

ADSL	Bandwidth	Management	HOWTO

Dan	Singletary

dvsing@sonicspike.net

Revision	History

Revision	1.3	2003-04-07	Revised	by:	ds

Added	links	section.

Revision	1.2	2002-09-26	Revised	by:	ds

Added	link	to	new	Email	Discussion	List.	Added	small	teaser	to	caveat	section

regarding	new	and	improved	QoS	for	Linux	designed	specifically	for	ADSL	to
be

released	soon.

Revision	1.1	2002-08-26	Revised	by:	ds

A	few	corrections	(Thanks	to	the	many	that	pointed	them	out!).	Added

informational	caveat	to	implementation	section.

Revision	1.0	2002-08-21	Revised	by:	ds

Better	control	over	bandwidth,	more	theory,	updated	for	2.4	kernels

Revision	0.1	2001-08-06	Revised	by:	ds

Initial	publication

This	document	describes	how	to	configure	a	Linux	router	to	more	effectively

manage	outbound	traffic	on	an	ADSL	modem	or	other	device	with	similar

bandwidth	properties	(cable	modem,	ISDN,	etc).	Emphasis	is	placed	on	lowering

mailto:dvsing@sonicspike.net

the	latency	for	interactive	traffic	even	when	the	upstream	and/or	downstream

bandwidth	is	fully	saturated.

Table	of	Contents

1.	 Introduction

1.1.	New	Versions	of	This	Document

1.2.	Email	Discussion	List

1.3.	Disclaimer

1.4.	Copyright	and	License

1.5.	Feedback	and	corrections

2.	 Background

2.1.	Prerequisites

2.2.	Layout

2.3.	Packet	Queues

3.	 How	it	Works

3.1.	Throttling	Outbound	Traffic	with	Linux	HTB

3.2.	Priority	Queuing	with	HTB

3.3.	Classifying	Outbound	Packets	with	iptables

3.4.	A	few	more	tweaks...

3.5.	Attempting	to	Throttle	Inbound	Traffic

4.	 Implementation

4.1.	Caveats

4.2.	Script:	myshaper

5.	 Testing	the	New	Queue

6.	 OK	It	Works!!	Now	What?

7.	 Related	Links

8.	 Introduction

The	purpose	of	this	document	is	to	suggest	a	way	to	manage	outbound	traffic

on	an	ADSL	(or	cable	modem)	connection	to	the	Internet.	The	problem	is	that

many	ADSL	lines	are	limited	in	the	neighborhood	of	128kbps	for	upstream	data

transfer.	Aggravating	this	problem	is	the	packet	queue	in	the	ADSL	modem

which	can	take	2	to	3	seconds	to	empty	when	full.	Together	this	means	that

when	the	upstream	bandwidth	is	fully	saturated	it	can	take	up	to	3	seconds

for	any	other	packets	to	get	out	to	the	Internet.	This	can	cripple

interactive	applications	such	as	telnet	and	multi-player	games.

1.1.	New	Versions	of	This	Document

You	can	always	view	the	latest	version	of	this	document	on	the	World	Wide	Web

at	the	URL:	[http://www.tldp.org]	http://www.tldp.org.

New	versions	of	this	document	will	also	be	uploaded	to	various	Linux	WWW
and

FTP	sites,	including	the	LDP	home	page	at	[http://www.tldp.org]	http://

www.tldp.org.

1.2.	Email	Discussion	List

For	questions	and	update	information	regarding	ADSL	Bandwidth	Management

please	subscribe	to	the	ADSL	Bandwidth	Management	email	list	at	[http://

jared.sonicspike.net/mailman/listinfo/adsl-qos]	http://jared.sonicspike.net/

mailman/listinfo/adsl-qos.

1.3.	Disclaimer

Neither	the	author	nor	the	distributors,	or	any	other	contributor	of	this

HOWTO	are	in	any	way	responsible	for	physical,	financial,	moral	or	any	other

type	of	damage	incurred	by	following	the	suggestions	in	this	text.

1.4.	Copyright	and	License

This	document	is	copyright	2002	by	Dan	Singletary,	and	is	released	under	the

terms	of	the	GNU	Free	Documentation	License,	which	is	hereby	incorporated	by

reference.

1.5.	Feedback	and	corrections

If	you	have	questions	or	comments	about	this	document,	please	feel	free	to

contact	the	author	at	[mailto:dvsing@sonicspike.net]	dvsing@sonicspike.net.

1.	 Background

2.1.	Prerequisites

The	method	outlined	in	this	document	should	work	in	other	Linux

configurations	however	it	remains	untested	in	any	configuration	but	the

following:

��*�Red	Hat	Linux	7.3

��*�2.4.18-5	Kernel	with	QoS	Support	fully	enabled	(modules	OK)	and
including

the	following	kernel	patches	(which	may	eventually	be	included	in	

later

kernels):

��+�HTB	queue	-	[http://luxik.cdi.cz/~devik/qos/htb/]	
http://luxik.cdi.cz

				/~devik/qos/htb/

				Note:	it	has	been	reported	that	kernels	since	version	2.4.18-3

				shipped	with	Mandrake	(8.1,	8.2)	have	already	been	patched	for	

HTB.

��+�IMQ	device	-	[http://luxik.cdi.cz/~patrick/imq/]	
http://luxik.cdi.cz/

				~patrick/imq/

��*�iptables	v1.2.6a	or	later	(version	of	iptables	distributed	with	Red	Hat

7.3	is	missing	the	length	module)

+---+

|	|

|	Note:	Previous	versions	of	this	document	specified	a	method	of	bandwidth	|

|	control	that	involved	patching	the	existing	sch-prio	queue.	It	was	found	|

|	later	that	this	patch	was	entirely	unnecessary.	Regardless,	the	newer	|

|	methods	outlined	in	this	document	will	give	you	better	results	(although	|

|	at	the	writing	of	this	document	2	kernel	patches	are	now	necessary.	:)	|

|	Happy	patching.)	|

|	|

+---+

2.2.	Layout

In	order	to	keep	things	simple,	all	references	to	network	devices	and

configuration	in	this	document	will	be	with	respect	to	the	following	network

layout	diagram:

+--+

|	<--	128kbit/s	--------------	<--	10Mbit	-->	|

|	Internet	<-------------------->	|	ADSL	Modem	|	<--------------------	|

|	1.5Mbit/s	-->	--------------	|	|

|	|	eth0	|

|	V	|

|	-----------------	|

|	|	|	|

|	|	Linux	Router	|	|

|	|	|	|

|	-----------------	|

|	|	..	|	eth1..ethN	|

|	|	|	|

|	V	V	|

|	|

|	Local	Network	|

|	|

+--+

2.3.	Packet	Queues

Packet	queues	are	buckets	that	hold	data	for	a	network	device	when	it	can't

be	immediately	sent.	Most	packet	queues	use	a	FIFO	(first	in,	first	out)

discipline	unless	they've	been	specially	configured	to	do	otherwise.	What

this	means	is	that	when	the	packet	queue	for	a	device	is	completely	full,	the

packet	most	recently	placed	in	the	queue	will	be	sent	over	the	device	only

after	all	the	other	packets	in	the	queue	at	that	time	have	been	sent.

2.3.1.	The	Upstream

With	an	ADSL	modem,	bandwidth	is	asymmetric	with	1.5Mbit/s	typical
downstream

and	128kbit/sec	typical	upstream.	Although	this	is	the	line	speed,	the

interface	between	the	Linux	Router	PC	and	the	ADSL	modem	is	typically	at	or

above	10Mbit/s.	If	the	interface	to	the	Local	Network	is	also	10Mbit/s,	there

will	typically	be	NO	QUEUING	at	the	router	when	packets	are	sent	from	the

Local	Network	to	the	Internet.	Packets	are	sent	out	eth0	as	fast	as	they	are

received	from	the	Local	Network.	Instead,	packets	are	queued	at	the	ADSL

modem	since	they	are	arriving	at	10Mbit/s	and	only	being	sent	at	128kbit/s.

Eventually	the	packet	queue	at	the	ADSL	modem	will	become	full	and	any	more

packets	sent	to	it	will	be	silently	dropped.	TCP	is	designed	to	handle	this

and	will	adjust	it's	transmit	window	size	accordingly	to	take	full	advantage

of	the	available	bandwidth.

While	packet	queues	combined	with	TCP	result	in	the	most	effective	use	of

bandwidth,	large	FIFO	queues	can	increase	the	latency	for	interactive

traffic.

Another	type	of	queue	that	is	somewhat	like	FIFO	is	an	n-band	priority	queue.

However,	instead	of	having	just	one	queue	that	packets	line	up	in,	the	n-band

priority	queue	has	n	FIFO	queues	which	packets	are	placed	in	by	their

classification.	Each	queue	has	a	priority	and	packets	are	always	dequeued

from	the	highest	priority	queue	that	contains	packets.	Using	this	discipline

FTP	packets	can	be	placed	in	a	lower	priority	queue	than	telnet	packets	so

that	even	during	an	FTP	upload,	a	single	telnet	packet	will	jump	the	queue

and	be	sent	immediately.

This	document	has	been	revised	to	use	a	new	queue	in	linux	called	the

Hierarchical	Token	Bucket	(HTB).	The	HTB	queue	is	much	like	the	n-band
queue

described	above,	but	it	has	the	capability	to	limit	the	rate	of	traffic	in

each	class.	In	addition	to	this,	it	has	the	ability	to	set	up	classes	of

traffic	beneath	other	classes	creating	a	hierarchy	of	classes.	Fully

describing	HTB	is	beyond	the	scope	of	this	document,	but	more	information	can

be	found	at	[http://www.lartc.org]	http://www.lartc.org

2.3.2.	The	Downstream

Traffic	coming	inbound	on	your	ADSL	modem	is	queued	in	much	the	same	way
as

outbound	traffic,	however	the	queue	resides	at	your	ISP.	Because	of	this,	you

probably	don't	have	direct	control	of	how	packets	are	queued	or	which	types

of	traffic	get	preferential	treatment.	The	only	way	to	keep	your	latency	low

here	is	to	make	sure	that	people	don't	send	you	data	too	fast.	Unfortunately,

there's	no	way	to	directly	control	the	speed	at	which	packets	arrive,	but

since	a	majority	of	your	traffic	is	most	likely	TCP,	there	are	some	ways	to

slow	down	the	senders:

��*�Intentionally	drop	inbound	packets	-	TCP	is	designed	to	take	full

advantage	of	the	available	bandwidth	while	also	avoiding	congestion	

of

the	link.	This	means	that	during	a	bulk	data	transfer	TCP	will	send	

more

and	more	data	until	eventually	a	packet	is	dropped.	TCP	detects	

this	and

reduces	it's	transmission	window.	This	cycle	continues	throughout	

the

transfer	and	assures	data	is	moved	as	quickly	as	possible.

��*�Manipulate	the	advertised	receive	window	-	During	a	TCP	transfer,	the

receiver	sends	back	a	continuous	stream	of	acknowledgment	(ACK)	

packets.

Included	in	the	ACK	packets	is	a	window	size	advertisement	which	

states

the	maximum	amount	of	unacknowledged	data	the	receiver	should	send.	

By

manipulating	the	window	size	of	outbound	ACK	packets	we	can	

intentionally

slow	down	the	sender.	At	the	moment	there	is	no	(free)	

implementation	for

this	type	of	flow-control	on	Linux	(however	I	may	be	working	on	

one!).

1.	 How	it	Works

There	are	two	basic	steps	to	optimize	upstream	bandwidth.	First	we	have	to

find	a	way	to	prevent	the	ADSL	modem	from	queuing	packets	since	we	have	no

control	over	how	it	handles	the	queue.	In	order	to	do	this	we	will	throttle

the	amount	of	data	the	router	sends	out	eth0	to	be	slightly	less	than	the

total	upstream	bandwidth	of	the	ADSL	modem.	This	will	result	in	the	router

having	to	queue	packets	that	arrive	from	the	Local	Network	faster	than	it	is

allowed	to	send	them.

The	second	step	is	to	set	up	priority	queuing	discipline	on	the	router.	We'll

investigate	a	queue	that	can	be	configured	to	give	priority	to	interactive

traffic	such	as	telnet	and	multi-player	games.

+---+

|	|

|	By	using	the	HTB	queue	we	can	accomplish	bandwidth	shaping	and	priority	|

|	queuing	at	the	same	time	while	also	assuring	that	no	priority	class	is	|

|	starved	by	another.	Avoiding	starvation	wasn't	possible	using	the	method	|

|	outlined	in	the	0.1	revision	of	this	document.	|

|	|

+---+

The	final	step	is	to	configure	the	firewall	to	prioritize	packets	by	using

fwmark.

3.1.	Throttling	Outbound	Traffic	with	Linux	HTB

Although	the	connection	between	the	router	and	the	modem	is	at	10Mbit/s,	the

modem	is	only	able	to	send	data	at	128kbit/s.	Any	data	sent	in	excess	of	that

rate	will	be	queued	at	the	modem.	Thus,	a	ping	packet	sent	from	the	router

may	go	to	the	modem	immediately,	but	may	take	a	few	seconds	to	actually	get

sent	out	to	the	Internet	if	the	queue	in	the	modem	has	any	packets	in	it.

Unfortunately	most	ADSL	modems	provide	no	mechanism	to	specify	how
packets

are	dequeued	or	how	large	the	queue	is,	so	our	first	objective	is	to	move	the

place	where	the	outbound	packets	are	queued	to	somewhere	where	we	have
more

control	over	the	queue.

We'll	do	this	by	using	the	HTB	queue	to	limit	the	rate	at	which	we	send

packets	to	the	ADSL	modem.	Even	though	our	upstream	bandwidth	may	be
128kbit/

s	we'll	have	to	limit	the	rate	at	which	we	send	packets	to	be	slightly	below

that.	If	we	want	to	lower	the	latency	we	have	to	be	SURE	that	not	a	single

packet	is	ever	queued	at	the	modem.	Through	experimentation	I	have	found	that

limiting	the	outbound	traffic	to	about	90kbit/s	gives	me	almost	95%	of	the

bandwidth	I	could	achieve	without	HTB	rate	control.	With	HTB	enabled	at	this

rate,	we've	prevented	the	ADSL	modem	from	queuing	packets.

3.2.	Priority	Queuing	with	HTB

+---+

|	|

|	Note:	previous	claims	in	this	section	(originally	named	N-band	priority	|

|	queuing)	were	later	found	to	be	incorrect.	It	actually	WAS	possible	to	|

|	classify	packets	into	the	individual	bands	of	the	priority	queue	by	only	|

|	using	the	fwmark	field,	however	it	was	poorly	documented	at	the	writing	|

|	of	version	0.1	of	this	document	|

|	|

+---+

At	this	point	we	still	haven't	realized	any	change	in	the	performance.	We've

merely	moved	the	FIFO	queue	from	the	ADSL	modem	to	the	router.	In	fact,	with

Linux	configured	to	a	default	queue	size	of	100	packets	we've	probably	made

our	problem	worse	at	this	point!	But	not	for	long...

Each	neighbor	class	in	an	HTB	queue	can	be	assigned	a	priority.	By	placing

different	types	of	traffic	in	different	classes	and	then	assigning	these

classes	different	priorities,	we	can	control	the	order	in	which	packets	are

dequeued	and	sent.	HTB	makes	it	possible	to	do	this	while	still	avoiding

starvation	of	any	one	class,	since	we're	able	to	specify	a	minimum	guaranteed

rate	for	each	class.	In	addition	to	this,	HTB	allows	for	us	to	tell	a	class

that	it	may	use	any	unused	bandwidth	from	other	classes	up	to	a	certain

ceiling.

Once	we	have	our	classes	set	up,	we	set	up	filters	to	place	traffic	in

classes.	There	are	several	ways	to	do	this,	but	the	method	described	in	this

document	uses	the	familiar	iptables/ipchains	to	mark	packets	with	an	fwmark.

The	filters	place	traffic	into	the	classes	of	the	HTB	queue	based	on	their

fwmark.	This	way,	we're	able	to	set	up	matching	rules	in	iptables	to	send

certain	types	of	traffic	to	certain	classes.

3.3.	Classifying	Outbound	Packets	with	iptables

+---+

|	|

|	Note:	originally	this	document	used	ipchains	to	classify	packets.	The	|

|	newer	iptables	is	now	used.	|

|	|

+---+

The	final	step	in	configuring	your	router	to	give	priority	to	interactive

traffic	is	to	set	up	the	firewall	to	define	how	traffic	should	be	classified.

This	is	done	by	setting	the	packet's	fwmark	field.

Without	getting	into	too	much	detail,	here	is	a	simplified	description	of	how

outbound	packets	might	be	classified	into	4	classes	with	the	highest	priority

class	being	0x00:

1.	 Mark	ALL	packets	as	0x03.	This	places	all	packets,	by	default,	into	the

lowest	priority	queue.

2.	 Mark	ICMP	packets	as	0x00.	We	want	ping	to	show	the	latency	for	the

highest	priority	packets.

3.	 Mark	all	packets	that	have	a	destination	port	1024	or	less	as	0x01.	This

gives	priority	to	system	services	such	as	Telnet	and	SSH.	FTP's	control

port	will	also	fall	into	this	range	however	FTP	data	transfer	takes	place

on	high	ports	and	will	remain	in	the	0x03	band.

4.	 Mark	all	packets	that	have	a	destination	port	of	25	(SMTP)	as	0x03.	If

someone	sends	an	email	with	a	large	attachment	we	don't	want	it	to	swamp

interactive	traffic.

5.	 Mark	all	packets	that	are	going	to	a	multi-player	game	server	as	0x02.

This	will	give	gamers	low	latency	but	will	keep	them	from	swamping	out

the	the	system	applications	that	require	low	latency.

Mark	any	"small"	packets	as	0x02.	Outbound	ACK	packets	from	inbound

downloads	should	be	sent	promptly	to	assure	efficient	downloads.	This	is

possible	using	the	iptables	length	module.

Obviously,	this	can	be	customized	to	fit	your	needs.

3.4.	A	few	more	tweaks...

There	are	two	more	things	that	you	can	do	to	improve	your	latency.	First,	you

can	set	the	Maximum	Transmittable	Unit	(mtu)	to	be	lower	than	the	default	of

1500	bytes.	Lowering	this	number	will	lower	the	average	time	you	have	to	wait

to	send	a	priority	packet	if	there	is	already	a	full-sized	low-priority

packet	being	sent.	Lowering	this	number	will	also	slightly	decrease	your

throughput	because	each	packet	contains	at	least	40	bytes	worth	of	IP	and	TCP

header	information.

The	other	thing	you	can	do	to	improve	latency	even	on	your	low-priority

traffic	is	to	lower	your	queue	length	from	the	default	of	100,	which	on	an

ADSL	line	could	take	as	much	as	10	seconds	to	empty	with	a	1500	byte	mtu.

3.5.	Attempting	to	Throttle	Inbound	Traffic

By	using	the	Intermediate	Queuing	Device	(IMQ),	we	can	run	all	incoming

packets	through	a	queue	in	the	same	way	that	we	queue	outbound	packets.

Packet	priority	is	much	simpler	in	this	case.	Since	we	can	only	(attempt	to)

control	inbound	TCP	traffic,	we'll	put	all	non-TCP	traffic	in	the	0x00	class,

and	all	TCP	traffic	in	the	0x01	class.	We'll	also	place	"small"	TCP	packets

in	the	0x00	class	since	these	are	most	likely	ACK	packets	for	outbound	data

that	has	already	been	sent.	We'll	set	up	a	standard	FIFO	queue	on	the	0x00

class,	and	we'll	set	up	a	Random	Early	Drop	(RED)	queue	on	the	0x01	class.

RED	is	better	than	a	FIFO	(tail-drop)	queue	at	controlling	TCP	because	it

will	drop	packets	before	the	queue	overflows	in	an	attempt	to	slow	down

transfers	that	look	like	they're	about	to	get	out	of	control.	We'll	also

rate-limit	both	classes	to	some	maximum	inbound	rate	which	is	less	than	your

true	inbound	speed	over	the	ADSL	modem.

3.5.1.	Why	Inbound	Traffic	Limiting	isn't	all	That	Good

We	want	to	limit	our	inbound	traffic	to	avoid	filling	up	the	queue	at	the

ISP,	which	can	sometimes	buffer	as	much	as	5	seconds	worth	of	data.	The

problem	is	that	currently	the	only	way	to	limit	inbound	TCP	traffic	is	to

drop	perfectly	good	packets.	These	packets	have	already	taking	up	some	share

of	bandwidth	on	the	ADSL	modem	only	to	be	dropped	by	the	Linux	box	in	an

effort	to	slow	down	future	packets.	These	dropped	packets	will	eventually	be

retransmitted	consuming	more	bandwidth.	When	we	limit	traffic,	we	are

limiting	the	rate	of	packets	which	we	will	accept	into	our	network.	Since	the

actual	inbound	data	rate	is	somewhere	above	this	because	of	the	packets	we

drop,	we'll	actually	have	to	limit	our	downstream	to	much	lower	than	the

actual	rate	of	the	ADSL	modem	in	order	to	assure	low	latency.	In	practice	I

had	to	limit	my	1.5mbit/s	downstream	ADSL	to	700kbit/sec	in	order	to	keep	the

latency	acceptable	with	5	concurrent	downloads.	The	more	TCP	sessions	you

have,	the	more	bandwidth	you'll	waste	with	dropped	packets,	and	the	lower

you'll	have	to	set	your	limit	rate.

A	much	better	way	to	control	inbound	TCP	traffic	would	be	TCP	window

manipulation,	but	as	of	this	writing	there	exists	no	(free)	implementation	of

it	for	Linux	(that	I	know	of...).

1.	 Implementation

Now	with	all	of	the	explanation	out	of	the	way	it's	time	to	implement

bandwidth	management	with	Linux.

4.1.	Caveats

Limiting	the	actual	rate	of	data	sent	to	the	DSL	modem	is	not	as	simple	as	it

may	seem.	Most	DSL	modems	are	really	just	ethernet	bridges	that	bridge	data

back	and	forth	between	your	linux	box	and	the	gateway	at	your	ISP.	Most	DSL

modems	use	ATM	as	a	link	layer	to	send	data.	ATM	sends	data	in	cells	that	are

always	53	bytes	long.	5	of	these	bytes	are	header	information,	leaving	48

bytes	available	for	data.	Even	if	you	are	sending	1	byte	of	data,	an	entire

53	bytes	of	bandwidth	are	consumed	sent	since	ATM	cells	are	always	53	bytes

long.	This	means	that	if	you	are	sending	a	typical	TCP	ACK	packet	which

consists	of	0	bytes	data	+	20	bytes	TCP	header	+	20	bytes	IP	header	+	18

bytes	Ethernet	header.	In	actuality,	even	though	the	ethernet	packet	you	are

sending	has	only	40	bytes	of	payload	(TCP	and	IP	header),	the	minimum
payload

for	an	Ethernet	packet	is	46	bytes	of	data,	so	the	remaining	6	bytes	are

padded	with	nulls.	This	means	that	the	actual	length	of	the	Ethernet	packet

plus	header	is	18	+	46	=	64	bytes.	In	order	to	send	64	bytes	over	ATM,	you

have	to	send	two	ATM	cells	which	consume	106	bytes	of	bandwidth.	This	means

for	every	TCP	ACK	packet,	you're	wasting	42	bytes	of	bandwidth.	This	would
be

okay	if	Linux	accounted	for	the	encapsulation	that	the	DSL	modem	uses,	but

instead,	Linux	only	accounts	the	TCP	header,	IP	header,	and	14	bytes	of	the

MAC	address	(Linux	doesn't	count	the	4	bytes	CRC	since	this	is	handled	at	the

hardware	level).	Linux	doesn't	count	the	minimum	Ethernet	packet	size	of	46

bytes,	nor	does	it	take	into	account	the	fixed	ATM	cell	size.

What	all	of	this	means	is	that	you'll	have	to	limit	your	outbound	bandwidth

to	somewhat	less	than	your	true	capacity	(until	we	can	figure	out	a	packet

scheduler	that	can	account	for	the	various	types	of	encapsulation	being

used).	You	may	find	that	you've	figured	out	a	good	number	to	limit	your

bandwidth	to,	but	then	you	download	a	big	file	and	the	latency	starts	to

shoot	up	over	3	seconds.	This	is	most	likely	because	the	bandwidth	those

small	ACK	packets	consume	is	being	miscalculated	by	Linux.

I	have	been	working	on	a	solution	to	this	problem	for	a	few	months	and	have

almost	settled	on	a	solution	that	I	will	soon	release	to	the	public	for

further	testing.	The	solution	involves	using	a	user-space	queue	instead	of

linux's	QoS	to	rate-limit	packets.	I've	basically	implemented	a	simple	HTB

queue	using	linux	user-space	queues.	This	solution	(so	far)	has	been	able	to

regulate	outbound	traffic	SO	WELL	that	even	during	a	massive	bulk	download

(several	streams)	and	bulk	upload	(gnutella,	several	streams)	the	latency

PEAKS	at	400ms	over	my	nominal	no-traffic	latency	of	about	15ms.	For	more

information	on	this	QoS	method,	subscribe	to	the	email	list	for	updates	or

check	back	on	updates	to	this	HOWTO.

4.2.	Script:	myshaper

The	following	is	a	listing	of	the	script	which	I	use	to	control	bandwidth	on

my	Linux	router.	It	uses	several	of	the	concepts	covered	in	the	document.

Outbound	traffic	is	placed	into	one	of	7	queues	depending	on	type.	Inbound

traffic	is	placed	into	two	queues	with	TCP	packets	being	dropped	first

(lowest	priority)	if	the	inbound	data	is	over-rate.	The	rates	given	in	this

script	seem	to	work	OK	for	my	setup	but	your	results	may	vary.

+---+

|	|

|	This	script	was	originally	based	on	the	ADSL	WonderShaper	as	seen	at	the	|

|	[http://www.lartc.org]	LARTC	website.	|

|	|

+---+

!/bin/bash

myshaper	-	DSL/Cable	modem
outbound	traffic	shaper	and
prioritizer.

Based	on	the	ADSL/Cable
wondershaper	(www.lartc.org)

Written	by	Dan	Singletary	(8/7/02)

NOTE!!	-	This	script	assumes	your
kernel	has	been	patched	with	the

appropriate	HTB	queue	and	IMQ
patches	available	here:

(subnote:	future	kernels	may	not
require	patching)

http://luxik.cdi.cz/~devik/qos/htb/

http://luxik.cdi.cz/~patrick/imq/

Configuration	options	for	myshaper:

DEV	-	set	to	ethX	that	connects	to
DSL/Cable	Modem

RATEUP	-	set	this	to	slightly	lower
than	your

outbound	bandwidth	on	the
DSL/Cable	Modem.

I	have	a	1500/128	DSL	line	and
setting

RATEUP=90	works	well	for	my
128kbps	upstream.

However,	your	mileage	may	vary.

RATEDN	-	set	this	to	slightly	lower

than	your

inbound	bandwidth	on	the
DSL/Cable	Modem.

Theory	on	using	imq	to	"shape"
inbound	traffic:

It's	impossible	to	directly	limit	the
rate	of	data	that	will

be	sent	to	you	by	other	hosts	on	the
internet.	In	order	to	shape

the	inbound	traffic	rate,	we	have	to
rely	on	the	congestion	avoidance

algorithms	in	TCP.	Because	of	this,
WE	CAN	ONLY	ATTEMPT	TO
SHAPE

INBOUND	TRAFFIC	ON	TCP
CONNECTIONS.	This	means	that
any	traffic	that

is	not	tcp	should	be	placed	in	the
high-prio	class,	since	dropping

a	non-tcp	packet	will	most	likely
result	in	a	retransmit	which	will

do	nothing	but	unnecessarily
consume	bandwidth.

We	attempt	to	shape	inbound	TCP
traffic	by	dropping	tcp	packets

when	they	overflow	the	HTB	queue
which	will	only	pass	them	on	at

a	certain	rate	(RATEDN)	which	is
slightly	lower	than	the	actual

capability	of	the	inbound	device.	By
dropping	TCP	packets	that

are	over-rate,	we	are	simulating	the
same	packets	getting	dropped

due	to	a	queue-overflow	on	our	ISP's
side.	The	advantage	of	this

is	that	our	ISP's	queue	will	never	fill
because	TCP	will	slow	it's

transmission	rate	in	response	to	the
dropped	packets	in	the	assumption

that	it	has	filled	the	ISP's	queue,
when	in	reality	it	has	not.

The	advantage	of	using	a	priority-
based	queuing	discipline	is

that	we	can	specifically	choose	NOT
to	drop	certain	types	of	packets

that	we	place	in	the	higher	priority
buckets	(ssh,	telnet,	etc).	This

is	because	packets	will	always	be
dequeued	from	the	lowest	priority
class

with	the	stipulation	that	packets	will
still	be	dequeued	from	every

class	fairly	at	a	minimum	rate	(in	this
script,	each	bucket	will	deliver

at	least	it's	fair	share	of	1/7	of	the
bandwidth).

Reiterating	main	points:

*	Dropping	a	tcp	packet	on	a
connection	will	lead	to	a	slower	rate

of	reception	for	that	connection	due
to	the	congestion	avoidance
algorithm.

*	We	gain	nothing	from	dropping
non-TCP	packets.	In	fact,	if	they

were	important	they	would	probably
be	retransmitted	anyways	so	we	want
to

try	to	never	drop	these	packets.	This
means	that	saturated	TCP
connections

will	not	negatively	effect	protocols
that	don't	have	a	built-in	retransmit

like	TCP.

*	Slowing	down	incoming	TCP
connections	such	that	the	total
inbound	rate	is	less

than	the	true	capability	of	the	device
(ADSL/Cable	Modem)	SHOULD
result	in	little

to	no	packets	being	queued	on	the
ISP's	side	(DSLAM,	cable
concentrator,	etc).	Since

these	ISP	queues	have	been	observed
to	queue	4	seconds	of	data	at
1500Kbps	or	6	megabits

of	data,	having	no	packets	queued
there	will	mean	lower	latency.

Caveats	(questions	posed	before
testing):

*	Will	limiting	inbound	traffic	in	this
fashion	result	in	poor	bulk	TCP
performance?

-	Preliminary	answer	is	no!	Seems
that	by	prioritizing	ACK	packets
(small	<64b)

we	maximize	throughput	by	not
wasting	bandwidth	on	retransmitted
packets

that	we	already	have.

NOTE:	The	following	configuration
works	well	for	my

setup:	1.5M/128K	ADSL	via	Pacific

Bell	Internet	(SBC	Global	Services)
DEV=eth0

RATEUP=90

RATEDN=700	#	Note	that	this	is	significantly	lower	than	the	capacity	of	1500.

								#	Because	of	this,	you	may	not	want	to	bother	limiting	

inbound	traffic

								#	until	a	better	implementation	such	as	TCP	window	

manipulation	can	be	used.

End	Configuration	Options
if	["$1"	=	"status"]

then

				echo	"[qdisc]"

				tc	-s	qdisc	show	dev	$DEV

				tc	-s	qdisc	show	dev	imq0

				echo	"[class]"

				tc	-s	class	show	dev	$DEV

				tc	-s	class	show	dev	imq0

				echo	"[filter]"

				tc	-s	filter	show	dev	$DEV

				tc	-s	filter	show	dev	imq0

				echo	"[iptables]"

				iptables	-t	mangle	-L	MYSHAPER-OUT	-v	-x	2>	/dev/null

				iptables	-t	mangle	-L	MYSHAPER-IN	-v	-x	2>	/dev/null

				exit

fi

Reset	everything	to	a	known	state
(cleared)
tc	qdisc	del	dev	$DEV	root	2>	/dev/null	>	/dev/null

tc	qdisc	del	dev	imq0	root	2>	/dev/null	>	/dev/null

iptables	-t	mangle	-D	POSTROUTING	-o	$DEV	-j	MYSHAPER-OUT	2>
/dev/null	>	/dev/null

iptables	-t	mangle	-F	MYSHAPER-OUT	2>	/dev/null	>	/dev/null

iptables	-t	mangle	-X	MYSHAPER-OUT	2>	/dev/null	>	/dev/null

iptables	-t	mangle	-D	PREROUTING	-i	$DEV	-j	MYSHAPER-IN	2>	/dev/null
>	/dev/null

iptables	-t	mangle	-F	MYSHAPER-IN	2>	/dev/null	>	/dev/null

iptables	-t	mangle	-X	MYSHAPER-IN	2>	/dev/null	>	/dev/null

ip	link	set	imq0	down	2>	/dev/null	>	/dev/null

rmmod	imq	2>	/dev/null	>	/dev/null

if	["$1"	=	"stop"]

then

				echo	"Shaping	removed	on	$DEV."

				exit

fi

###

Outbound	Shaping	(limits	total
bandwidth	to	RATEUP)

set	queue	size	to	give	latency	of	about
2	seconds	on	low-prio	packets
ip	link	set	dev	$DEV	qlen	30

changes	mtu	on	the	outbound	device.
Lowering	the	mtu	will	result

in	lower	latency	but	will	also	cause
slightly	lower	throughput	due

to	IP	and	TCP	protocol	overhead.
ip	link	set	dev	$DEV	mtu	1000

add	HTB	root	qdisc
tc	qdisc	add	dev	$DEV	root	handle	1:	htb	default	26

add	main	rate	limit	classes
tc	class	add	dev	$DEV	parent	1:	classid	1:1	htb	rate	${RATEUP}kbit

add	leaf	classes	-	We	grant	each	class
at	LEAST	it's	"fair	share"	of
bandwidth.

this	way	no	class	will	ever	be	starved
by	another	class.	Each

class	is	also	permitted	to	consume	all
of	the	available	bandwidth

if	no	other	classes	are	in	use.
tc	class	add	dev	$DEV	parent	1:1	classid	1:20	htb	rate	$[$RATEUP/7]kbit	ceil
${RATEUP}kbit	prio	0

tc	class	add	dev	$DEV	parent	1:1	classid	1:21	htb	rate	$[$RATEUP/7]kbit	ceil
${RATEUP}kbit	prio	1

tc	class	add	dev	$DEV	parent	1:1	classid	1:22	htb	rate	$[$RATEUP/7]kbit	ceil
${RATEUP}kbit	prio	2

tc	class	add	dev	$DEV	parent	1:1	classid	1:23	htb	rate	$[$RATEUP/7]kbit	ceil
${RATEUP}kbit	prio	3

tc	class	add	dev	$DEV	parent	1:1	classid	1:24	htb	rate	$[$RATEUP/7]kbit	ceil
${RATEUP}kbit	prio	4

tc	class	add	dev	$DEV	parent	1:1	classid	1:25	htb	rate	$[$RATEUP/7]kbit	ceil
${RATEUP}kbit	prio	5

tc	class	add	dev	$DEV	parent	1:1	classid	1:26	htb	rate	$[$RATEUP/7]kbit	ceil
${RATEUP}kbit	prio	6

attach	qdisc	to	leaf	classes	-	here	we
at	SFQ	to	each	priority	class.	SFQ
insures	that

within	each	class	connections	will	be
treated	(almost)	fairly.
tc	qdisc	add	dev	$DEV	parent	1:20	handle	20:	sfq	perturb	10

tc	qdisc	add	dev	$DEV	parent	1:21	handle	21:	sfq	perturb	10

tc	qdisc	add	dev	$DEV	parent	1:22	handle	22:	sfq	perturb	10

tc	qdisc	add	dev	$DEV	parent	1:23	handle	23:	sfq	perturb	10

tc	qdisc	add	dev	$DEV	parent	1:24	handle	24:	sfq	perturb	10

tc	qdisc	add	dev	$DEV	parent	1:25	handle	25:	sfq	perturb	10

tc	qdisc	add	dev	$DEV	parent	1:26	handle	26:	sfq	perturb	10

filter	traffic	into	classes	by	fwmark	-
here	we	direct	traffic	into	priority
class	according	to

the	fwmark	set	on	the	packet	(we	set
fwmark	with	iptables

later).	Note	that	above	we've	set	the
default	priority

class	to	1:26	so	unmarked	packets	(or
packets	marked	with

unfamiliar	IDs)	will	be	defaulted	to
the	lowest	priority

class.
tc	filter	add	dev	$DEV	parent	1:0	prio	0	protocol	ip	handle	20	fw	flowid	1:20

tc	filter	add	dev	$DEV	parent	1:0	prio	0	protocol	ip	handle	21	fw	flowid	1:21

tc	filter	add	dev	$DEV	parent	1:0	prio	0	protocol	ip	handle	22	fw	flowid	1:22

tc	filter	add	dev	$DEV	parent	1:0	prio	0	protocol	ip	handle	23	fw	flowid	1:23

tc	filter	add	dev	$DEV	parent	1:0	prio	0	protocol	ip	handle	24	fw	flowid	1:24

tc	filter	add	dev	$DEV	parent	1:0	prio	0	protocol	ip	handle	25	fw	flowid	1:25

tc	filter	add	dev	$DEV	parent	1:0	prio	0	protocol	ip	handle	26	fw	flowid	1:26

add	MYSHAPER-OUT	chain	to	the
mangle	table	in	iptables	-	this	sets	up
the	table	we'll	use

to	filter	and	mark	packets.
iptables	-t	mangle	-N	MYSHAPER-OUT

iptables	-t	mangle	-I	POSTROUTING	-o	$DEV	-j	MYSHAPER-OUT

add	fwmark	entries	to	classify
different	types	of	traffic	-	Set	fwmark
from	20-26	according	to

desired	class.	20	is	highest	prio.
iptables	-t	mangle	-A	MYSHAPER-OUT	-p	tcp	--sport	0:1024	-j	MARK	--set-
mark	23	#	Default	for	low	port	traffic

iptables	-t	mangle	-A	MYSHAPER-OUT	-p	tcp	--dport	0:1024	-j	MARK	--set-
mark	23	#	""

iptables	-t	mangle	-A	MYSHAPER-OUT	-p	tcp	--dport	20	-j	MARK	--set-mark
26	#	ftp-data	port,	low	prio

iptables	-t	mangle	-A	MYSHAPER-OUT	-p	tcp	--dport	5190	-j	MARK	--set-
mark	23	#	aol	instant	messenger

iptables	-t	mangle	-A	MYSHAPER-OUT	-p	icmp	-j	MARK	--set-mark	20	#
ICMP	(ping)	-	high	prio,	impress	friends

iptables	-t	mangle	-A	MYSHAPER-OUT	-p	udp	-j	MARK	--set-mark	21	#	DNS
name	resolution	(small	packets)

iptables	-t	mangle	-A	MYSHAPER-OUT	-p	tcp	--dport	ssh	-j	MARK	--set-mark
22	#	secure	shell

iptables	-t	mangle	-A	MYSHAPER-OUT	-p	tcp	--sport	ssh	-j	MARK	--set-mark
22	#	secure	shell

iptables	-t	mangle	-A	MYSHAPER-OUT	-p	tcp	--dport	telnet	-j	MARK	--set-
mark	22	#	telnet	(ew...)

iptables	-t	mangle	-A	MYSHAPER-OUT	-p	tcp	--sport	telnet	-j	MARK	--set-

mark	22	#	telnet	(ew...)

iptables	-t	mangle	-A	MYSHAPER-OUT	-p	ipv6-crypt	-j	MARK	--set-mark	24	#
IPSec	-	we	don't	know	what	the	payload	is	though...

iptables	-t	mangle	-A	MYSHAPER-OUT	-p	tcp	--sport	http	-j	MARK	--set-mark
25	#	Local	web	server

iptables	-t	mangle	-A	MYSHAPER-OUT	-p	tcp	-m	length	--length	:64	-j	MARK
--set-mark	21	#	small	packets	(probably	just	ACKs)

iptables	-t	mangle	-A	MYSHAPER-OUT	-m	mark	--mark	0	-j	MARK	--set-mark
26	#	redundant-	mark	any	unmarked	packets	as	26	(low	prio)

Done	with	outbound	shaping
##

echo	"Outbound	shaping	added	to	$DEV.	Rate:	${RATEUP}Kbit/sec."

uncomment	following	line	if	you	only
want	upstream	shaping.

exit
##

Inbound	Shaping	(limits	total
bandwidth	to	RATEDN)

make	sure	imq	module	is	loaded
modprobe	imq	numdevs=1

ip	link	set	imq0	up

add	qdisc	-	default	low-prio	class	1:21
tc	qdisc	add	dev	imq0	handle	1:	root	htb	default	21

add	main	rate	limit	classes
tc	class	add	dev	imq0	parent	1:	classid	1:1	htb	rate	${RATEDN}kbit

add	leaf	classes	-	TCP	traffic	in	21,
non	TCP	traffic	in	20
tc	class	add	dev	imq0	parent	1:1	classid	1:20	htb	rate	$[$RATEDN/2]kbit	ceil
${RATEDN}kbit	prio	0

tc	class	add	dev	imq0	parent	1:1	classid	1:21	htb	rate	$[$RATEDN/2]kbit	ceil
${RATEDN}kbit	prio	1

attach	qdisc	to	leaf	classes	-	here	we
at	SFQ	to	each	priority	class.	SFQ
insures	that

within	each	class	connections	will	be
treated	(almost)	fairly.
tc	qdisc	add	dev	imq0	parent	1:20	handle	20:	sfq	perturb	10

tc	qdisc	add	dev	imq0	parent	1:21	handle	21:	red	limit	1000000	min	5000	max
100000	avpkt	1000	burst	50

filter	traffic	into	classes	by	fwmark	-
here	we	direct	traffic	into	priority
class	according	to

the	fwmark	set	on	the	packet	(we	set
fwmark	with	iptables

later).	Note	that	above	we've	set	the
default	priority

class	to	1:26	so	unmarked	packets	(or
packets	marked	with

unfamiliar	IDs)	will	be	defaulted	to
the	lowest	priority

class.
tc	filter	add	dev	imq0	parent	1:0	prio	0	protocol	ip	handle	20	fw	flowid	1:20

tc	filter	add	dev	imq0	parent	1:0	prio	0	protocol	ip	handle	21	fw	flowid	1:21

add	MYSHAPER-IN	chain	to	the
mangle	table	in	iptables	-	this	sets	up
the	table	we'll	use

to	filter	and	mark	packets.
iptables	-t	mangle	-N	MYSHAPER-IN

iptables	-t	mangle	-I	PREROUTING	-i	$DEV	-j	MYSHAPER-IN

add	fwmark	entries	to	classify
different	types	of	traffic	-	Set	fwmark
from	20-26	according	to

desired	class.	20	is	highest	prio.
iptables	-t	mangle	-A	MYSHAPER-IN	-p	!	tcp	-j	MARK	--set-mark	20	#	Set
non-tcp	packets	to	highest	priority

iptables	-t	mangle	-A	MYSHAPER-IN	-p	tcp	-m	length	--length	:64	-j	MARK	--
set-mark	20	#	short	TCP	packets	are	probably	ACKs

iptables	-t	mangle	-A	MYSHAPER-IN	-p	tcp	--dport	ssh	-j	MARK	--set-mark	20
#	secure	shell

iptables	-t	mangle	-A	MYSHAPER-IN	-p	tcp	--sport	ssh	-j	MARK	--set-mark	20
#	secure	shell

iptables	-t	mangle	-A	MYSHAPER-IN	-p	tcp	--dport	telnet	-j	MARK	--set-mark
20	#	telnet	(ew...)

iptables	-t	mangle	-A	MYSHAPER-IN	-p	tcp	--sport	telnet	-j	MARK	--set-mark
20	#	telnet	(ew...)

iptables	-t	mangle	-A	MYSHAPER-IN	-m	mark	--mark	0	-j	MARK	--set-mark
21	#	redundant-	mark	any	unmarked	packets	as	26	(low	prio)

finally,	instruct	these	packets	to	go
through	the	imq0	we	set	up	above
iptables	-t	mangle	-A	MYSHAPER-IN	-j	IMQ

Done	with	inbound	shaping
##

echo	"Inbound	shaping	added	to	$DEV.	Rate:	${RATEDN}Kbit/sec."

1.	 Testing	the	New	Queue

The	easiest	way	to	test	your	new	setup	is	to	saturate	the	upstream	with

low-priority	traffic.	This	depends	how	you	have	your	priorities	set	up.	For

the	sake	of	example,	let's	say	you've	placed	telnet	traffic	and	ping	traffic

at	a	higher	priority	(lower	fwmark)	than	other	high	ports	(that	are	used	for

FTP	transfers,	etc).	If	you	initiate	an	FTP	upload	to	saturate	upstream

bandwidth,	you	should	only	notice	your	ping	times	to	the	gateway	(on	the

other	side	of	the	DSL	line)	increasing	by	a	small	amount	compared	to	what	it

would	increase	to	with	no	priority	queuing.	Ping	times	under	100ms	are

typical	depending	on	how	you've	got	things	set	up.	Ping	times	greater	than

one	or	two	seconds	probably	mean	that	things	aren't	working	right.

1.	 OK	It	Works!!	Now	What?

Now	that	you've	successfully	started	to	manage	your	bandwidth,	you	should

start	thinking	of	ways	to	use	it.	After	all,	you're	probably	paying	for	it!

��*�Use	a	Gnutella	client	and	SHARE	YOUR	FILES	without	adversely
affecting

your	network	performance

��*�Run	a	web	server	without	having	web	page	hits	slow	you	down	in
Quake

1.	 Related	Links

��*�Bandwidth	Controller	for	Windows	-
[http://www.bandwidthcontroller.com]

http://www.bandwidthcontroller.com

��*�[http://www.sonicspike.net/software#dsl-qos-queue]	dsl-qos-queue	-
(beta)

for	Linux.	No	kernel	patching,	and	better	performance	-

