	Project	Gutenberg	into	the	next	millennium.

	

We	need	your	donations	more	than	ever!

	

As	of	February,	2002,	contributions	are	being	solicited	from	people	and
organizations	in:	Alabama,	Alaska,	Arkansas,	Connecticut,	Delaware,	District	of
Columbia,	Florida,	Georgia,	Hawaii,	Illinois,	Indiana,	Iowa,	Kansas,	Kentucky,
Louisiana,	Maine,	Massachusetts,	Michigan,	Mississippi,	Missouri,	Montana,
Nebraska,	Nevada,	New	Hampshire,	New	Jersey,	New	Mexico,	New	York,
North	Carolina,	Ohio,	Oklahoma,	Oregon,	Pennsylvania,	Rhode	Island,	South
Carolina,	South	Dakota,	Tennessee,	Texas,	Utah,	Vermont,	Virginia,	Washington,
West	Virginia,	Wisconsin,	and	Wyoming.

	

We	have	filed	in	all	50	states	now,	but	these	are	the	only	ones	that	have
responded.

	

As	the	requirements	for	other	states	are	met,	additions	to	this	list	will	be	made
and	fund	raising	will	begin	in	the	additional	states.

Please	feel	free	to	ask	to	check	the	status	of	your	state.



	

In	answer	to	various	questions	we	have	received	on	this:	We	are	constantly
working	on	finishing	the	paperwork	to	legally	request	donations	in	all	50	states.
If	your	state	is	not	listed	and	you	would	like	to	know	if	we	have	added	it	since
the	list	you	have,	just	ask.

	

While	we	cannot	solicit	donations	from	people	in	states	where	we	are	not	yet
registered,	we	know	of	no	prohibition	against	accepting	donations	from	donors
in	these	states	who	approach	us	with	an	offer	to	donate.

	

International	donations	are	accepted,	but	we	don’t	know	ANYTHING	about	how
to	make	them	tax-deductible,	or	even	if	they	CAN	be	made	deductible,	and	don’t
have	the	staff	to	handle	it	even	if	there	are	ways.

	

Donations	by	check	or	money	order	may	be	sent	to:	Project	Gutenberg	Literary
Archive	Foundation	PMB	113

1739	University	Ave.

Oxford,	MS	38655-4109

	

Contact	us	if	you	want	to	arrange	for	a	wire	transfer	or	payment	method	other
than	by	check	or	money	order.

	

The	Project	Gutenberg	Literary	Archive	Foundation	has	been	approved	by	the
US	Internal	Revenue	Service	as	a	501(c)(3)	organization	with	EIN

[Employee	Identification	Number]	64-622154.	Donations	are	tax-deductible	to
the	maximum	extent	permitted	by	law.	As	fund-raising	requirements	for	other



states	are	met,	additions	to	this	list	will	be	made	and	fund-raising	will	begin	in
the	additional	states.

	

We	need	your	donations	more	than	ever!

	

You	can	get	up	to	date	donation	information	online	at:
http://www.gutenberg.net/donation.html

***

If	you	can’t	reach	Project	Gutenberg,

you	can	always	email	directly	to:

	

Michael	S.	Hart	<hart@pobox.com>

	

Prof.	Hart	will	answer	or	forward	your	message.

	

We	would	prefer	to	send	you	information	by	email.

	

**The	Legal	Small	Print**

	

(Three	Pages)

	

***START**THE	SMALL	PRINT!**FOR	PUBLIC	DOMAIN



EBOOKS**START***

Why	is	this	“Small	Print!”	statement	here?	You	know:	lawyers.

They	tell	us	you	might	sue	us	if	there	is	something	wrong	with	your	copy	of	this
eBook,	even	if	you	got	it	for	free	from	someone	other	than	us,	and	even	if	what’s
wrong	is	not	our	fault.	So,	among	other	things,	this	“Small	Print!”	statement
disclaims	most	of	our	liability	to	you.	It	also	tells	you	how	you	may	distribute
copies	of	this	eBook	if	you	want	to.

	

BEFORE!	YOU	USE	OR	READ	THIS	EBOOK

By	using	or	reading	any	part	of	this	PROJECT	GUTENBERG-tm	eBook,	you
indicate	that	you	understand,	agree	to	and	accept	this	“Small	Print!”	statement.	If
you	do	not,	you	can	receive	a	refund	of	the	money	(if	any)	you	paid	for	this
eBook	by	sending	a	request	within	30	days	of	receiving	it	to	the	person	you	got
it	from.	If	you	received	this	eBook	on	a	physical	medium	(such	as	a	disk),	you
must	return	it	with	your	request.

	

ABOUT	PROJECT	GUTENBERG-TM	EBOOKS

This	PROJECT	GUTENBERG-tm	eBook,	like	most	PROJECT	GUTENBERG-
tm	eBooks,	is	a	“public	domain”	work	distributed	by	Professor	Michael	S.	Hart
through	the	Project	Gutenberg	Association	(the	“Project”).

Among	other	things,	this	means	that	no	one	owns	a	United	States	copyright	on
or	for	this	work,	so	the	Project	(and	you!)	can	copy	and	distribute	it	in	the	United
States	without	permission	and	without	paying	copyright	royalties.	Special	rules,
set	forth	below,	apply	if	you	wish	to	copy	and	distribute	this	eBook	under	the
“PROJECT	GUTENBERG”	trademark.

	

Please	do	not	use	the	“PROJECT	GUTENBERG”	trademark	to	market	any
commercial	products	without	permission.



	

To	create	these	eBooks,	the	Project	expends	considerable	efforts	to	identify,
transcribe	and	proofread	public	domain	works.	Despite	these	efforts,	the
Project’s	eBooks	and	any	medium	they	may	be	on	may	contain	“Defects”.
Among	other	things,	Defects	may	take	the	form	of	incomplete,	inaccurate	or
corrupt	data,	transcription	errors,	a	copyright	or	other	intellectual	property
infringement,	a	defective	or	damaged	disk	or	other	eBook	medium,	a	computer
virus,	or	computer	codes	that	damage	or	cannot	be	read	by	your	equipment.

	

LIMITED	WARRANTY;	DISCLAIMER	OF	DAMAGES

But	for	the	“Right	of	Replacement	or	Refund”	described	below,	[1]	Michael	Hart
and	the	Foundation	(and	any	other	party	you	may	receive	this	eBook	from	as	a
PROJECT	GUTENBERG-tm	eBook)	disclaims	all	liability	to	you	for	damages,
costs	and	expenses,	including	legal	fees,	and	[2]	YOU	HAVE	NO	REMEDIES
FOR	NEGLIGENCE	OR

UNDER	STRICT	LIABILITY,	OR	FOR	BREACH	OF	WARRANTY	OR
CONTRACT,	INCLUDING	BUT	NOT	LIMITED	TO	INDIRECT,
CONSEQUENTIAL,	PUNITIVE

OR	INCIDENTAL	DAMAGES,	EVEN	IF	YOU	GIVE	NOTICE	OF	THE

POSSIBILITY	OF	SUCH	DAMAGES.

	

If	you	discover	a	Defect	in	this	eBook	within	90	days	of	receiving	it,	you	can
receive	a	refund	of	the	money	(if	any)	you	paid	for	it	by	sending	an	explanatory
note	within	that	time	to	the	person	you	received	it	from.	If	you	received	it	on	a
physical	medium,	you	must	return	it	with	your	note,	and	such	person	may
choose	to	alternatively	give	you	a	replacement	copy.	If	you	received	it
electronically,	such	person	may	choose	to	alternatively	give	you	a	second
opportunity	to	receive	it	electronically.

	



THIS	EBOOK	IS	OTHERWISE	PROVIDED	TO	YOU	“AS-IS”.	NO	OTHER

WARRANTIES	OF	ANY	KIND,	EXPRESS	OR	IMPLIED,	ARE	MADE	TO
YOU	AS

TO	THE	EBOOK	OR	ANY	MEDIUM	IT	MAY	BE	ON,	INCLUDING	BUT
NOT

LIMITED	TO	WARRANTIES	OF	MERCHANTABILITY	OR	FITNESS	FOR
A	PARTICULAR	PURPOSE.

	

Some	states	do	not	allow	disclaimers	of	implied	warranties	or	the	exclusion	or
limitation	of	consequential	damages,	so	the	above	disclaimers	and	exclusions
may	not	apply	to	you,	and	you	may	have	other	legal	rights.

	

INDEMNITY

You	will	indemnify	and	hold	Michael	Hart,	the	Foundation,	and	its	trustees	and
agents,	and	any	volunteers	associated	with	the	production	and	distribution	of
Project	Gutenberg-tm	texts	harmless,	from	all	liability,	cost	and	expense,
including	legal	fees,	that	arise	directly	or	indirectly	from	any	of	the	following
that	you	do	or	cause:	[1]	distribution	of	this	eBook,	[2]	alteration,	modification,
or	addition	to	the	eBook,	or	[3]	any	Defect.

	

DISTRIBUTION	UNDER	“PROJECT	GUTENBERG-tm”

You	may	distribute	copies	of	this	eBook	electronically,	or	by	disk,	book	or	any
other	medium	if	you	either	delete	this	“Small	Print!”	and	all	other	references	to
Project	Gutenberg,	or:

	

[1]	Only	give	exact	copies	of	it.	Among	other	things,	this	requires	that	you	do
not	remove,	alter	or	modify	the	eBook	or	this	“small	print!”	statement.	You	may



however,	if	you	wish,	distribute	this	eBook	in	machine	readable	binary,
compressed,	mark-up,	or	proprietary	form,	including	any	form	resulting	from
conversion	by	word	processing	or	hypertext	software,	but	only	so	long	as
EITHER:

	

[*]	The	eBook,	when	displayed,	is	clearly	readable,	and	does	not	contain
characters	other	than	those	intended	by	the	author	of	the	work,	although	tilde	(~),
asterisk	(*)	and	underline	(_)	characters	may	be	used	to	convey	punctuation
intended	by	the	author,	and	additional	characters	may	be	used	to	indicate
hypertext	links;	OR

	

[*]	The	eBook	may	be	readily	converted	by	the	reader	at	no	expense	into	plain
ASCII,	EBCDIC	or	equivalent	form	by	the	program	that	displays	the	eBook	(as
is	the	case,	for	instance,	with	most	word	processors);	OR

	

[*]	You	provide,	or	agree	to	also	provide	on	request	at	no	additional	cost,	fee
or	expense,	a	copy	of	the	eBook	in	its	original	plain	ASCII	form	(or	in	EBCDIC

or	other	equivalent	proprietary	form).

	

[2]	Honor	the	eBook	refund	and	replacement	provisions	of	this	“Small	Print!”
statement.

	

[3]	Pay	a	trademark	license	fee	to	the	Foundation	of	20%	of	the	gross	profits	you
derive	calculated	using	the	method	you	already	use	to	calculate	your	applicable
taxes.	If	you	don’t	derive	profits,	no	royalty	is	due.	Royalties	are	payable	to
“Project	Gutenberg	Literary	Archive	Foundation”

the	60	days	following	each	date	you	prepare	(or	were	legally	required	to
prepare)	your	annual	(or	equivalent	periodic)	tax	return.	Please	contact	us



beforehand	to	let	us	know	your	plans	and	to	work	out	the	details.

	

WHAT	IF	YOU	WANT	TO	SEND	MONEY	EVEN	IF	YOU	DON’T	HAVE	TO?

Project	Gutenberg	is	dedicated	to	increasing	the	number	of	public	domain	and
licensed	works	that	can	be	freely	distributed	in	machine	readable	form.

	

The	Project	gratefully	accepts	contributions	of	money,	time,	public	domain
materials,	or	royalty	free	copyright	licenses.

Money	should	be	paid	to	the:

“Project	Gutenberg	Literary	Archive	Foundation.”

	

If	you	are	interested	in	contributing	scanning	equipment	or	software	or	other
items,	please	contact	Michael	Hart	at:	hart@pobox.com

	

[Portions	of	this	eBook’s	header	and	trailer	may	be	reprinted	only	when
distributed	free	of	all	fees.	Copyright	(C)	2001,	2002	by	Michael	S.	Hart.	Project
Gutenberg	is	a	TradeMark	and	may	not	be	used	in	any	sales	of	Project
Gutenberg	eBooks	or	other	materials	be	they	hardware	or	software	or	any	other
related	product	without	express	permission.]

	

END	THE	SMALL	PRINT!	FOR	PUBLIC	DOMAIN
EBOOKSVer.02/11/02*END*


